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1. INTRODUCTION

The study of directed graphs is a root problem in
many applications. It suffices to mention the study of
communication networks, including Internet and
GRID networks, and testing software and hardware
systems modeled by transition graphs. The study of a
graph, as a rule, is based on its traversal, which is an
old classical problem of traversal of a labyrinth. This
problem is nontrivial if the graph is directed, that is, in
the case of a one�way streetå labyrinth.

The traversal of a directed graph takes time on the
order of nm, where n is the number of vertices of the
graph and m is the number of its arcs. Such traversal
time is reached by many well�known algorithms:
depth�first traversal and width�first traversal algo�
rithms, a greedy algorithm, etc. [1, 2, 3].

In 1976, Rabin set up the problem of traversal of
a directed graph by a finite automaton [4]. The autom�
aton on the graph is similar to Turing’s machine:
to a cell of a tape, there corresponds a vertex of the
graph, and motion to the left or to the right along the
tape corresponds to a transition along one of the arcs
emanating from a current vertex of the graph. To date,
the fastest algorithm has been proposed in [5]; it has

an estimate nm + n2loglogn. Under a repeated tra�
versal when the automaton can use the marks left by it
after the first traversal, the estimate decreases to
nm + n2l(n), where l(n) is the number of operations of
taking the logarithm for which the relation 1 ≤
log(log…(n)…) < 2 is satisfied [6]. The difference from
the lower bound nm is associated with the fact that
automaton has to “return” to the beginning of the just
traversed arc.

In recent years, the size of actually used systems
and networks and, hence, the size of the graphs studied
has been continuously growing. Problems arise when
the study of a graph by one automaton (computer)
either requires inadmissibly large time, or the graph is
not located in the memory of one computer, or both.
Therefore, the problem arises of a parallel and distrib�
uted study of graphs. This problem is formalized as the
study of a graph by a collective of automata.

In [7] and [8], the authors proposed operation
algorithms for such a collective of automata. It was
assumed that automata cannot record anything at ver�
tices of the graph or read from them, but they can
exchange messages with each other by means of a
communication network orthogonal to the graph, as
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well as generate new automata. The best estimate
obtained is m + nD, where D is the diameter of the
graph, i.e., the length of the maximum simple path
(a path without self�intersections) in the graph.

In this work, we consider a classical problem of
analyzing a graph by automata the exchange of infor�
mation between which occurs only through the mem�
ory of the graph vertices. This is equivalent to studying
a graph by means of messages which the automata
fixed at the vertices of the graph exchange with each
other, and the arcs of the graph play the role of message
transmission channels. An automaton at a vertex sends
a message along one of arcs emanating from this ver�
tex, and, in some time, this message is received by the
automaton at the end of the arc. An estimate for the
operating time of the algorithm depends on the num�
ber of messages that can be simultaneously transmit�
ted along an arc. We will call this number the arc
capacity and denote it by k.

Both the algorithms for the analysis of a graph and
an estimate for their operating time significantly
depend on whether the automata at the vertices of the
graph have any information on the graph or each
automaton is in its initial state and “knows nothing”
about the graph. In this work, we propose two algo�
rithms. The first algorithm carries out a primary tra�
versal of the graph by means of transmitted messages
when at the initial instant of time all automata are in
their initial states. After completing the traversal, the
automata are in such final states that allow one to per�
form a parallel calculation of the required function by
the second algorithm. The traversal of the graph is per�
formed in time of about n/k + D, and the calculation
of the function, in time of about D.

The second algorithm is a pulsation algorithm,
which is based on the fact that, first, request messages,
which should reach each vertex, propagate from the
automaton of a distinguished initial vertex along the
whole graph. Then response messages propagate from
each vertex back to the initial vertex. Using the pulsa�
tion algorithm, one can calculate in parallel any func�
tion of a multiset of values recorded in the memory of
the automata over all vertices of the graph (we will say
“recorded at vertices”). Here are some examples of
such functions: 1. The maximum of numbers recorded
at the vertices of a graph. 2. More generally, instead of
the maximum, one can use any commutative and
associative operation over numbers: a minimum, addi�
tion, product, etc. 3. Special cases: the number of ver�
tices in the graph if “1” is recorded at each vertex, and
the number of arcs in the graph if the number of out�
going arcs is recorded at each vertex. 4. Disjunction of
logical values recorded at the vertices of a graph. 5.
More generally, instead of a disjunction, one can use
any commutative and associative operation on logical
values: conjunction, equivalence, etc. 6. Even more
generally, instead of numbers or logical values, one can

use any values and any commutative and associative
operations on them. 7. Arithmetic mean, geometric
mean, or the root mean square of the numbers
recorded at the vertices of the graph.

2. DESCRIPTION 
OF THE TRAVERSAL ALGORITHM

Whenever it does not lead to confusion, we will say
a “vertex” for short, meaning “the automaton of a ver�
tex” or “the memory of the automaton of a vertex.”
While sending a message, the automaton at a vertex
has to specify an arc outgoing from the vertex along
which the message is sent. We will assume that the arcs
outgoing from a vertex are numbered starting with 1,
and the automaton specifies the arc number.

Suppose that the number of arcs in a graph is m, the
number of vertices is n, the length of the maximum
simple path (a path without self�intersections) is D,
the number of arcs outgoing from a vertex does not
exceed s0, and the number of arcs incoming to a vertex
does not exceed s1. Obviously, m ≤ ns0. We propose a
graph traversal algorithm with the following charac�
teristics:

• the memory of the automaton at a vertex
O(nD logs0),

• the message size O(D logs0),
• the arc capacity k,
• the operating time of the algorithm O(n/k + D).
Remark 2.1. It is obvious that simultaneous send�

ing of k' ≤ k messages with a size of z bits is equivalent
to sending a single message of size k’z bits, or, gener�
ally, to sending k1 messages of size k2z, where k1k2 = k.
Thus, an estimate for the operating time of the algo�
rithm for a message size of z bits and the arc capacity
of k messages coincides with the estimate for the oper�
ating time of the algorithm for a message size of k1z bits
and the arc capacity of k2 messages, where k1k2 = k.
Therefore, after a trivial modification, our algorithm
has the following characteristics:

• the memory of the automaton at a vertex is
O(nD logs0),

• the message size is O(k2D logs0),
• the arc capacity is k1,
• the operating time of the algorithm is O(n/k1k2 + D).
To estimate the operating time of the algorithm, we

assume that the actuation time of the automaton at a
vertex can be neglected, while the message transfer
time along an arc is limited from above by 1 time step.

Some messages are sent from a vertex simulta�
neously along all outgoing arcs, some other, only along
a part of outgoing arcs, and the third ones, only along
a single outgoing arc. Nevertheless, we will assume for
simplicity that a message expects at a vertex that all the
outgoing messages will be released simultaneously.
Thus, the automaton of a vertex does not need a signal
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on the release of a given outgoing arc; a general signal
on the release of all outgoing arcs suffices. We will also
assume that an automaton generally sends several
messages simultaneously along an arc, but not more
than k, the capacity of the arc.

During its operation, the algorithm constructs
spanning trees of a graph: a direct spanning tree
directed from the root, and a back spanning tree
directed to the root. The arcs going out from a vertex:
direct arcs—the arcs of the direct spanning tree,
chords—other outgoing arcs, and a back arc—an arc
of the back spanning tree (it may be both a direct arc
and a chord). A direct simple path is a simple path con�
sisting of arcs outgoing from the root. A back simple
path is a simple path consisting of direct arcs from the
root. By a vector of a path is meant the list of the num�
bers of arcs of a path in a graph. The algorithm uses
only vectors of simple paths of length of at most D and
contours (cycles in which the same vertex is not met
twice) of length of at most D + 1. The vector of a vertex
is a vector of a direct simple path to this vertex. The
root has an empty vector ε. The size of a vector of sim�
ple path or of a contour is O(D logs0). The message size
in the algorithm described below is equal to O(1) vec�
tors, i.e., O(D logs0) bits.

We will divide the description of the algorithm into
four parts. The first part constructs a back spanning
tree, the second part is a “stopper” that determines the
end of construction of the back spanning tree, the
third part is intended for marking the arcs outgoing
from a vertex into straight lines and chords, and the
fourth part installs counters of incoming back arcs at
the vertices. Such marking of the graph (through the
memory of the vertex automata) is used further by the
pulsation algorithm.

2.1. The First Part of the Algorithm

Four types of messages are used: Start, Root search,
Direct, and Reverse. A message can either be created at
a vertex or arrive at a vertex along an incoming arc.
In both cases, we will say for brevity “a vertex receives
a message.”

A Start message is created by the root at the begin�
ning of operation (when a Start message, which ini�
tiates the operation of the algorithm, is received from
outside) and is sent to all vertices. Its purpose is to
report to each vertex its vector and to initiate sending
a Root search message. Upon receiving a Start message
for the first time, each vertex (starting from the root)
distributes it over all outgoing arcs and ignores
repeated Start messages. The message contains a path
vector along which it passes. A vertex (including the
root), while sending a message along an outgoing arc
with number i, adds i to the end of the path vector.
Receiving the message for the first time, the vertex
stores the path vector (obviously, this is a simple path)

from the message as its own vertex vector; the root vec�
tor is empty.

A Root search message is created by a vertex when it
receives a Start message for the fist time. We will call
this vertex an initiator of a Root search message.
The goal of the Root search message is to pass a certain
simple path from the initiator to the root and to report
the vector of this simple path to the root. In response,
the root sends a Direct message, which is addressed to
the initiator. Both these messages contain a vector of
initiator as a parameter. Each vertex stores a list of vec�
tors of initiators from those Root search or Direct mes�
sage that appeared at this vertex. In the beginning, the
list is empty. As soon as a vertex receives a Root search
or Direct message with a given vector of initiator for the
first time, it places this message in the list. The proper
vector of vertex can be stored as the first element of the
list; this element will be empty if the vertex does not
yet have a proper vector, i.e., if it has not yet received a
Start message.

A Root search message is distributed “fanwise” so
that it passes along each arc exactly once. For this pur�
pose, the vector of initiator in the message is compared
with the vectors from the list of vectors of initiators.
If the message is the first one, it is distributed over all
outgoing arcs, and the vector of initiator from the mes�
sage is added to the list of vectors of initiators. Repeated
messages are ignored. In addition to the vector of initi�
ator, the Root search message contains a path vector
along which it passes. When the root receives the Root
search message with the given vector of initiator for the
first time, it creates a Direct message with the same
vector of initiator and path vector. Note that here the
vector of initiator is a vector of direct simple path from
the root to the initiator, and the path vector is a vector
of some simple path from the initiator to the root.

A Direct message is created by the root when it
receives a Root search message with a given vector of
initiator for the first time. It is sent along a direct sim�
ple path to the initiator. The goal of this message is to
communicate a simple path vector from the initiator to
the root to the initiator. When a vertex receives a Direct
message with a given vector of initiator x, it compares it
with a proper vertex vector y. Since a Direct message
moves along a direct simple path to the initiator, y ≤ x.
If y < x, then y ⋅ i ≤ x for some arc number i, and the
message is sent unchanged along the outgoing arc i.
If y = x, i.e., if the vertex is the initiator for this mes�
sage, then the vertex creates a Reverse message, which
contains the same vector of simple path from the initia�
tor to the root. Let us recall that, as soon as a vertex
receives a Direct message with a given vector of initiator
for the first time, it places it into the list in order that
further Root search messages with the same initiator be
ignored.

A Reverse message is created by a vertex when it
receives a Direct message addressed to it. The goal of
this message is to mark a simple path back from this
vertex to the root, defined by the simple path vector
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from the Direct message. When a vertex (different from
the root) receives (creates or receives along the incom�
ing arc) a Reverse message with a simple path vector of
the form i ⋅ x, the arc with number i is marked as a back
arc, and a Reverse message with the simple path vector
x is sent along this arc. The root ignores the Reverse
message (which, obviously, arrives at the root with
empty simple path vector).

Reverse messages are “summed” at a vertex in
anticipation of the release of outgoing arcs. More pre�
cisely, if there is a Reverse message at the vertex, that
waits for the release of arcs, then newly arriving mes�
sages of this type are ignored.

Proposition 2.1. The first part of the algorithm con�
structs a back spanning tree of a strongly connected
graph.

Proof. According to the description of the algo�
rithm, at most one back arc appears at each vertex
except for the root. Each time when a certain arc out�
going from a vertex is declared back, a message is sent
along it that guaranteedly reaches the root, possibly,
“being summed” with waiting Reverse messages.
Therefore, if a back arc appears at a vertex, then a sim�
ple path along back arcs appears from this vertex to the
root.

The number of all transfers of messages along arcs
is finite. Indeed, a Start message passes exactly once
along each vertex; therefore, the number of such
transfers of messages along arcs is equal to the number
of arcs m. The Root search message with this vector of
initiator passes along each arc also exactly once, and
the number of different initiators is equal to the num�
ber of vertices other than the root, i.e., to n – 1; there�
fore, the number of transfers of Root search messages
along arcs is not greater than (n – 1)m. The Direct and
Reverse messages are created once for each initiator,
and each such message passes a simple path of length
at most D; therefore, the total number of transfers of
such messages along arcs is at most 2(n – 1)D.
Thus, the total number of all transfers of messages
along arcs is finite. Then, since a message is sent along
each arc in finite time (not greater than the time step),
after a finite time, there will be no messages of these
four types on the graph. We will show that, at this
instant of time, a back spanning tree is constructed.

To this end, it suffices to show that a back arc
appears at each vertex except for the root. Suppose
that this is not so: there exists a vertex a, other than the
root, at which no back arc has appeared. Since the
graph is strongly connected, the vertex a is reachable
from the root. Hence, the vertex a receives a Start mes�
sage; after that, a Root search message is distributed
“fanwise” from the vertex a. Since the graph is
strongly connected, this message reaches the root;
after that, the root sends a Direct message to the vertex
a along a direct simple path. When this message arrives
at the vertex a, a back arc appears at this vertex, unless
it has already appeared there. We arrive at a contradic�
tion; hence, our assumption is not correct.

The proposition is proved.

2.2. The Second Part of the Algorithm

The task of this part is to determine the end of con�
struction of the back spanning tree. The idea is based
on the calculation of the number of arcs of the graph at
the root in such a way that, for every arc a  b, the
root first receives a message from the beginning a of
the arc at which there is “+1" for the arc a  b, and,
a fortiori later, it receives a message from the end b of
the arc at which there is "–1" for the arc a  b.
In addition, this last message from the end b of the arc
arrives at the root a fortiori later than the message that
is sent from b and contains "+1" for every arc outgoing
from b. To this end, the Root search message is modi�
fied, and two additional messages Finish and Minus are
used.

When creating a Root search message, the initiator
adds one more parameter to the message: the number
of arcs outgoing from the initiator. We will say that, for
every arc outgoing from the initiator, there is “+1” in
the Root search message. The root conducts the
counter of arcs, which is first set equal to the number of
arcs outgoing from the root. When obtaining an (uni�
gnored) Root search message, the root adds the number
of arcs from the message to this counter of arcs.

A Finish message is created by the root at the begin�
ning of operation (when receiving a Start message
from outside) and is sent along all arcs outgoing from
the root. Any other vertex (other than the root) creates
a Finish message when obtaining a Direct message and
sends the Finish message along all outgoing arcs.
The goal of the Finish message is to initiate the cre�
ation of a Minus message at the end of the arc along
which it is sent.

As long as there is no back arc at a vertex different
from the root, the vertex conducts the counter of the
number of incoming arcs as the number of Finish mes�
sages received by it. When a back arc appears, the ver�
tex sends, along the back simple path, a Minus message
with the number of arcs parameter equal to the current
value of the counter of the number of incoming arcs, pro�
vided that it is greater than zero. We will say that there
is “–1" in the Minus message for each of these arcs.
When a back arc appears at a vertex, every reception of
a Finish message initiates sending a Minus message
with the number of arcs parameter equal to 1 from the
vertex along the back simple path. We will say that
there is "–1" in the Minus message for this arc.
The Minus message is transferred without change by
vertices along the back simple path to the root.
The root, having received the Minus message, sub�
tracts the number of arcs parameter in the Minus mes�
sage from its counter of arcs.

The Minus messages are summed at a vertex in
anticipation of the release of arcs. If the vertex already
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contains a Minus message that waits for the release of
arcs and a new Minus message arrives, then the Minus
message is preserved in which the number of arcs
parameter is equal to the sum of the corresponding
parameters of both these messages.

Proposition 2.2. After finite time, the counter of arcs
at the root is zeroed. By this instant of time, the back
spanning tree has already been constructed.

Proof. Consider an arbitrary arc ab. If a is the root,
then, right at the beginning, the counter of arcs at the
root increases by 1 for the arc ab. Then the root sends
a Finish message, which reaches the vertex b in finite
time. If a is a nonroot vertex, it receives the first Start
message in finite time; after that the vertex creates a
Root search message in which there is “+1” for the arc
ab. After a finite time, this message reaches the root,
and the counter of arcs at the root increases by 1 for the
arc ab. Then a Direct message from the root reaches
the vertex a. After that, a Finish message is sent along
the ab arc, which reaches the vertex b in finite time.
Also in finite time, a back arc appears at the vertex b.
Hence, both events occur in finite time: reception of a
Finish message by the vertex b and the emergence of a
back arc at this vertex. At this instant of time, a Minus
message with “–1” for the arc ab is sent from the ver�
tex b along the back arc. After a finite time, this mes�
sage reaches the root, and the root subtracts 1 for the
arc ab from its counter of arcs. Thus, for every arc, the
root first once adds 1 to its counter of arcs and then
once subtracts 1. Thus, after a finite time when this
occurs with all arcs, the counter of arcs at the root is
zeroed.

Let us show that, at the instant of time when the
counter of arcs at the root is zeroed, the back spanning
tree is already constructed. With respect to every arc,
the root first once receives “+1” in the Root search
message sent from the beginning of the arc and then
once receives “–1” in the Minus message sent from the
end of the arc. Therefore, at the instant when the
counter of arcs is zeroed, with respect to each arc, the
root either receives “+1” and “–1” or receives neither
“+1” nor “–1.” Suppose that the proposition does not
hold: there exists a vertex at which a back arc has not
yet appeared. Since the graph is strongly connected,
there is a simple path from the root to this vertex. With
respect to the last arc of this simple path, the root has
not received “–1”; hence, it has not received “+1.”
Denote by bc the first arc on this simple path with
respect to which the root has received neither “+1”
nor “–1.” Since the root immediately adds “+1” to
the counter of arcs for each arc outgoing from the root,
the vertex b is not the root. Then we denote by ab the
preceding arc on the simple path. The root received a
Minus message with “–1” with respect to the arc ab
from the vertex b. But then the root had received a Root
search message with “+1” with respect to the arc bc
from the vertex b, which is not the case. We arrive at a

contradiction; hence, our assumption is not valid, and
the back spanning tree is already constructed.

The proposition is proved.

2.3. The Third Part of the Algorithm

This part marks outgoing arcs from each vertex as
direct arcs and chords. First, we assume that all outgo�
ing arcs are chords. Then, each arc ab along which a
Direct message is sent is marked as a direct arc at the
vertex a.

Proposition 2.3. When the counter of arc is zeroed at
the root, all arcs are correctly marked as chords or
straight lines.

Proof. Since a Direct message is sent from the root
to each vertex along a direct simple path, sooner or
later, all direct arcs will be marked. Let us show that
this will occur before the counter of arcs at the root is
zeroed. Consider an arbitrary direct arc ab. Since the
graph is strongly connected, there exists an arc bc.
The zeroing of the counter of arcs at the root occurs
only after a Minus message with “–1” for the arc bc is
sent from the vertex c and this message reaches the
root. But such a message is sent only after a Finish
message is sent along the arc bc, and this message is
sent only after the vertex b receives a Direct message,
which has to pass along the direct arc ab and mark the
arc ab at the vertex a as a direct arc.

The proposition is proved.

2.4. The Fourth Part of the Algorithm

This part sets the values of the counters of incoming
back arcs at vertices. At the beginning, the counters of
incoming back arcs is set to zero. Let us add two new
messages Start of calculation and End of calculation.
The Start of calculation message is sent from the root
along direct arcs after zeroing the counter of arcs at the
root. Each vertex except for the root, having received
the Start of calculation message, first, sends the same
Start of calculation message along all outgoing direct
arcs and, second, creates the End of calculation mes�
sage and sends it along the back arc.

The End of calculation message contains a sign of
the first back arc. When a vertex creates the End of cal�
culation message, it supplies it with this sign. When a
vertex receives the End of calculation message with a
sign of the first back arc along an incoming arc, it adds
1 to its counter of incoming back arcs, and if this vertex
is not the root, it sends the End of calculation message
further along the back arc, now without this sign.
When a vertex receives the End of calculation message
without the sign of the first back arc along an incoming
arc, it simply forwards the End of calculation message
without change further along the back arc.

The End of calculation messages are summed at
vertices in anticipation of sending along the back arc.
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For this purpose, a message is supplied with the num�
ber of summed messages parameters. When an End of
calculation message at a vertex waits for sending along
a back arc and a new End of calculation message
arrives, their number of summed messages parameters
are added up, and one End of calculation message is
preserved with this number; when the back arc is
released, the End of calculation message with the accu�
mulated number of summed messages parameter is sent
along it.

When the counter of arcs at the root is zeroed, there
is a list of vectors of initiators at the root that contains
the vectors of all vertices except for the root. The root
calculates the length of the list and writes it in the
counter of nonroot vertices. The root, having received
the End of calculation message, subtracts the number of
summed messages parameter from the counter of non�
root vertices. When this counter becomes equal to zero,
the operation of this part and of the whole algorithm is
completed.

Proposition 2.4. When the counter of nonroot verti�
ces is zeroed at the root, all vertices have correct values
of the counters of incoming back arcs.

Proof. A Start of calculation message sent along
direct arcs reaches each vertex once. Each vertex sends
once an End of calculation message with the first back
arc sign. Thus, exactly one End of calculation message
with the first back arc sign passes along each back arc.
Therefore, a correct value of the counter of incoming
back arcs is set at each vertex after the End of calcula�
tion message with the first back arc sign is received
along all back arcs.

Moreover, for each back arc, an End of calculation
message with “1" for this arc in the number of summed
messages parameter reaches the root. The number of
such "1" is equal to the number of back arcs, which is
equal to the number of nonroot vertices. Therefore,
when the counter of nonroot vertices becomes equal to
zero, no Beginning of calculation and End of calculation
messages are left on the arcs of the graph, and the val�
ues of the counters of incoming back arcs at all vertices
will be correct.

The proposition is proved.

Thus, after the end of the operation of the algo�
rithm, direct and back spanning trees of the graph will
be constructed: at each vertex, direct arcs and (if the
vertex is not the root) one back arc will be marked.
Moreover, a value of the counter of incoming back arcs
will be set at each vertex. 

3. ESTIMATES FOR THE MEMORY 
AND THE OPERATING TIME 

OF THE ALGORITHM

3.1. Estimate for the Memory Size 
of a Vertex Automaton

The memory of the automaton of a nonroot vertex
contains:

– 1 bit—a sign of that a Start message waits for the
release of outgoing arcs;

– for each initiator, the list of vectors of initiators
stores

° 1 vector—a vector of initiator;
° 1 bit—a sign of that a Root search message waits

for the release of outgoing arcs;
° 1 bit—a sign of that a Direct message waits for the

release of outgoing arcs;
° 1 vector—the number of arcs parameter waiting

for a Root search message or the vector of back simple
path parameter waiting for a Direct message; note that,
for a given initiator, only one of the messages Root
search or Direct can be expecting, and the number of
arcs is a vector of length 1;

– 1 vector—the vector of back simple path parame�
ter waiting for a Reverse message;

– 1 bit—a sign of waiting for a Finish message;
– logs1 bit—the number of arcs parameter waiting

for a Minus message;
– 1 bit—a sign of waiting for a Start of calculation

message;
– logn bit—the number of summed messages

parameter waiting for an End of calculation message; it
is equal to zero if there is no waiting message;

– logs1 bit—the counter of incoming back arcs.
Altogether, the memory size of the automaton of a

nonroot vertex is 1 bit + n (1 vector + 1 bit + 1 bit + 1
vector) + 1 vector + 1 bit + logs1 bits + 1 bit + logn bits
+ logs1 bit = (2n + 1) vectors + (2n + logn + 2logs1 + 3)
bits ≤ (2n + 1) vectors + (2n + logn + 2logm + 3) bits ≤
(2n + 1) vectors + (2n + logn + 2logns0 + 3) bits = (2n +
1)O(D logs0) + 2n + logn + 2logns0 + 3, which is equal
to O(nD logs0) for D > 0.

The memory of the automaton of the root contains,
– for each initiator in the list of vectors of initiators,
° 1 vector—a vector of initiator;
° 1 bit—a sign of that a Direct message waits for the

release of outgoing arcs;
° 1 vector—the vector of back simple path parame�

ter waiting for a Direct message;
– 1 bit—a sign of waiting for a Finish message;
– 1 bit—a sign of waiting for a Start of calculation

message;
– logm bits—the counter of arcs;
– logn bits—the counter of nonroot vertices.
Altogether, the memory size of the automaton of

the root is n(1 vector + 1 bit + 1 vector) + 1 bit + 1 bit +
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logm bits + logn bits = 2n vectors + (n + logm + logn +
2) bits ≤ 2n vectors + (n + logns0 + logn + 2) bits =
2nO(D logs0) + n + logns0 + logn + 2, which is equal
to O(nD logs0) for D > 0.

Thus, the memory of the automaton of any vertex
is equal to O(nD logs0) for D > 0.

3.2. Estimate for the Operating Time 
of the Traversal Algorithm

We can always assume that messages are sent from
a vertex in the order of decreasing their priorities: (1)
Start, (2) Root search, (3) Direct, (4) Reverse, (5) Fin�
ish, (6) Minus, (7) Start of calculation, and (8) End of
calculation.

Below we prove a proposition stating that (1) if
there are no other messages except for Root search,
each such message reaches the root in time of at most
T(n, k, D) and (2) if there are no other messages except
for Direct, then each such message reaches its destina�
tion in time of at most T(n, k, D). Here we will repre�
sent the operation of the algorithm as a sequence of
eight stages in eight priorities of messages and estimate
the operating time of each stage.

(1) A Start message, as the most priority one, can
wait for the release of outgoing arcs at most for one
time step. The transmission of the message along an
arc may take at most another time step. Since a Start
message is sent exactly once along each arc, the Start
messages reach all the vertices in time of at most 2D.

(2) Consider the flow of Roots search messages after
all Start messages reach all the vertices. Since there are
no Start messages any more and other messages are of
lower priority than a Root search, each such message
waits for the release of outgoing arcs occupied by mes�
sages of other types for at most one time step. Thus, an
estimate for T(n, k, D) increases at most twofold; i.e.,
all Root Search messages reach the root in time of at
most 2T(n, k, D).

(3) Consider the flow of Direct messages after all
Root search messages reach all the vertices. Since there
are no messages of higher priority any more and other
messages are of lower priority than a Direct message,
each such message waits for the release of outgoing
arcs occupied by messages of other types for at most
one time step. Thus, an estimate for T(n, k, D)
increases at most twofold; i.e., all Direct messages
reach the root in time of at most 2T(n, k, D).

(4) Consider the flow of Reverse messages after all
Direct messages reach all the vertices. These messages
move along back arcs and are summed at vertices in
anticipation of the release of outgoing arcs. Each such
message passes a simple path of length of at most D.
Since there are no messages of higher priority any
more, such a summing Reverse message waits at a ver�
tex for the release of outgoing arcs for at most one time
step. Thus, all Reverse messages reach the root in time
of at most 2D.

(5) Consider the flow of Finish messages after all
Reverse messages reach the root. From this instant of
time, there are back arcs at all vertices except for the
root. Finish messages move along arcs, passing along
each arc exactly once. Each such message passes a
simple path of length of at most D. Since there are no
messages of higher priority any more and there are
back arcs everywhere, each Finish message waits at a
vertex for at most one time step. Thus, all Finish mes�
sages pass over all arcs in time of at most 2D.

(6) Consider the flow of Minus messages after all
Finish messages pass over all arcs. These messages
move along back arcs up to the root, being summed at
each vertex. Each such message passes a simple path of
length of at most D, waiting at a vertex for at most one
time step. Thus, all Minus messages reach the root in
time of at most 2D.

Thus, the counter of arcs at the root is zeroed in time
of at most 2D + 2T(n, k, D) + 2T(n, k, D) = 2D + 2D +
2D = 4T(n, k, D) + 8D. After that, the counters of
incoming back arcs are set.

(7) Start of calculation messages are sent along
direct arcs to each vertex. Therefore, each such mes�
sage passes a simple path of length of at most D. Since
there are no messages of higher priority any more,
each Start of calculation message waits at a vertex for
the release of outgoing arcs for at most one time step.
Thus, all Start of calculation messages stop in time of at
most 2D.

(8) Consider the flow of End of calculation mes�
sages after all Start of calculation messages stop. These
messages move along back arcs up to the root, being
summed at each vertex. Each such message passes a
simple path of length of at most D, waiting at a vertex
for at most one time step. Thus, all End of calculation
messages reach the root in time of at most 2D.

Thus, the whole algorithm stops in time of at most
4T(n, k, D) + 8D + 2D + 2D = 4T(n, k, D) + 12D.

3.3. A Formal Model of Flow of Root search 
and Direct Messages

T(n, k, D) is an upper bound for the flow time of all
Root search messages under the assumption that there
are no other messages, as well as the flow time of all
Direct messages under the assumption that there are
no other messages.

First, consider the flow of the last Root search mes�
sage, i.e., the message that arrives last at the root. This
message passes a simple path of length d ≤ D from the
initiator vertex to the root. Other Root search messages
can arrive at the vertices of this simple path “side�
ways,” i.e., along incoming arcs that do not belong to
the simple path. In this case, we will say that a message
is born at a vertex. Since repeated messages with the
same initiator are ignored at a vertex, we will say that
they die at a vertex.
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Now, consider the flow of the last Direct message,
i.e., the message that arrives last from the root to the
initiator. The Direct message moves from the root to
the initiator vertex along a direct simple path of length
d ≤ D. Since Direct messages are not distributed fan�
wise and move only along direct arcs, they, unlike Root
search messages, do not arrive at vertices “sideways,”
and there are no repeated messages with the same ini�
tiator at vertices. Obviously, this is a particular case of
the flow of Root search messages.

Let us formalize the description of the flow of Root
search messages.

There is a simple path of length d ≤ D. We will refer
to the vertices and arcs as positions. Let us renumber
the positions as follows: the initial vertex of the simple
path has number 0, the number of an arc is 1 greater
than the number of its beginning, and the number of
the end of an arc is 1 greater than the number of the
arc. Thus, vertices have even numbers 0, 2, …, 2d,
while arcs have odd numbers 1, …, 2d – 1. If i < i', then
we will say that position i is to the left of position i' and
position i' is to the right of position i. The positions may
contain messages that are called points in the formal
model.

The following events are possible for the points: (1)
the birth of a point at a vertex (a sideways arrival of a
message), (2) the death of a point at a vertex (a mes�
sage is ignored), (3) the flow of a point from the begin�
ning of an arc onto the arc (a message is sent along the
arc from its beginning), and (4) the flow of a point
from an arc to the end of the arc (a message is received
from an arc to its end). We will assume that all these
events occur instantaneously.

By the event of appearance of a point in a position
we mean the event of birth of this point in this position
(if the position is a vertex) or the event of flow of this
point to this position from the previous position.
Accordingly, by the event of disappearance of a point
from a position we mean the event of death of this
point in this position (if the position is a vertex) or the
event of displacement of this point from this position
to the next position.

The following rules of flow of points follow from
the description of the algorithm: 1. A point is on an arc
for at most one time step. 2. Points move onto an arc
when no points remain on the arc; the minimum from
among the points at the beginning of the arc and the
“capacities” k of the arc move at once onto the arc. 3.
If a point dies at a vertex, this occurs at that very
moment when it appears at the vertex (either is born or
is displaced from an incoming arc). 4. The number of
points that died at a vertex is not greater than the num�
ber of points that are born at the vertex (this follows
from the fact that a dying point is a repeated message
with the same initiator). 5. At the initial vertex 0 at
time step 0, there is a point that will not die. We will
call it our point (this is the last message). 6. The total

number of points that appear in all positions is finite
(the number of Root search messages is finite, which
was proved above in Proposition 2.1). 7. The number
of points that appear but do not die in the final position
2d up to the appearance of our point in this position is
not greater than n (actually, together with our point,
the number of such points does not exceed the number
n – 1 of nonroot vertices).

If a point is at some vertex at the initial instant of
time 0, we will assume that the point is born at this ver�
tex at the instant of time 0. If a point is on some arc at
the initial instant of time 0, we will assume that the
point is born at the beginning of this arc at the instant
of time 0 and is instantly displaced onto an empty arc
together with several points.

We will say that a behavior of points is defined if, for
every point, the place (position) and the times of its
birth and death, as well as the delay of this point on
each arc, are specified so that the above�mentioned
rules of flow of points are satisfied.

Denote by Ui, j the number of points that appeared
but not died in position i at time step i + j.

Denote by T = T(n, k, D) the number of the a time
step at which our point reaches the final position 2d.

Lemma 3.1. Suppose given the behavior of points
satisfying rules 1–4 (which may not satisfy rules 5–7).
Suppose that, in this behavior, U0, j ≥ kj for every j such
that i + j ≤ T. Then, Ui, j ≥ kj for every position i and
every j such that i + j ≤ T.

Proof. We will prove the lemma by induction on i
and j.

The base of induction on i for j ≤ T is U0, j ≥ kj,
which is defined by the hypothesis of the lemma.

The base of induction on j for i ≤ T is Ui, 0 ≥ k ⋅ 0 = 0,
which is obvious.

The induction step: suppose that the assertion of
the lemma holds both for i and j + 1 and for i + 1 and
j, where i < 2d; i.e., Ui, j + 1 ≥ k(j + 1) and Ui + 1, j ≥ kj.
We have to prove that if i + j + 2 ≤ T, then the assertion
of the lemma holds for i + 1 and j + 1; i.e., Ui + 1, j + 1 ≥
k(j + 1). Consider two possible cases. i is even; i.e.,
position i is an arc. Introduce the notation:

A is the number of points that moved from arc i to
vertex i + 1 and did not die there at all time steps from
0 to i + j + 1;

A' is the number of points that moved from arc i to
vertex i + 1 and died there at all time steps from 0 to
i + j + 1;

B is the number of points that are born at vertex i + 1
and did not die there at all time steps from 0 to i + j + 1;

B' is the number of points that are born at vertex i + 1
and died there at all time steps from 0 to i + j + 1;

AΔ is the number of points that moved from arc i to
vertex i + 1 and did not die there during the time step
i + j + 2;
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 is the number of points that moved from arc i to
vertex i + 1 and died there during the time step i + j + 2;

BΔ is the number of points that are born at vertex i + 1
and did not die there during the time step i + j + 2;

 is the number of points that are born at vertex
i + 1 and died there during the time step i + j + 2;

a is the number of points on arc i at the end of the
time step i + j + 1 that will not die at vertex i + 1.

a' is the number of points on arc i at the end of the
time step i + j + 1 that will die at vertex i + 1.

Taking into account that, according to rule 3, a
point either dies at a vertex when it appears there or
does not die at all at this vertex, by rule 4, we have A' +

 + B ' + . Hence, A' +  ≤ B + BΔ. By defini�
tion, Ui + 1, j = A + B. The point appearing on an arc
does not die on the arc and is either on the arc or
among the points (A +A' in number) that move to the
end of the arc. Therefore, Ui, j + 1 = a + a' + A + A'. The
points that arrive at vertex i + 1 in a time step and do
not die at this vertex are of two kinds: points (AΔ in
number) that have moved from arc i and did not die at
vertex i + 1 and points (BΔ in number) that were born
at vertex i + 1 and did not die there. Therefore,
Ui + 1, j + 1 = Ui + 1, j + AΔ + BΔ. By rule 1, all points (a + a'
in number) that were on arc i at the beginning of a time
step move from this arc to vertex i + 1 during the time
step; however, even a greater number of points (AΔ + 
in number) may move to the vertex, provided that their
delays are small enough and the arc is released several
times during a time step. Therefore, AΔ +  ≥ a + a'.
Then

Ui + 1, j + 1 = Ui + 1, j + AΔ + BΔ = A + B + AΔ + BΔ = 

A + AΔ + B + BΔ ≥ A + AΔ + A' +  = A + A' + AΔ +

 ≥ A + A' + a + a' = Ui, j + 1 ≥ k(j + 1).

Thus, Ui + 1, j + 1 ≥ k(j + 1), which was to be proved.
i is odd; i.e., position i is a vertex.
Denote by x the number of points that are at vertex

i at the end of time step i + j + 1. The points that
arrived at vertex i and did not die there up to the time
step i + j + 1 inclusive either are at the vertex at the end
of this time step (their number is x) or moved to arc i + 1
and did not die there because points on an arc do not
die. Therefore, Ui, j + 1 = x + Ui + 1, j. Consider the case
of x ≤ k. By rule 1, arc i + 1 is released at least once dur�
ing a time step, and, since x ≤ k, by rule 2, all the points
that were at the vertex at the beginning of a time step
will move to the arc. Notice that a greater number of
points can move onto the arc if they appear at the ver�
tex before the first release of the arc or appear later, but
within a time step, while delays on the arc are small
enough and the arc is released several times during a
time step. Therefore, Ui + 1, j + 1 ≥ Ui + 1, j + x = Ui, j + 1 ≥

AΔ
'

BΔ
'

AΔ
' BΔ

' AΔ
'

AΔ
'

AΔ
'

AΔ
'

AΔ
'

k(j + 1). Thus, Ui + 1, j + 1 ≥ k(j + 1), which was to be
proved. Consider the case of x > k. By rule 1, arc i + 1
is released at least once during a time step, and, since
x > k, by rule 2, k points move to the arc. Notice that,
just as in the previous case, even a greater number of
points can move onto the arc. Therefore, Ui + 1, j + 1 ≥
Ui + 1, j + k ≥ kj + k = k(j + 1).

Thus, Ui + 1, j + 1 ≥ k(j + 1), which was to be proved.

The induction step is proved.
The lemma is proved.
Proposition 3.1. Our point reaches the final posi�

tion 2d at time step T ≤ n/k + 2d + 1.
Proof. First of all, we will notice that our point

reaches the final position 2d in finite time. Indeed,
since our point does not die by rule 5, it suffices that
our point stays in each position for a finite time.
The delay of our point on an arc is finite by rule 1 (for
at most one time step). The finiteness of the delay of
our point at a vertex is determined by the finiteness of
the delays of points on an outgoing arc (rule 1), the
necessity of the flow of points onto an arc as the arc is
released (rule 2), and the finiteness of the number of
points (rule 6).

The points that are always to the left of our point
obviously do not influence the flow of our point;
therefore, they can be ignored: we will assume that
there are no such points. If a point is born to the left of
our point but overtakes our point at some vertex at
some instant of time, this is equivalent to that this
point is born at this instant of time at this vertex. Con�
sidering the aforesaid, below we will assume that there
are no points that are born to the left of our point.
All the more so, no points are born to the left of the
leftmost point in the current disposition of points.

Consider an extended behavior of points, which
differs in that an additional number of points are born
in positions 0 at each time step t ≤ T, so that the
hypothesis U0, t ≥ kt of Lemma 3.1 is satisfied for t ≤ T.
We will assume that each of these additional points (1)
is born in the initial position 0 and does not die (at any
vertex), (2) has the maximum delay of one time step on
arcs, and (3) moves from a vertex onto an arc outgoing
from it only after original (not additional) points.

The extended behavior of points satisfies rules 1–6.
Only the fulfillment of rule 2 needs explanation,
because additional points move from a vertex onto an
arc outgoing from it only after the original points.
There is no contradiction here, because the original
points are not born to the left of the leftmost original
point. Therefore, at the instant of time when, accord�
ing to rule 2, additional points have to move from a
vertex onto an outgoing arc, either there are no origi�
nal points at this vertex or the number of these points
is less than k and they move together with a few first
additional points. Thus, the leftmost original point
subsequently turns out to be to the right of this vertex,
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and, therefore, no original points arise at this vertex
any more.

By definition, additional points do not overtake the
original points; therefore, the additional points do not
influence the flow of the original points. Thus, in the
extended behavior of points, our point still reaches the
final position 2d at time step T, and, up to this time
step, the number of original points that appeared but
did not die in the final position 2d does not exceed n
according to rule 7. Together with our point, a few
additional points may move to the final position from
an incoming arc, but the number of these additional
points is not greater than k – 1. Therefore, the total
number of points (both original and additional) that
appeared but did not die in the final position 2d up to
the time step T inclusive is U2d, T – 2d ≤ n + k – 1.

Since the extended behavior of points satisfies the
hypotheses of Lemma 3.1, for T ≥ 2d, we have U2d, T – 2d ≥
k(T – 2d). Hence, k(T – 2d) ≤ n + k – 1. Thus, T ≤ n/k +
1 – 1/k + 2d ≤ n/k + 2d + 1. If T < 2d, then the more
so T ≤ n/k + 2d + 1.

The proposition is proved.

Thus, T(n, k, D) ≤ n/k + 2d + 1. Hence, the oper�
ating time of the algorithm is not greater than 4T(n, k,
D) + 12D = 4n/k + 8D + 4 + 12D = 4n/k + 20D + 4 =
O(n/k + D). In a more general case, this time is
O(n/k1k2 + D), where k1 is the arc capacity and k2 is the
message size in vectors.

4. AGGREGATE FUNCTIONS 
AND AGGREGATE EXTENSIONS 

OF FUNCTIONS

In fact, the pulsation algorithm calculates aggre�
gate functions for which the value of a function of a
union of multisets is calculated by the values of the
function of these multisets. In this section, we give a
formal definition of an aggregate function, prove the
aggregation criterion, and show that any function f(x)
has an aggregate extension, i.e., any function can be
calculated as h(g(x)), where g is an aggregate function.
We also show that there is a unique minimum aggre�
gate extension that calculates the minimum informa�
tion by which one can reconstruct a function f.
The theory of aggregate functions presented in this
section is a modification of the theory of inductive
functions presented in [9].

Next, we consider functions on finite multisets
consisting of elements of some basic set X. Denote by
X– the set of all finite multisets of elements of X. For
a ∈ X–, we denote by a the cardinality of the multiset
a. By the operations of union, intersection, comple�
mentation, etc., we mean operations on multisets, i.e.,
operations that take into account the multiplicities of
elements. Denote by N the set of natural numbers.

An aggregate function g: X–  A is a function such
that ∃e: A × A  A ∀a, b ∈ X– g(a ∪ b) = e(g(a), g(b)).

Remark 1. One can easily show that the aggregate
function g satisfies the condition: ∀r ∈ N ∃er : Ar 
A ∀a1, …, ar ∈ X– g(∪{ai|1 ≤ i ≤ r}) = er(g(a1), …, g(ar)).

Remark 2. The set of aggregate functions is non�
empty: for example, such functions are given by the
sum of all terms of a multiset and their minimum; in
either case the functions e are given by sums and min�
ima.

Lemma 4.1 (aggregation criterion). A function g :
X–  A is aggregate if and only if ∀a, b ∈ X– ∀x ∈
Xg(a) = g(b) ⇒ g(a ∪ {x}) = g(b ∪ {x}).

Proof.
Necessity.
∀a, b ∈ X– ∀x ∈ Xg(a ∪ {x}) = e(g(a), g({x})) and

g(b ∪ {x}) = e(g(b), g({x})).
Therefore, if g(a) = g(b), then g(a ∪ {x}) = e(g(a),

g({x})) = e(g(b), g({x})) = g(b ∪ {x}).
Sufficiency. First, by induction on #c, we prove that

∀a, b, c ∈ X– g(a) = g(b) ⇒ g(a ∪ c) = g(b ∪ c), 
For #c = 0, the proposition is trivial.
For #c = 1, ∃x ∈ X = {x}, and we obtain the given

condition:
∀a, b ∈ X– g(a) = g(b) ⇒ g(a ∪ c) = g(a ∪ {x}) =

g(b ∪ {x}) = g(b ∪ c).
Suppose that the proposition is proved for #c = n – 1;

let us prove it for #c = n > 1. 
We have ∀a, b, c ∈ X– ∃x ∈ g(a) = g(b) ⇒ g(a ∪

c\{x}) = g(b ∪ c\{x) ⇒ g(a ∪ c) = g((a ∪ c\{x}) ∪ {x})
= g((b ∪ c\{x}) ∪ {x}) = g(b ∪ c).

Now, we prove that a1, a2, b1, b2 ∈ X–(g(a1) =
g(b1)&g(a2) = g(b2) ⇒ g(a1 ∪ a2) = g(b1 ∪ b2). 

We have g(a2)= g(b2) ⇒ g(a1 ∪ a2) = g(a1 ∪ b2) and
g(a1) = g(b1) ⇒ g(a1 ∪ b2) = g(b1 ∪ b2). Thus, g(a1 ∪
a2) = g(a1 ∪ b2) = g(b1 ∪ b2). Now, we define e : g(X– )
× g(X– )  A as e(g(a), g(b)) = g(a ∪ b). Since, by
what has been proved, the choice of specific a and b is
inessential and only the values of g(a) and g(b) are
important, this function is well defined. It follows from
its definition that g is an aggregate function.

The lemma is proved.
Remark 4.3. It follows from the aggregation crite�

rion that g : X–  A is aggregate if and only if ∃g' : A ×

X  A ∀a ∈ X–g(a ∪ {x}) = g'(g(a), x). Indeed, it suf�
fices to define g'(g(a), x) = e(g(a), g({x})).

An aggregate extension of a function f : X–  A is
an aggregate function g : X–  B such that ∃h : B – A
∀a ∈ X–f(a) = h(g(a)).

The aggregate extension g : X–  B of the func�
tion f : X–  A is said to be minimal if g(X–) = B and,
for any ∀g': X–  C, which is an aggregate extension
of f, we have ∃i: C  Bg = ig'.
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Remark 4.4. An aggregate extension g of a function
f represents an aggregate function by which one can
calculate the function f. Here extensions are possible
that are of no help in practice; for example, one can
take the identity function on X– as g and the function f
itself as h. To avoid such a situation, one uses a mini�
mum aggregate extension; intuitively, this is an aggre�
gate function that calculates the minimum informa�
tion by which one can recover f.

Proposition 4.2 (uniqueness of the minimum
aggregate extension). The minimum aggregate exten�
sion of a function f : X–  A is unique up to one�to�one
mappings.

Proof. If g : X–  B and g' : X–  C are minimum
aggregate extensions of the function f, then ∃i : C 
B, i': B  C are one�to�one and such that ii' and i'i
are identity mappings on B and C, g = ig', and g' = i'g.

The proposition is proved.
Proposition 4.3 (existence of the minimum aggre�

gate extension). For every ∀f : X–  A, there exists a
minimum aggregate extension.

Proof. Define a relation on X–. For a, b ∈ X–,
define a ~ b ⇔ ∀c ∈ X–f(a ∪ c) = f(b ∪ c). This rela�
tion is reflexive, symmetric, and transitive; hence, it is
an equivalence relation. This relation is compatible
with the function f; i.e., ∀a, b ∈ X–a ~ b ⇒ f(a) = f(b).

For any equivalence relation compatible with f, one
can define a quotient function h : X–/~  A such that
h(π~(a)) = f(a), where π~ is a projection to a quotient
set with respect to the relation ~. The function
h(π~(a)) is defined as f(a) for any a ∈ π~(a). Since the
relation ~ is compatible with f, this definition is well
defined: the values of f are equal for any representatives
of the same equivalence class.

In addition, ∀a, b ∈ X– ∀x ∈ Xa ~ b ⇒ a ∪ {x} ~
b ∪ {x}. 

Indeed, if ∀c ∈ X– f(a ∪ c) = f(b ∪ c), then also
∀c ∈ X– f(a ∪ {x} ∪ c) = f(b ∪ {x} ∪ c). Hence, the
projection π~ satisfies the aggregation criterion:

∀a, b ∈ X– ∀x ∈ X(π~(a) = π~(b) ⇔ a ~ b) ⇒ (a ∪
{x} ~ b ∪ {x} ⇔ π~(a ∪ {x}) = π~(b ∪ {x})).

That is, π~ : X–  X–/~ satisfies the definition of
the aggregate extension of the function f. Now we will
take an arbitrary function g' : X–  C, which is an
aggregate extension of the function f. By the definition
of extension, ∃h' : C  A ∀a ∈ X– f(a) = h'(g'(a)). Let
us show that ∀a, b ∈ X– g'(a) = g'(b) ⇒ a ~ b. Since g'
is an aggregate function, g'(a) = g'(a) = g'(b) ⇒ ∀c ∈
X–g'(a ∪ c) = g'(b ∪ c). It follows from f = h'g' that g'(a) =
g'(b) ⇒ f(a) = f(b). Therefore, g'(a) = g'(b) ⇒ ∀c ∈ X–

g'(a ∪ c) = g'(b ∪ c) ⇒ ∀c ∈ X– f(a ∪ c) = f(b ∪ c) ⇒
a ~ b. Hence, ∀a, b ∈ X– g'(a) = g'(b) ⇒ a ~ b ⇒ π
~ (a) = π ~ (b). Thus, one can define a function i :
g'(X–)  X–/~ such that i(g'(a)) = π ~ (a). This def�

inition is well defined because, as we have just shown
that the value of π ~ (a) does not depend on the choice
of a specific a provided that the value of g'(a) is pre�
served. Thus, π is an aggregate extension of f; it is cal�
culated by any aggregate extension of f; moreover, the
image of π ~ is given by the whole set X–/~. Hence, π ~
satisfies the definition of the minimum aggregate
extension of f.

The proposition is proved.
Remark 4.5. Examples of the minimum aggregate

extension (πi is a projection of a tuple to the ith com�
ponent). One can easily show that

• for the function of calculating the arithmetic
mean f(a1, …, an) = (a1 + … + an)/n, the minimum
aggregate extension is g(a1, …, an) = (a1 + … + an, n);
f = π1g/π2g;

• for the function of calculating the geometric
mean f(a1, …, an) = , the minimum
aggregate extension is g(a1, …, an) = (a1 ⋅ … ⋅ an, n); f =

;

• for the function of calculating the root mean

square f(a1, …, an) = , the mini�

mum aggregate extension is g(a1, …, an) = (  + … +

, n); f = ;

Thus, every function f : X–  A can be repre�
sented as f(a) = h(g(a)) and ∀b, c ∈ X–g(b ∪ c) =
e(g(b), g(c)). By a partition of a multiset b ∈ X– is
meant a collection b1, …, br of its subsets whose union
coincides with b: b = b1 ∪ … ∪ br. We will say that an
embedded partition of a multiset b ∈ X– is defined if its
partition b1, … br is defined and, for every nonsingleton
(containing more than one element) multiset bi, also
an embedded partition is defined. Then, if an embed�
ded partition of a multiset a ∈ X– is defined, then the
function f(a) can be calculated as follows. First, one
calculates the values of g(x) for ever x ∈ a (without
regard to multiplicity). Next, taking into account
Remark 4.1, for every element b = b1 ∪ … ∪ br of the
embedded partition, one calculates the value of g(b) =
er(g(b1), …, g(br)). In this case, the function er itself can
be calculated iteratively with the use of the function e:
for r > 2, we have er(g(b1), …, g(br)) = e(er – 1(g(b1), …,
g(br – 1)), g(br)). After the value of g(a) is obtained, we
calculate the required result f(a) = h(g(a)).

5. DESCRIPTION OF THE PULSATION 
ALGORITHM AND AN ESTIMATE

FOR ITS OPERATING TIME

The purpose of the pulsation algorithm is to calcu�
late a value of a given function of a multiset a ∈ X– of
values recorded at the vertices of a graph. We will
assume that a value x(i) with unit multiplicity is

a1 … an⋅ ⋅( )n

π1gπ2g

a1
2

… an
2+ +( )/n( )

a1
2

an
2

π1g/π2g( )
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recorded at each vertex i. The pulsation algorithm uses
the marking of the graph made by the traversal algo�
rithm described above. This marking includes direct
and back spanning trees of the graph: at each vertex,
direct arcs and (if this is not the root) one back arc are
marked. In addition, a value of the counter of incoming
back arcs is set at each vertex.

5.1. Description of the Pulsation Algorithm

The pulsation algorithm uses two types of mes�
sages: Question and Answer. First, a Question message
containing an indication of three functions h, e and g
arrives at the root automaton from outside. After the
completion of the algorithm, the root sends outside an
Answer message with parameter f(a) .

The Question message is distributed from the root
to all vertices over the direct spanning tree. Having
received this message, the root stores the parameters h,
e, and g and sends the Question message along each
outgoing arc with parameters e and g. In addition,
each nonroot vertex, having received the Question
message, stores the parameters e and g and forwards
the Question message along each outgoing direct arc.

The Answer message is sent from all vertices to the
root over the back spanning tree. The back spanning
tree defines an embedded partition of the multiset a.

A leaf vertex i of the back spanning tree (at this ver�
tex, the counter of incoming back arcs is equal to zero),
having received a Question message, calculates g(x(i))
and sends it along a back arc as a parameter of the
Answer message.

An internal (nonleaf) vertex i of the back spanning
tree corresponds to an element bi = bi1 ∪ … ∪ bir of the
embedded partition, where r – 1 is equal to the num�
ber of back arcs incoming to this vertex. The task of
this vertex is to calculate the value of g(bi); in this case,
for j = 1, …, r – 1, the value of g(bij) will be obtained
along the jth incoming back arc, and bir = g(x(i)). Hav�
ing received a Question message, the automaton of
such a vertex calculates g(x(i)) and stores it as an inter�
mediate result y(i) and copies the counter of incoming
back arcs into the counter of answers. Further, when
obtaining an Answer message along an incoming back
arc j with parameter g(bij), the intermediate result
y(i) := e(g(bij), y(i)) is changed, and the counter of
answers decreases by 1.

If i is a nonroot vertex, then, when the counter of
answers is zeroed, an Answer message with parameter
y(i) = g(bi) is sent along an outgoing back arc. If a ver�
tex i is the root, then, when the counter of answers is
zeroed, the final value of f(a) = h(y(i)) is calculated
and is sent outside as a parameter of the Answer mes�
sage.

5.2. Estimate for the Operating time
of the Pulsation Algorithm

We can always consider that messages are sent from
vertex in the order of decreasing priorities: (1) Question
and (2) Answer.

Question messages are distributed over the direct
spanning tree, and each message passes a simple path
of length of at most D. Only Answer messages propa�
gating along back arcs can be sent simultaneously with
the Question messages, and some arcs can be direct and
back at the same time. Therefore, a Question message
can wait at a vertex for the release of an arc occupied
with the Answer message. However, since Question has
higher priority than Answer, the waiting time does not
exceed one time step. Hence, the distribution time of
all Question messages is not greater than 2D time steps.

Consider the motion of Answer messages after all
Question messages cease to propagate. Each Answer
message moves along back arcs to the root and, thus,
passes a simple path of length of at most D. Since the
Answer messages are summed at each vertex i in the
form of an intermediate result y(i) and there are no
other types, the propagation time of all Answer mes�
sages is not greater than D time steps.

Thus, the operating time of the pulsation algorithm
does not exceed 3D = O(D).

6. CONCLUSIONS

The pulsation algorithm does not only calculate the
value of the function f(a), where a is a multiset of val�
ues recorded at the vertices of the graph, but also
changes the state of the automata of the vertices: at
each vertex i, there remains, as an intermediate result,
the value of g(bi), where bi is a multiset of values
recorded at the vertices of the maximum subtree of the
back spanning tree with a root at vertex i. It is clear that
the pulsation algorithm can be used for installing the
vertex automata in some other, for example, identical,
states.

It is also possible to set up a problem of calculating
a function of a sequence of values recorded at the ver�
tices of the graph, rather than a function of a multiset.
For this purpose, one should define a certain linear
order of vertices. At the same time, we already have a
numbering of arcs outgoing from each vertex. Such
numbering defines a natural partial order of vertices in
the form of a direct spanning tree. Such partial order
can be used as a basis of the corresponding linear
order. However, one can set up a problem of calculat�
ing a function with regard to this natural order, rather
than a linear order. This means that the value of a
function may depend on the order of the values at ver�
tices, which are comparable in partial order, but
should not depend on the order of values at the verti�
ces, which are not comparable in partial order.
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However, first, the traversal algorithm described
above not necessarily constructs the direct spanning
tree that is defined by the numbering of arcs, and, sec�
ond, the pulsation algorithm performs calculations on
the back, rather than the direct, spanning tree. It is this
problem that is the focus of the development of an
algorithm for calculating a function for given partial or
linear order of vertices of the graph. The solution of
this problem can be the subject of future study.
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