
XQuery Optimization Based on Rewriting

Maxim Grinev

Moscow State University
Vorob’evy Gory, Moscow 119992, Russia

maxim@grinev.net

Abstract

This paper briefly describes major results
of the author’s dissertation work devoted to
XQuery optimization based on rewriting.

1 Introduction

It is widely accepted doctrine that query languages
should be declarative. As a consequence of this there
may be several alternative ways to formulate a query.
It is noticed that different formulations of a query can
provide widely varying performance often differing by
orders of magnitude. Relaying on the reasoning, so-
phisticated techniques for query transformations for
relational query languages such as SQL were worked
up [10, 11, 12, 7, 4, 5, 6]. The techniques allow rewrit-
ing a query into equivalent one that can be executed
faster. The general characteristics of query rewriting
techniques can be summarized as follows:

• The phase of rewriting optimization follows query
parsing and precedes query plan generation.

• Rewriting optimization transforms a query into
equivalent one.

• The selection of query transformations is carried
out heuristically. Query transformations selected
should be ameliorative for the majority of queries.

• Query rewriting is usually carried out on the ba-
sis of information obtained from the query itself,
views to which the query is addressed, integrity
constraints and the schema of data queried. The
important note is that data and even statistic
about data are not involved in query rewriting.
They are used at the phase of cost-based plan op-
timization.

The emergence of XQuery [1] as a standard declar-
ative language for querying XML data [3] calls for
rewriting techniques that meet the same challenges
as those for traditional query languages but that are
developed in XQuery terms. The thesis is devoted
to a comprehensive discussion of XQuery rewriting in

the presence of data schema. The previous version of
XQuery rewriting techniques described in this paper
was published in [14].

2 Research Issues

Due to the properties of XQuery - such as powerful
facilities for data transformation by means of support
for XML element and XML attribute constructors and
facilities to deal with incompleteness and irregularity
of XML data - unmodified rewriting optimization tech-
niques for traditional query languages are inappropri-
ate. XQuery-specific and comprehensive rewriting op-
timization technique is an issue.

3 Kinds of optimizing query transfor-
mation

Extensive case study results in a number of query
transformation kinds that improve the representation
of the optimized query in the majority of cases and for
which the cost is not required:

1. Predicate push down XML element constructors
changes the order of operations to apply predi-
cates before XML element constructors. It helps
to reduce the size of intermediate results to which
XML element constructors are applied. This kind
of transformation is of great importance because
XML element constructor is an expensive opera-
tion, the evaluation of which requires deep copy
of XML tree constructed.

2. Perform projection of transformation is to com-
pute in static accessors that are applied to XML
element constructors. It allows avoiding redun-
dant computation of costly XML element con-
structors.

3. Predicate push down iterators changes the order
of operations to apply predicates before iterators.
This kind of transformations is analogous to rela-
tional ”predicate push down join”.

4. Transformation to more accurate formulation on
the basis of the schema is useful when a query is



rewritten by the user that has vague notion about
XML document schema. Making query formula-
tion more accurate allows one to avoid redundant
data scanning that is peculiar to such queries.

5. Make the query representation as declarative as
possible allows physical optimizer to widen search
space with optimal execution plans.

6. User-defined XQuery function inlining makes the
query more optimizable with respect to other
kinds of transformation.

Developing XQuery rewriting optimizer we have
used an approach of the general theory of rewriting.
In context of the theory the optimizer are usually de-
fined as a set of rewriting rules. All rewriting rules
are defined in terms of some logical representation of
a query. We took a logical representation similar to
XQuery Core [2]. Rewriting rules form a rewriting
system. A rewriting system can be investigated to de-
termine its properties. The important property of a
rewriting system is a normal form property. A normal
form of a query in respect of a rewriting system is a
query representation to which no rules of the rewrit-
ing system can be applied. A rewriting system has a
normal form property if the application of rules to any
query representation reduces it to a normal form. In
the thesis the XQuery rewriting optimization problem
is posed as follows. Build a rewriting system and prove
its two properties: the normal form property and that
the system accomplishes all kinds of transformations
listed above.

To simplify the proving we decomposed the rewrit-
ing system into a number of subsystems that can be
applied to a query consecutively. Each subsystem per-
forms one or more kinds of transformation. Due to
consecutive subsystems application the properties can
be proved for each subsystem independently. The sub-
systems are as follows (the kinds of transformation ac-
complished by each subsystem are specified):

1. Function inlining (user-defined XQuery function
inlining)

2. Type-based optimization (transformation to more
accurate formulation on the basis of the schema)

3. Structural rewriting (predicate push down XML
element constructors, perform projection of trans-
formations)

4. Translation into the extended logical representa-
tion (make the query representation as declarative
as possible)

The order in the list is the order of subsystems ap-
plication during optimization. The following sections
describe these subsystems.

4 Function inlining

The presence of calls to user-defined XQuery functions
makes it difficult to optimize the query for the follow-
ing reasons. First, the type-based optimization of a
function body becomes less effective because its be-
havior depends a lot on actual parameters. As a con-
sequence it may be impossible to infer the actual type
of the function body and its subexpression. Second,
the presence of several calls to one function prevents
from pushing predicate down into the function body
because changing function body for one of the calls
changes the results of the other calls. Function in-
lining is a good idea to get over the difficulties. But
function inlining of recursive function is a problem be-
cause it results in infinite loop. In general case it is
impossible to break the loop without taking data into
consideration. In the thesis we have proposed an al-
gorithm for an important class of recursive functions
that traverse XML tree going down at each recursive
call. In the algorithm schema of XML data is used to
keep track of the length of the path from the current
nodes to the leaves of XML tree traversed.

5 Type-based optimization

The execution of many XQuery operations may lead
to costly data scanning that are not necessary. The ex-
ample of such operations is XPath step with the node
test equals to “*”. Support for such operations gives
the user facilities to write compact queries to com-
plex or irregular XML data. Type-based optimization
is used to avoid redundant data scanning during pro-
cessing queries with such operations. The main idea
behind type-based optimization is to use static type
inference on the basis of the XML data schema. The
results of static type inference can be used to make the
query more precise and avoid many of redundant data
scanning. XQuery type-based optimization is now the
most elaborated issue [8, 9]. In the thesis we have
intoduced some additional type-based rewriting rules
that had not been mentioned in the literature yet and
a method to increase the accuracy of type inference
of subexpression. It is proved that the rewriting sys-
tem formed by type-based rules has the normal form
property. The idea of the method is to insert if-clauses
to branch the query and get subexpressions for which
precise type can be inferred. Experiments showed that
the application of the method essentially increases the
efficiency of type-based optimization especially when
functions with structural recursion are concerned.

6 Structural rewriting

Structural rewriting system implements query trans-
formations of two kinds 1 and 2. In the thesis it
is shown that degree of effectiveness of the transfor-
mations depends on the language subset. From this
perspective XQuery can be divided in three disjoint



subsets: basic operations, identity-based operations,
position-based operations (such as fn:contex-item(),
fn:position(), fn:last() that are used to obtain infor-
mation from the evaluation context). For queries that
is composition of basic operations transformations of
kinds 1 and 2 can be accomplished. For queries with
identity-based operations and position-based opera-
tions it is proved that transformations of kinds 1 and
2 cannot be accomplished for all such queries because
of language-inherent reasons.

The rewriting system for basic operations includes
rules of four kinds:

1. Distribute computations (i.e. iterating over the
sequence e1 , e2 is equivalent to the sequence of
two iterations, one over e1 and one over e2)

2. Applying accessors to constructors (accessors that
are applied to constructors can be rewritten into
subexpressions of constructors).

3. Iterator applied to the singleton sequence (i.e. ob-
tained as a result of constructor computation) can
be replaced by the result of substitution of the
singleton sequence for all occurrences of iterator
variable in iterator body.

4. Static computation of effective boolean value,
typed value, accessor value. This rules are based
on the proposition that effective boolean value,
typed value or accessor value of composition
of meta-operations (such as iterator, if-operator,
typeswitch, etc. that control evaluation of the
expression) and XML element constructors can
be rewritten into expression with the construc-
tors replaced by other operations. It is carried
out as follows. The expression, for which some
value is to be computed, is traversed from oper-
ation to its parameters. When a meta-operation
is encountered the traversal is continued. When
XML element constructor is encountered, it is re-
placed with some other expression depending on
what kind of value (effective boolean, typed or
accessor) is computed. When some another op-
eration different from meta-operations and XML
element constructor is encountered, the traversal
is stopped.

It is proved that the rewriting system has the nor-
mal form property and the following one.

Theorem 1 In the normal form only the fol-
lowing operations in parameters marked “?”
- return(e, λ(x|?)), seq(?, . . . , ?), if(e, ?, ?),
ts(e, λ(x|cases(case(e, ?), . . . , case(e, ?), def(e)))),
element(e, ?) - can be applied to the results of XML
element constructor

Informally the theorem states the following. Only
operations, that returns operands without any anal-
ysis of their content (maybe as a part of some new

structure), can be applied to the XML objects that
are XML elements constructed during the evaluation
or that contain XML elements constructed during the
evaluation as their part.

There are two immediate corollaries for the theo-
rem:

1. All projections in the query are eliminated after
rewriting. Assume that it is not so. It follows
that there is an XML element constructed during
the computation that does not present in the re-
sult. But it is a contrary to the statement of the
theorem.

2. All predicates are pushed down XML element con-
structors. Assume that it is not so. It means that
some predicates in the query is applied to an item
that is an XML element or contains an XML ele-
ment as its part. To check, whether the item sat-
isfies the predicate, the content of the item must
be analyzed. But it is a contrary to the statement
of the theorem.

Extending the set of basic operations with position-
based operations leads to the two problems. The first
problem is that the results of the position-based op-
erations depend on the context in which the opera-
tion is called. The context is implicitly generated.
This breaks the referential transparency property of
XQuery (that tends to be functional). The rewriting of
query with position-based operation may result in non-
equivalent query because the operation can change the
position in the query and leave its context. To solve
the problem a number of explicit context generation
operations are introduced. The results of the context
generation operations are bound to the iterator vari-
ables and all position-based operations are replaced
with the variables. The rewriting rules for basic op-
erations are extended to handle queries with context
generation operations. Though using context gener-
ation operations allows one to rewrite many queries
with position-based operations there are a number of
query examples (with the last() operation) for which
transformations of kinds 1 and 2 cannot be performed.
This is the second problem that is language-inherent
and cannot be solved by developing any rewriting sys-
tem.

Extending the set of basic operations with identity-
based operations leads to the locks preventing from
perform transformations of kinds 1 and 2. In the the-
sis we partially solve the problem by introducing UID
generator. UID is shorthand for Unique IDentifier.
UID generator is an expression the result of which con-
tains only nodes that have identifiers not equal to any
another node involved in the computation. For exam-
ple, any composition of XML element constructors is
UID generator. Though using the notion of UID gener-
ator allows one to rewrite many queries with identity-
based operations there are a number of query exam-



ples for which transformations of kinds 1 and 2 cannot
be accomplished. This is a language-inherent prob-
lem that cannot be solved by developing any rewriting
system.

7 Translation into the extended logical
representation

Translation into the extended logical representation
accomplishes the following two kinds of transforma-
tions: make the query representation as declarative as
possible and predicate push down iterators. Making
queries more declarative is well elaborated for rela-
tional query languages such as SQL [7, 4, 5, 6]. The
major strategy used is to rewrite subqueries into joins
because there are more options in generating execu-
tion plans for them. This increases possibility to find
the most optimal execution plan. XQuery is not so
declarative and there is less freedom in generating ex-
ecution plans for the XQuery ”join”. It follows from
the fact that XML items are ordered. Join in XQuery
is expressed as nested iterators and the outer-most it-
erator determines the order of the result. It means that
XQuery join doesn’t commute as relational join does
that doesn’t allow evaluating join in various ways. But
XQuery also supports for unordered sequences, which
enables commutable joins. Rewriting subqueries (in-
cluding those from predicate) can also simplify cost es-
timation procedure, query decomposition in data inte-
gration systems, multiple evaluation of self-contained
subexpressions in nested iterators. In the thesis we ex-
tended the query representation with join operations
such as ordered join, semijoin, and outerjoin and suc-
cessfully adopted techniques for relational queries pub-
lished in [6]. The techniques adopted allows rewriting
any subqueries nested in predicates and nested itera-
tors into the join operations. Also during the rewrit-
ing, the predicates are pushed down iterators. It is
proved that the rewriting system has the normal form
property. Besides we investigated techniques for de-
termining the joins that can be evaluated without pre-
serving the result order but it does not tell on the
result of the whole query.

8 Conclusion and future work

Query optimization techniques described in this pa-
per were fully implemented and integrated in virtual
data integration system BizQuery [13]. Preliminary
performance results have shown that these techniques
improve query performance by orders of magnitude in
a large number of common cases and the overheads in-
curred due to the query transformations are negligible
compared with the time to execute complex queries.

Nevertheless the application of some rewriting rules
(i.e. those used to perform predicate push down)
might result in subexpressions propagation that in
turn can lead to worse performance. Though exper-

iments showed that it is not a common case, the main
point in our future plan is to investigate such anomaly
formally. Preliminary research of the anomaly leads
to conclusion that applying techniques of finding com-
mon subexpressions can solve the problem.

References

[1] ”XQuery 1.0: An XML Query Language.” W3C
Working Draft, 15 November 2002.

[2] ”XQuery 1.0 and XPath 2.0 Formal Semantics.”
W3C Working Draft, 15 November 2002.

[3] ”Extensible Markup Language (XML) 1.0 (Sec-
ond Edition).” W3C Recommendation, 6 October
2000.

[4] W. Kim. ”On Optimizing an SQL-like Nested
Query”, ACM Transactions on Database Systems,
7(3), September 1982.

[5] Richard A. Gansky and Harry K. T. Wong. Op-
timization of Nested SQL Queries Revisited. In
Proc. ACM-SIGMOD International Conference
on Management of Data, pages 23-33, 1987.

[6] Umeshwar Dayal. ”Of Nests and Trees: A Uni-
fied Approach to Processing Queries that Contain
Nested Subqueries, Aggregates, and Quantifiers”,
VLDB Conference, 1987.

[7] Hamid Pirahesh, Joseph M. Hellerstern, Waqar
Hasan. ”Extensible/Rule based Query Rewrite
Optimization in Starburst”, SIGMOD Interna-
tional Conference on Management of Data, 1992.

[8] P. Fankhauser. ”XQuery Formal Semantics: State
and Challenges.”, SIGMOD Record 30(3): 14-19,
2001.

[9] B. Choi, M. Fernandez, J. Simeon. ”The
XQuery Formal Semantics: A Founda-
tion for Implementation and Optimization.”,
www.cis.upenn.edu/ kkchoi/galax.pdf, 2002.

[10] M. Jarke, J. Koch. ”Query Optimization in
Database Systems.” ACM Computing Surveys,
Vol. 16, No. 2, June 1984.

[11] Y.E. Ioannidis. ”Query Optimization.” ACM
Computing Surveys, Vol. 28, No. 1, 1996

[12] S. Chaudhuri. ”An Overview of Query Optimiza-
tion in Relational Systems.” ACM PODS, 1998.

[13] Konstantin Antipin, Andrey Fomichev, Maxim
Grinev, Sergey Kuznetsov, Leonid Novak, Peter
Pleshachkov, Maria Rekouts, Denis Shiryaev. ”Ef-
ficient Virtual Data Integration Based on XML.”
Submitted to ADBIS 2003.



[14] Maxim Grinev, Sergey D. Kuznetsov: Towards
an Exhaustive Set of Rewriting Rules for XQuery
Optimization: BizQuery Experience. ADBIS
2002: 340-345.


