
Specification-Driven Testbench Development for
Synchronous Parallel-Pipeline Designs

Mikhail Chupilko, Alexander Kamkin
Institute for System Programming of the Russian Academy of Sciences

25, A. Solzhenitsyn Street, Moscow, 109004, Russia
E-mail: {chupilko, kamkin}@ispras.ru

Abstract— In this paper an approach to testbench development
for synchronous parallel-pipeline designs is considered. The
approach is based on cycle-accurate formal specifications of a
design under verification. Specifications include descriptions of
control flow graphs of the design’s operations and definitions
of the microoperations with the help of Hoare triples. The
approach allows to automate testbench development for complex
synchronous designs with control flow branching and parallel
starting operations. The important feature of the proposed
method is that specifications are used to perform all tasks of
functional testbenches: checking of design correctness, estimation
of test completeness, and generation of test sequences. The
approach was successfully used in several industrial projects on
hardware verification.

I. I NTRODUCTION

Functional verification is a well-known bottleneck in hard-
ware design process. Ensuring the functional correctness of
hardware consumes about 70% of the design efforts [1]. The
situation is only going to get worse as designs grow in size and
complexity. There are two different approaches to checking
hardware: formal verification and simulation-based verification
[2]. It is known that formal methods are exhaustive but not
scalable, while simulation techniques are scalable but not ex-
haustive [3]. A good balance of exhaustiveness and scalability
is provided by semi-formal methods, which combine formal
specifications (or models) and simulation.

In this work a semi-formal approach to testbench devel-
opment is suggested. A testbench is an environment used to
verify a design via simulation. A typical testbench has three
key components: a stimulus generator, a response checker,
and a coverage tracker. The stimulus generator creates input
stimuli to the design under verification. The response checker
estimates the correctness of the design behavior. The cov-
erage tracker evaluates the test completeness. The approach
described in the paper automates construction of the testbench
components on the base of formal specifications.

The rest of the paper is organized as follows. Section II
describes the existing approaches to semi-formal verification
of hardware designs. In Section III the suggested method is
discussed. This section consists of five subsections, which
describe the method for specifying synchronous designs (A),
organization of adapters between specifications and an im-
plementation (B), and usage of formal specifications of the
introduced kind for construction of response checkers (C),
coverage trackers (D), and stimuli generators (E). In Sec-

tion IV the CTESK toolkit is briefly described. Section V is
a case study. Section VI concludes the paper.

II. RELATED WORK

There are a lot of research and industrial papers on
semi-formal verification methods. This gives evidence that
specification-driven testbench development is the promising
direction for hardware verification. The main question is what
kind of specifications and models are preferable. To automate
different tasks of testing, distinct types of models are usually
used. For example, stimuli generation can be performed on
the base of FSM models, while correctness checking can be
done by means of temporal assertions. This has a certain
disadvantage. Two models require maintenance during the
design process to keep up their mutual consistency.

The most of the papers are dedicated to the methods of
test sequence generation. Many of them suggest using explicit
cycle-accurate models to generate test sequence, e.g., Ur et
al. [4] and Mishra et al. [5] use SMV models; Ho et al. [6]
utilize Synchronous Murϕ. The main differences between
the approaches are concentrated in the following methods:
a method of model construction (manual development [4],
automatic derivation from an RTL description [6], and au-
tomatic derivation from specifications [5]) and a method of
test sequence generation (FSM traversal [4], [6] and model
checking [5]).

Manual development of a model is error-prone, while au-
tomatic derivation from an RTL description does not scale
well on complex hardware designs. In our opinion, the most
promising method of model construction is automated extrac-
tion from formal specifications. Speaking about test gener-
ation, model checking techniques are not intended for full-
scale functional verification. They are aimed to verification of
a relatively small number of properties. The most usable way
of test sequence generation is based on FSM traversal.

In the suggested method, a model for test sequence gener-
ation, so-called generalized FSM model, is almost automati-
cally derived from specifications. The approach uses implicit
specifications in the from of pre- and post-conditions and
irredundant algorithms for FSM traversal. The distinction
feature of the approach is that it does not require two different
models for checking design correctness and for test sequence
generation. All testing tasks are carried out basing on formal
specifications.



Fig. 1. An example of a control flow graph

III. SUGGESTEDMETHOD

Our approach to testbench development is based on cycle-
accurate formal specification of the design behavior. Each
operation of the design is described with the help of a
control flow graph having two types of nodes: control nodes
and operational nodes. Control nodes specify control flow
branching, creation of concurrent threads, etc. Operational
nodes describe one-cycle microoperations.

A. Design Specification

State of the design is formalized by a finite set of variables.
Among the variables, there are input and output parameters
of the operations. All predicates and functions mentioned
below are defined over that set of variables. Functionality of
the design is described for separate operations. Specification
of an operation includes its precondition, which restricts
situations in which the operation is permitted to be started.
If the precondition does not hold, then the operation’s result
is unpredictable. In general case, execution of an operation
requires several cycles. A one-cycle part of an operation is
called amicrooperation.

Structure of an operation’s control flow is described by a
directed graph in which four kinds of nodes are admitted:
cond, fork, join (control nodes), andstage (operational
nodes). Obviously, control flow graphs must fulfill certain
requirements, e.g., out-degree of astage node is not greater
than one, acond node has exactly two outgoing edges,
which are marked bytrue and false, etc. An example of
an operation control flow graph is shown on Fig. 1. The graph
on the picture consists of nine nodes: onecond, one fork,
one join, and sixstages.

If in-degree of a stage node is equal to zero, the node
is called initial . If out-degree is equal to zero, the node is
called final. An operation is allowed to have more than one
initial stage and more than one final stage. Eachcond node
is supplied with a predicate that represents a condition for
choosing control flow direction. Eachstage node is described
by a Hoare triple (microoperation’s contract){P}C{Q},
where P is a precondition,C is a command, andQ is a
postcondition [7]. Semantics of a microoperation precondition
is as follows. If the precondition is not satisfied, it does
not mean that the microoperation’s result is unpredictable. It
simply indicates that the microoperation is interlocked (it will
be unlocked, when the precondition becomes true).

To define which operations can be started in parallel, a no-
tion of execution channelsis used. Each channel is associated
with a set of operations that can be executed via it. A channel
can handle only one operation per cycle. Sets of operations for
different channels are able to have non-empty intersections.
Moreover, each channel supports an empty operationnop.
Operations associated with different execution channels can
be started simultaneously, if that combination of operations is
permitted.

Let k be a number of execution channels andX1, ..., Xk

be sets of operations associated with the channels. Possibility
of parallel starting ofk operations via different execution
channels is defined by a Boolean functionsim : X1 × ... ×
Xk → {true, false}. If the design has several execution
channels, one can define ageneralized operation(multistim-
ulus) as a k-tuple(x1, ..., xk) ∈ X1 × ... × Xk such that
sim(x1, ..., xk) = true. The precondition of the generalized
operation is a conjunction of the preconditions ofx1, ..., xk.

Execution of a microoperation requires exactly one cycle.
Creation of parallel threads, checking branch condition and
making decision which branch should be taken are performed
instantly. To interpret specifications, aset of current stages
is used. At the beginning of simulation the set is empty.
On every cycle of simulation, a generalized operation with
satisfied precondition is applied to the design. All initial stages
of the operation are added into the set of current stages. After
that, the set of active stages is calculated among the current
stages.

A stage is calledactive, if its precondition P is true;
otherwise a stage is calledinterlocked. For each active stage
the corresponding commandC is executed. In theory, the
commands of the active stages are executed in parallel. Af-
ter execution, the postconditionsQ of the active stages are
checked. Then, the active stages are removed from the set of
current stages. If an active stage is not final, then its successive
stages are added into the set. A successor relation is defined
on the base of the control flow graphs. Given a stages and an
outgoing edgee, define the set of successive stages. Depending
on the type of the node the edge leads to, there are four
different cases:

• If e leads to astage node, then that stage is a successive
one.

• If e leads to acond node, then the branching condition
is estimated and choice among two alternative edges is
made. The same algorithm is applied recursively for the
chosen edge.

• If e leads to afork node, then the algorithm is applied
recursively for each outgoing edge of the node. Then, the
calculated sets of successive stages are unified.

• If e leads to ajoin node, then for each ingoing edge
the finishing condition of the corresponding thread is
checked. If all threads are finished, the algorithm is
applied recursively for the outgoing edge of the node;
otherwise the set of successive stages is empty (the node
will be processed again when another ingoing thread is
finished).



Fig. 2. Cycle-by-cycle execution of the operation

Specifications of the described type are calledcycle-
accurate contract specifications. Originally, they were intro-
duced for linear multi-cycle operations to specify pipelined
designs [8].

B. Connection between Specifications and Implementation

Fig. 2 shows cycle-by-cycle execution of the operation
presented on Fig. 1. It is assumed that the operation’s stages
have no interlocks (the preconditions of all microoperations
are identically true) and the branching conditioncond is not
satisfied. On the first cycle the initial stagestart is executed.
This stage is responsible for setting the operation’s strobe
and for assigning the input parameters of the operation to
the corresponding inputs of the design. The second cycle
is occupied bystage1. At the end of the second cycle the
branching conditioncond is estimated. Under our assumption,
the condition is false. During the third cycle two one-cycle
threadsstage3 and stage4 are executed in parallel. The last
cycle is taken by the final stageend.

To perform simulation-based verification, a testbench should
connect specifications with an implementation. For this pur-
pose, one should develop special testbench components: stage
drivers, stage monitors, and a mediator. The stage driver is
responsible for setting the input signals required by the stage.
Usually, input signals (an operation strobe and parameters) are
set by initial stages. The driver is executed at the beginning of
the cycle on which the stage is carried out. The stage monitor
reads the output signals and the internal data affected by the
stage and converts them into the specification representation.
The information obtained by the monitor is used for checking
the stage correctness. The monitor is executed at the end
of the corresponding cycle. The mediator reads the output
signals and the internal data shared by all operations of the
design and converts them into the specification representation.
It synchronizes the specification state with the implementation
one. The mediator is executed at the end of each cycle of
simulation.

C. Organization of Response Checkers

Assume that each stages is specified by a Hoare triple
{Ps}Cs{Qs} and supplied by a driverDs and a monitorMs.
In addition, a mediatorM is defined. LetS be a set of current

stages. To check correctness of the design behavior in response
to a certain set of stimuli, the testbench works as follows.

• At the beginning of the cycle:

– The testbench calculates the set of active stages:

Enabled← {s ∈ S | Ps(·) = true}.

– Then, it executes the drivers of the active stages in
some order. The order is unimportant, because the
stages are independent.

• At the end of the cycle:

– The testbench executes the commands of the active
stages.

– Then, it executes the monitors of the active stages
and the mediator.

– After that, the testbench estimates the design be-
havior by checking the postconditions of the active
stages:

Check(·) =
∧

s∈Enabled

Qs(·).

– Finally, it updates the set of current stages:

S ← {s | s ∈ S \ Enabled} ∪
⋃

s∈Enabled

succs(·).

Here, succs is a function that returns the set of
successive stages of the stages.

D. Test Coverage Description

In the suggested approach to testbench automation, a test
adequacy criterion is defined on the base of formal specifi-
cations. Test coverage has a hierarchical structure describing
different aspects of the design functionality. It consists of three
levels of granularity.

Microoperation-level coveragedefines test situations on
microoperation interlocks (interlock coverage) and on func-
tional branches inside individual microoperations (functional
coverage). In the simplest case, interlock coverage includes
two situations, which describe whether the stage is interlocked
or not. General-case coverage takes into account a structure
of the logical formula that describes the interlock. A typical
microoperation has no local branching; therefore its functional
coverage consists of only one element.

Operation-level coveragespecifies test situations on an
operation in terms of paths in the operation’s control flow
graph. Usually, a control flow graph is acyclic. In this case, it
is reasonable to define test situations as paths from the initial
nodes to the final ones.

Pipeline-level coveragedescribes test situations connected
with parallel calls of operations (multistimulus coverage) and
simultaneous execution of microoperations (control state cov-
erage). The goal of test generation is to create all feasible
combinations of simultaneously executing microoperations. To
this effect, one needs to use all possible paths in operations
and all possible interlock situations.



Fig. 3. Construction of an generalized FSM model

E. Test Sequence Generation

To create test sequencies for a design under verification, we
use a generalized FSM model of the design. Roughly speaking,
a state of genereralized model is idenfied by a set of current
stages (see Fig. 3). The state graph of the generalized model
is created on the fly. Test generation is complete when all
reachable states (all feasible combinations of simultaneously
executing microoperations) are visited.

In order to make the model deterministic, a verification
engineer should include some additional information into
the FSM state. For example, if there are interlocks in the
microoperations, one should add a certain information that de-
terministically determines the interlock conditions; if there are
branches in the operations, one should add some information
that determines the branching conditions, and so on. This part
of the approach is not fully automated.

To compile several operations from different execution
channels into a multistimulus, we have a temporary buffer [9].
Every operation exceptnop is put into the buffer before it is
applied to the design. Multiple operations targeted at the same
channel are prohibited to be added. Whennop is applied, all
operations stored in the buffer are applied to the design in
parallel, and the buffer is flushed.

IV. TOOL SUPPORT

The suggested approach to specification-driven testbench
development is supported by the CTESK toolkit developed
at ISPRAS [10]. This toolkit is originally intended for testing
software systems written in C programming language, but it
has been adapted for verification of RTL models of hardware
designs.

CTESK uses SeC language for development of testbench
components. SeC is a C extension, which has additional
constructs for description of specifications, drivers, monitors,
and other components. The toolkit supports the advanced
FSM-based techniques for test sequence generation. Testbench
functionality connected with interpretation of cycle-accurate
contract specifications and response checking is implemented
as a library extension of CTESK.

V. CASE STUDY

The suggested method and the CTESK toolkit have been
used in several industrial projects on hardware verification.
The most complex project is the testbench development for
L2 cache of the MIPS64-compatible microprocessor.

The cache under verification is a direct-mapped 256 KB
cache that consists of 8192 rows and serves both data and
instructions. It implements operations for loading and storing
data, for loading instructions, for modifying control informa-
tion, and some others (total number of the operations is 6). All
operations are multistage pipelined operations (total number of
the microoperations is 92). Many of them contain branching
of control flow. Some operations can be started in parallel
(maximum number of parallel starting operations is 3).

Specifications of the microoperations were represented in
the form of Hoare triples. It should be emphasized that all re-
quirements were cheaply formalized (total number of the non-
trivial preconditions, commands and postcondition is 120).
The volume of specifications is about 3 KLOC in SeC. The
labor costs of the testbench development are approximately 6
man-months (20-30% of RTL development efforts). In this
project we have found 12 functional errors in the design
implementation including very critical ones.

VI. CONCLUSION

The method described in the paper is applicable to a
wide rage of synchronous hardware including parallel-pipeline
designs with control flow branching and parallel threads in-
side individual operations. The usage of formal specifications
allows to automate the main tasks of simulation-based verifica-
tion: test sequence generation, checking of design correctness,
and estimation of test completeness. The distinction feature of
the approach is that the same specifications are used for all
tasks of testing. This simplifies maintenance of testbenches and
reduces verification efforts. The suggested approach has been
successfully used in real-life projects on hardware verification.

REFERENCES

[1] J. Bergeron. “Writing testbenches: functional verification of HDL mod-
els”. Kluwer Academic Publishers, 2000.

[2] W. Lam. “Hardware design verification: simulation and formal method-
based approaches”. Prentice Hall, 2005.

[3] S. Qadeer, S. Tasiran. “Promising directions in hardware design verifi-
cation”. Proc. of International Symposium on Quality Electronic Design,
2002.

[4] S. Ur, Y. Yadin. “Micro architecture coverage directed generation of test
programs”. Proc. of Design Automation Conference, 1999.

[5] P. Mishra, N. Dutt. “Functional coverage driven test generation for
validation of pipelined processors”. Proc. of Design, Automation and Test
in Europe, 2005.

[6] R. Ho, C. Yang, M. Horowitz, D. Dill. “Architecture validation for
processors”. Proc. of International Symposium on Computer Architecture,
1995.

[7] C.A.R. Hoare. “An axiomatic basis for computer programming”. Com-
munications of the ACM, 12(10):576-580,583, 1969.

[8] A. Kamkin. “Contract specification of pipelined designs: application to
testbench automation”. Proc. of Spring Young Researchers’ Colloquium
on Software Engineering, 2007.

[9] M. Chupilko. “Constructing test sequences for hardware designs with
parallel starting operations using implicit FSM models”. Proc. of East-
West Design & Test Symposium, 2009

[10] http://hardware.ispras.ru


