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Abstract. The article deals with problems of testing implementations of
mathematical functions working with floating-point numbers. It consid-
ers current standards’ requirements to such implementations and demon-
strates that those requirements are not sufficient for correct operation
of modern systems using sophisticated mathematical modeling. Correct
rounding requirement is suggested to guarantee preservation of all im-
portant properties of implemented functions and to support high level of
interoperability between different mathematical libraries and modeling
software using them. Test construction method is proposed for confor-
mance test development for current standards supplemented with correct
rounding requirement. The idea of the method is to use three differ-
ent sources of test data: floating-point numbers satisfying specific pat-
terns, boundaries of intervals of uniform function behavior, and points
where correct rounding requires much higher precision than in average.
Some practical results obtained by using the method proposed are also
presented.

1 Introduction

In modern world computers help to visualize and understand behavior of very
complex systems. Confirmation of this behavior with the help of real experi-
ments is too expensive and often even impossible. To ensure correct results of
such modeling we need to have adequate models and correctly working model-
ing systems. Constructing adequate models is very interesting problem, which,
unfortunately, cannot be considered in this article in detail. The article con-
cerns the second part – how to ensure correct operation of modeling systems.
Such systems often use very sophisticated and peculiar algorithms, but in most
cases they need for work basic mathematical functions implemented in software
libraries or in hardware.

So, mathematical libraries are common components of most modeling soft-
ware and correct operation of the latter cannot be achieved without correct
implementation of basic functions by the former. In practice software quality is
controlled and assured mostly with the help of testing, but testing of mathemat-
ical libraries usually is organized using simplistic ad hoc approaches and random
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test data generation. Specifics of floating-point calculations makes construction
of both correct and efficient implementations of functions, along with testing
that they are actually correct, a nontrivial task. The main goal of this paper is
to present a systematic method of test construction for mathematical functions
implemented in software or hardware on the base of floating-point arithmetic
stated in IEEE 754 standard [1].

The main ideas of the method proposed are to check correct rounding require-
ment and to combine three different sources of test data, which are targeted to
catch common errors made by implementors of mathematical libraries.

– Floating-point (FP) numbers of specific structure. They include both bound-
ary numbers like the greatest FP number (within certain precision), the
smallest normalized number, etc., and numbers, which binary representa-
tions satisfy some specific patterns. In addition the closest floating-point
numbers to the values of the reverse function in such points are calculated
and also used as testing points for the direct function. Roughly speaking,
a function is tested on points where its argument or its value are on the
boundary or satisfy one of the chosen patterns.

– Boundaries of intervals, where the function under test behaves in uniform
way. Several points on each of those intervals are also added to the test suite.
Detailed rules for determining such intervals are presented below.

– Floating-point numbers, for which correct rounding of the function value
requires much higher precision of calculations than average. These points
are rather hard to seek and some methods for their search are presented in
the section on test construction method.

The contribution of this article is the systematic description of the approach
proposed, much more clear and concise then it was done in the paper [2] describ-
ing the starting phase of the underlying work. In addition this paper describes
methods for searching FP numbers, for which correct rounding of the function
value is hard, including the new one, the integer secants method. This research
was started during the OLVER project [3] on formalization of LSB [4] standard
requirements and conformance test development.

Before presenting the test construction method itself it is useful to recall some
details of FP arithmetic, which are necessary for understanding details of the
method. To make tests practically useful we also should clearly understand what
precise requirements should be checked. So, the next section presents review of
existing standards concerning mathematical functions working with FP numbers
and analysis of these standards’ requirements.

2 Standards’ Requirements

To be able to check implementation of a function we should know how it should
behave. Practically significant requirements on the behavior of functions on FP
numbers can be found in several standards.
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– Standards IEEE 754 [1] (also known as IEC 60559 [5]) and IEEE 854 [6]
define representation of FP numbers, rounding modes, also describe basic
arithmetic operations, comparisons, type conversions, square root function,
and floating-point remainder.

– Standards ISO C [7] and POSIX [8] impose additional requirements on about
40 functions of real and complex variable implemented in standard C library.

– Standard ISO/IEC 10697 [9,10,11] gives more elaborated and precise set of
requirements for elementary functions.

2.1 Floating-Point Numbers

Standards IEEE 754 and IEEE 854 define FP numbers based on various radices.
Further exposition concerns only binary numbers, because other radices are used
in practice rarely. Nevertheless, all the techniques presented can be extended to
FP numbers with different radix, if it is necessary.

Representation of binary FP numbers is defined by two main parameters – n,
the number of bits in the representation, and k < n, the number of bits used to
represent an exponent. The interpretation of different bits is presented below.

– The first bit represents the sign of a number.
– The next k bits – from the 2-nd to the k + 1−th – represent the exponent of

a number.
– All the rest bits – from k + 2−th to n−th – represent the mantissa or the

significand of a number.

A number X with the sign bit S, the exponent E, and the mantissa M is ex-
pressed in the following way.

1. If E > 0 and E < 2k − 1 then X is called normalized and is calculated
with the formula X = (−1)S2(E−2k−1+1)(1 + M/2n−k−1). Actual exponent
is shifted to make possible representation of both large and small numbers.
The last part of the formula is simply 1 followed by point and mantissa bits
as the binary representation of X without exponent.

2. If E = 0 then X is called denormalized and is computed according to another
formula X = (−1)S2(−2k−1+2)(M/2n−k−1). Here mantissa bits follow 0 and
the point. Note also, that this gives two zero values +0 and −0.

3. Exponent 2k − 1 is used to represent special values – positive and negative
infinities (using zero mantissa) and not-a-number NaN (using any nonzero
mantissa). Infinities represent results of operations that actually give mathe-
matically infinite result or too big result to be represented as a floating-point
number. NaN represents results of operations that cannot be considered con-
sistently as finite or infinite, e.g. 0/0 = NaN.

IEEE 754 standard defines the following FP number formats: single precision
(n = 32 and k = 8), double precision (n = 64 and k = 11), and extended double
precision (128 ≥ n ≥ 79 and k ≥ 15 (Intel processors use n = 79 and k = 15).
In the next version of the standard quadruple precision numbers (n = 128 and
k = 15) will be added.
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2.2 IEEE 754 Requirements

Along with the representation of FP numbers IEEE 754 defines requirements
to basic arithmetic operations on them (addition, subtraction, multiplication,
and division), comparisons, conversions between different formats, square root
function, and calculation of FP remainder [12]. Since results of these operations
applied to FP numbers are often not exact FP numbers, it defines rules of round-
ing such results. Four rounding modes are defined: to the nearest FP number, up
(to the least FP number greater than the result), down (to the greatest FP num-
ber less than the result), and to 0 (up for negative results and down for positive
ones). If the result is exactly in the middle between two neighbor FP numbers,
its rounding to nearest get the one having 0 as the last bit of its mantissa.

To make imprecise results more visible IEEE 754 defines a set of FP exception
flags that should be raised in specific circumstances.

– Invalid flag should be raised if the result is NaN, while arguments of the
operation performed are not NaNs.

– Divide-by-zero flag should be raised if the result is exactly positive or nega-
tive infinity, while arguments of the operation are finite.

– Overflow flag should be raised if the results’ absolute value is greater than
maximum FP number.

– Underflow flag should be raised if the result is not 0, while its absolute value
is less than minimum positive normalized FP number.

– Inexact flag should be raised if the precise result is not an FP number, but
its absolute value is inside the interval between minimum and maximum
positive FP numbers.

2.3 Requirements of ISO C and POSIX

ISO C [7] and POSIX [8] standards provide description of mathematical functions
of standard C library, including most important elementary functions (square
and cubic roots, power, exponential and logarithm with bases e, 2 and 10, most
commonly used trigonometric, hyperbolic functions and their reverse functions)
of real or complex variables. Also some special functions are described – er-
ror function, complementary error function, gamma function, and logarithmic
gamma function.

ISO C standard defines a set of points where the specified functions have
exact well-known values, e.g. log 1 = 0, cos 0 = 1, sinh 0 = 0. It also specifies
situations where invalid and divide-by-zero flags should be raised, the first one
– if a function is calculated outside of its domain, the second one – if the value
of a function is precisely positive or negative infinity. These requirements are
specified as normative for real functions and only as informative for complex
functions.

POSIX slightly extends the set of described functions; it requires implement-
ing Bessel functions of the first and the second kind of orders 0, 1, and of an
arbitrary integer order given as the second parameter. It also extends ISO C
by specifying situations when overflow and underflow flags should be raised for
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functions in real variables. Additional POSIX requirement is that real functions
having asymptotic f(x) ∼ x near 0 should return x for each denormalized argu-
ment value x. Note, that this would be in contradiction with IEEE 754 rounding
requirements if they were applied to such functions.

Both standards do not say anything on precision of function calculation in
general situation.

2.4 Requirements of ISO 10697

The only standard specifying some calculation precision for rich set of math-
ematical functions is ISO 10697 [9,10,11], standard on language independent
arithmetic. It describes the following requirements to implementations of ele-
mentary functions in real and complex variables.

– Preservation of sign and preservation of monotonicity of ideal mathemat-
ical function where no frequent oscillation occurs. Frequent oscillation oc-
curs where difference between two neighbor FP numbers is comparable with
length of intervals of monotonicity or sign preservation. Trigonometric func-
tions are the only elementary functions that oscillate frequently on some
intervals. So, the standard defines the big angle – the least positive value,
for which the last unit of mantissa or ulp, unit on the last place, becomes
greater than π/1000. This value is about 2.8 · 1013 for double precision. For
arguments greater than the big angle preservation of sign and monotonicity
does not required from implementations of trigonometric functions.

– The standard requires that rounding errors should not be greater than 0.5−
2.0 ulp, depending on the function implemented. Again, this in not required
from implementations of trigonometric functions on arguments greater than
the big angle. Note that precision 0.5 ulp is equivalent to the correct rounding
to the nearest FP number.

– ISO 10697 requires to preserve evenness or oddity of implemented functions,
and for this reason it does not support directed rounding modes – up and
down. Only symmetric modes – to nearest and to zero – are considered as
correct.

– The standards also specifies well-known exact values for all functions, ex-
tending ISO C requirements. In addition it requires from an implementation
to preserve asymptotic of the implemented function in 0. FP numbers are
distributed with different densities along the real axis, and their density in-
creases while approaching 0 – the double precision number closest to 0 has
value 2−1074, while the one closest to 1 differs from it by 2−53. For that
reason, for example, an implementation of exp should return exactly 1 in
some neighborhood of 0, and an implementation of sin should return x also
in some neighborhood of 0.

– The last set of requirements imposed by ISO 10697 is concerned with natural
inequalities between some functions, e.g. cosh(x) ≥ sinh(x), which should be
preserved by their implementations.

So, ISO 10697 provides the most detailed set of requirements including re-
quirements on calculation precision. Unfortunately, it has not yet recognized by
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practitioners and no widely-used library has declared correspondence with this
standard. Maybe this situation will improve in future.

3 Analysis of Requirements

Analysis of existing standards shows that they are not fully consistent with each
other and are usually restricted to some specific set of functions. Trying to con-
struct some systematic description of general requirements based on significant
properties of mathematical functions concerned with their computation one can
get the following list.

– Exact values and asymptotic near them.
– Preservation of sign and monotonicity.
– Preservation of inequalities with other functions.
– Symmetries – evenness, oddity, periodicity, or more complex properties like

Γ (x + 1) = xΓ (x).
– NaN results outside of function’s domain, infinity results in function’s poles,

correct overflow and underflow detection, raising correct exception flags (ex-
tension of IEEE 754 and POSIX requirements).

– Preservation of bounds of function range, e.g. −π/2 ≤ arctan(x) ≤ π/2,
−1 ≤ tanh(x) ≤ 1.

– Correct rounding according to natural extension of IEEE 754 rules and rais-
ing inexact flag on imprecise results.

In this list correct rounding requirement is of particular significance. It has
the following important advantages.

– If we provide correct rounding, we immediately have almost all other prop-
erties in this list [13]. But if we want to preserve these properties without
correct rounding, it requires much harder work, peculiar errors become possi-
ble, and thorough testing of such an implementation becomes very nontrivial
and much harder task.

– Correct rounding provides results closest to the precise ones. If we have no
correct rounding, it is necessary to specify how the results may differ from
the precise ones, which is very rarely done in practice. It is supposed usually
that correct rounding for sine function on large arguments is too expensive,
but none of sine implementations used in practice explicitly declares its error
bounds on various intervals. Most users usually don’t analyze the results ob-
tained from standard mathematical libraries, and are not competent enough
to see the boundaries between areas where their results are relevant and the
ones where they become irrelevant due to (not stated explicitly) calculating
errors in standard functions. Correct rounding moves most of the problems of
error analysis to the algorithms used by the applications, standard libraries
become as precise as it is possible.

– Correct rounding requirement also implies almost perfect compatibility of
different mathematical libraries and precise repeatability of calculation re-
sults of modeling applications on different platforms, which means very good
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portability of such applications. This goal is also rather hard to achieve with-
out such a requirement – one needs to standardize specific algorithms as
it was made by Sun in mathematical library of Java 2. Also, strict preci-
sion specification is much more flexible requirement than standardization of
algorithms.

High effort required to develop a function implementation and its resulting
ineffectiveness are always mentioned as drawbacks of correct rounding require-
ment. However, good algorithms and techniques that help to resolve these issues
are already known for a long time (e.g. see [14,15] for correct argument re-
duction for trigonometric functions). Work of Arenaire group [16] in INRIA on
crlibm [17,18] library demonstrates that inefficiency problems can be resolved in
almost all cases. So, now these drawbacks of correct rounding can be considered
as not really relevant.

More serious issue is contradiction between correct rounding requirement and
some other useful properties of mathematical functions. In each case of such a
contradiction we should decide how to resolve it.

– Oddity and some other symmetries using minus sign or taking reciprocal
values, like tan(π/2 − x) = 1/ tan(x), can be broken by directed rounding
modes (up and down), while symmetric modes (to nearest and to 0) preserve
them. In this case it is natural to prefer correct directed rounding if it is
chosen, because usually such modes are used to get correct boundaries on
exact results.

– Correct rounding can sometimes contradict with natural boundaries of func-
tion range, if these boundaries are not representable as precise FP numbers.
For example, −π/2 ≤ arctan(x) ≤ π/2 is an important property. It occurs
that single precision FP number closest to π/2 is greater than it, so if we
round arctangent values on large arguments to the nearest FP number, we
get arctan(x) > π/2, that can radically change the results of modeling of
some complex systems. In this case we prefer to give priority to the bounds
preservation requirement and do not round values of arctangent (with either
rounding mode) to FP numbers out of its range.

So, further we consider test construction to check correct rounding require-
ment with 4 rounding modes specified by IEEE 754 with the single exception –
when correct rounding breaks natural boundaries of a function range, we preserve
these boundaries. The reader will see that even for implementations that do not
satisfy these requirements such tests can also be very useful.

3.1 Table Maker Dilemma

An important issue related with correct rounding requirement is so called table
maker dilemma [19,20]. It occurs when we need much higher precision of calcula-
tions to get correctly roundedvalue of a function.An example is the value of natural
logarithm of a double precision FP number 1.613955DC802F816 ·2−35 (mantissa
is represented in hexadecimals) equal to −17.F02F9BAF6035 7F149. . .16 . Here
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F14 means 14 digits F, giving with neighbor digits 60 consecutive units staying
after a zero just after the double precision mantissa. This value is very close to
the mean of two neighbor FP numbers, and to be able to round it correctly to
the nearest FP number we need calculations with relative error bound about
2−113 while 0.5 ulp precision is only 2−53.

Simple statistical model [19] presuming that mantissa’s bits of function values
are distributed uniformly and independently implies that 2n−k−1 FP numbers
with one exponent can give 2n−k−1 ·2−m+1 values with m consecutive equal bits
– bad cases, in which table maker dilemma occurs. So, if m ≤ n−k (24 for single
and 53 for double precision), then there may exist points where correct rounding
of a function requires precision about 2m+n−k.

Experiments (see below methods for bad cases search) shows that this is true
in common case, on the intervals where a function has no singularities or simple
asymptotic like cosx ∼ 1 or sin x ∼ x. But extraordinary bad cases also exists
for most functions – m can be greater than 60 for double precision.

4 Test Construction Method

Test construction method proposed checks difference between correctly rounded
value of a function and the value returned by its implementation in a set of
test points. We prefer to have a rules of test point selection based only on
the properties of the function under test and structure of FP numbers, and
do not consider specific algorithms of implementations. This black box approach
appears to be rather effective in revealing errors in practice, and at the same
time it does not require detailed analysis of numerous and growing set of possible
implementation algorithms and various errors that can be made in them.

Test points are chosen by the following rules.

1. FP numbers of special structure:
First, natural boundary values in the set of FP numbers are taken as test
points: 0,−0,∞,−∞, NaN, the least and the greatest positive and nega-
tive denormalized and normalized numbers. This boundary values usually
uncover errors in non-mature implementations. For example, the procedure
recommended by Intel to calculated exponential function on Intel processors
older than Pentium II gives NaN in ±∞, instead of 0 and +∞ (see [21])

Second, numbers with mantissa satisfying some specific patterns are cho-
sen. Errors in an algorithm or an implementation often lead to incorrect
calculations on some patterns. The notorious Pentium division bug [22] can
be detected only on divisors having units as mantissa bits from 5-th to 10-th.
In out practice an algorithm of square root calculation encoded in hardware
made errors on about 10% of double precision numbers, square roots for
which have mantissa of a form ****FFFFFFFFF, where * means an arbi-
trary hexadecimal digit. Pattern use for testing FP calculations is already
described, e.g. in [23].

So, several dozens different patterns are chosen, including all zeroes, all
units, 0FFFF0000AAAA, and some others with alternating groups of digits
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0, F, 5 (0101), and A (1010). On each exponent where the function under
test is defined and is not degenerate (that is its values are in the range
of representable numbers and do not all equal to one constant value or to
function’s argument) we take points with mantissas satisfying these patterns.

Third, two previous rules are used to get points where reverse function is
calculated and pairs of closest FP numbers to its values are taken as test
arguments for direct function. So, a function is tested in points, which satisfy
some patterns, and in points where its value is closest to the same patterns.

2. Boundaries of intervals of specific function behavior:
All singularities of the function under test, bounds of intervals of its non-
overflow behavior, of constant sign, of monotonicity or simple asymptotic
determine some partitioning of FP numbers. Boundaries of these intervals
and several points on each of them are chosen as test points. They also
usually reveal various errors.

In case of frequent oscillation (e.g. for trigonometric and Bessel functions)
this approach faces with an enormous number of intervals to be covered. To
resolve this problem we choose only intervals where extreme values of the
function are closest to its actual extreme values. For example, for trigono-
metric functions one can found the set of FP numbers closest to integer
multiples of π/2 with the help of continued fractions [15]. This method gives
about 2000 points for double precision numbers. On quarter-periods con-
taining these points trigonometric functions approach to 0,±1, or ±∞ much
closer than on ordinary quatre-period. So, these quatre-periods are taken as
characteristic intervals for those functions.

3. FP numbers, for which calculation of correctly rounded function
value requires higher precision:
Bad cases, which require more than M additional bits for correct rounding
(the “badness”), are taken as test points. M is chosen equal to n − k − 10,
which gives about 1000 test points on each exponent where the function
under test is not degenerate. In addition some points with M near (n −
k)/2 are chosen too, because some errors can be uncovered in not-very-bad
cases ([24] gives an example of such an error in an implementation of square
root). This rule adds test points helping to reveal calculation errors and
inaccuracies of various nature.

Implementation of the method is rather straightforward. Test points are gath-
ered into simple text files, each test point is accompanied with correctly rounded
value of the function under test for each rounding mode (only two different val-
ues are required at most). Correctly rounded values are calculated with the
help of multiprecision implementations of the same functions (e.g. in Maple or
MPFR library [25]), taking higher precision to guarantee correct results. A test
program reads test data, calls the function under test, and compares its result
with the correct one. In case of discrepancy the difference in ulps is counted and
reported. In addition the test program checks exception flags raising according
to IEEE 754 rules extended to the function under test. So, test execution is
completely automated.
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The only not so easy task is to compute bad cases for a function. Methods
that solve this problem are presented in the next section.

4.1 Bad Cases Computation

The following techniques can be used for bad case computation.

– Exhaustive search. In practice it can be applied only for single precision
numbers (they have less than 232 values). Almost 264 double precision num-
bers and the need to calculate the function under test with high precision
for each number make this technique unfeasible for higher precisions even
with use of the most powerful modern computers.

– Dyadic method [24,26]. This method gets argument bad cases on the base
of the function values in dyadic numbers in some points. It can be used to
compute bad cases for algebraic functions – for square root [24,26] and for
cubic root (no references).

For example, if square root of FP number X is near the mean of two FP
number, then

√
2mN ≈ M + 1/2, where we can consider M, N as integers

between 2n−k−1 and 2n−k, X = 2mN, m is n−k−1 or n−k−2. By squaring
this almost-equality we get integer equality 2m+2N = (2M + 1)2 − j, where
j is a small integer number. So (2M + 1)2 = j mod 2m+2 and 2M + 1 can
be found as a square root of j modulo 2m+2. The last task can be solved by
consecutive computing square roots of j modulo 8, 16, 32, . . .2m+2 with the
help of Henzel lifting (they give an infinite sequence tending to the dyadic
square root of j).

The same considerations can be applied to directed rounding bad cases [24]
and to cubic root.

– Reduced search [19,27]. This method searches bad cases as FP-numbers grid
nodes closest to the function under test graph. The function is approximated
with high precision by linear polynomials on a set of intervals, and then its
graph is substituted by straight line segments corresponding to those poly-
nomials. For each segment the grid nodes closest to it are determined using
3-distance theorem. This theorem says that for a given sequence x0, x1, ...
of points on a circle, where x0 is an arbitrary point and xi+1 is obtained
from xi by rotation on some angle α, not depending on i, there are always at
most three different distances between neighbor points (see details in [27]).
Intersections of a straight line segment with vertical lines of FP-numbers
grid make up such a sequence being regarded modulo the distance between
horizontal lines. 3-distance theorem thus help to perform only several simple
operations for each FP point to learn whether it gives the value close to the
segment or not. All suspicious points are stored and on the second phase the
function is calculated in them with high precision to get really bad cases.

– Lattice reduction[28]. The idea is the same – to look for FP-numbers grid
nodes closest to the function under test graph. In difference with the pre-
vious approach this one uses high precision approximations of the function
under test by polynomials of small degree (but not linear). Then it searches



Test Construction for Mathematical Functions 33

the closest approximation of this polynomial values in FP points by polyno-
mials with integer coefficients with the help of lattice reduction – search of
the shortest vector in a lattice of the same-degree polynomials with integer
coefficients. Integer roots of found integer polynomial correspond to points
of FP grid near the graph of the source polynomial (see details in [28]).

– Integer secants method. This is a new method proposed by the author. The
idea is again to look for FP-numbers grid nodes closest to the function under
test graph. But instead of search-based approaches more direct calculation
is provided. this direct calculation is possible in a neighborhood of a point
where the tangent ax + b to the function graph has integer first coefficient
a (or a is a reciprocal of an integer). Straight lines-secants parallel to this
tangent on the distances of integer multiples of FP grid step cover all grid
nodes. So, the closest grid nodes are near graph’s intersections with these
secants (see Fig. 1).

Fig. 1. Integer secants method

To compute such intersections consider the distance between the function
graph and its tangent as a new function F (x) = f(x)−ax− b. This function
has Taylor series in the point of contact starting from the square (or cubic)
term, since it is the difference between Taylor series of the initial function f
in the point of contact and the polynomial ax + b of the contacting tangent.
This series can be reversed in two steps – by computing a series that is a
square (or cubic) root of this series, and then by reversing the root series
(it is possible since root series starts from linear term). Having this reverse
function H(y) we can directly compute abscissas of intersection points – they
are mere values of this function on integer multiples of grid step, since the
distance between the graph and the tangent in these points is exact multiple
of the distance between horizontal lines of FP grid.

This method helps to compute bad cases near integer tangents rather
quickly, but with linearly growing distance from the contact point the “bad-
ness” (number of additional bits of function value to calculate for correct
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precision) of points decreases linearly while the number of points themselves
increases exponentially. For example, for sine function near 0 and double
precision numbers on exponents from −26 to −12 about 109 bad points can
be found, but the number of points with “badness” greater than 40 is about
70000. The empiric rule for sine is that the number of intersections on each
next exponent is multiplied by 8, but the number of points with certain
“badness” remains almost the same.

The presented approaches gives a way to automate test point calculation. The
only drawback of existing methods is that they require to write many different
programs for one function under test to compute bad cases in different intervals.

5 Applications

The test construction method presented above along with test data generation
methods have been applied to make test suites for sqrt, exp, sin, and atan
functions in single and double precision. The tests have been executed on various
platforms including Windows XP (MS Visual Studio 2005 libraries) and Linux
(glibc library of different versions).

Surprisingly big number of various errors has been found, most of them are
related with incorrect results on the boundaries of intervals where values of
the function are representable as FP numbers or with big angles for sine. FP
exception flags raising errors are also often uncovered in the situations of the first
kind. Bad cases usually reveal small calculations errors and argument reduction
errors for trigonometric functions.

Square root implementations are more mature and have only one-bit calcu-
lation errors. Arctangent implementations are different – the one of Mircosoft
Visual Studio runtime libraries has only one-bit errors (for rounding to nearest
only every fourth bad case reveal such an error, while for other rounding modes –
every second one), while glibc implementations of arctangent have more serious
errors especially for rounding up, down and to zero.

Versions of glibc library are partitioned into two groups – in the first group
calculation of functions like square root and exponential have mostly one-bit
errors in all rounding modes, but sine became highly erroneous on large argu-
ments; in the second group calculations are precise for rounding to nearest, but
can have big errors in other rounding modes, breaking even the basic properties
like expx >= 0 and −1 ≤ sin x ≤ 1. Examples of the first group are glibc 2.1.3,
2.3.2, 2.7 in RedHat Fedore Core distributions – sine implementation in them
demonstrates big argument reduction errors, small bad cases reveal only 1-bit
calculation errors in about 5% cases in double precision. Examples of the second
group are glibc 2.3.4 in RHEL 4.0 or glibc 2.3.5 in SUSE 10.0 – sine implemen-
tation is almost absolutely correct in rounding to nearest mode (only flag setting
errors detected in it), but is highly erroneous in other rounding modes (some-
times sine results exceeds 1015!) Even single precision sine sometimes is greater
than 1. Bad cases reveal small calculation errors in double precision in about
15% cases. Implementation of sine in Visual Studio.NET 2005 shows argument
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reduction errors and confusingly incorrect calculation of sine for negative num-
bers – almost all results for negative arguments are incorrect. Bad cases reveal
small calculation errors in about 38% cases.

Systematic exposition of testing results for 17 different implementations of
exponential function can be found in [2]. This work revealed about 10 different
error kinds, some of them being specific for a single platform, but 3-4 common
for most platforms tested. Usually exponential is implemented without signifi-
cant errors, but bad cases still found small errors in about 12% cases. On glibc
implementations of the second group exponential function can be highly erro-
neous for rounding to zero or to infinities. Several points found where its results
are negative or much greater than 1 for negative arguments.

The main result is that tests based on structure of FP numbers and intervals
of uniform behavior of the function under test are very good for finding various
errors, while bad cases for correct rounding help to assess calculation errors in
whole and general distribution of inaccuracies.

6 Conclusion

The approach presented in the paper helps to construct systematic test suites
for floating-point based implementations of various mathematical functions in
one real variable. Error-revealing power of such test suites is rather high – many
errors were found in mature and widely used libraries. Although test suites ob-
tained check correct rounding requirement, they also give important information
about implementations that do not obey this restriction. For example, the imple-
mentations demonstrating only one-bit errors (difference with the correct result
only in the last bit of mantissa) can surely be classified as more mature and
correct than others.

The search for bad cases requires a lot of machine time, and now the author
has explored only neighborhood of zero for all elementary functions in one vari-
able mentioned in POSIX, except for trigonometric and hyperbolic arccosine,
and neighborhood of infinity for some of these functions (exponential, arctan-
gent, hyperbolic tangent). Some test data were taken from tests of crlibm li-
brary [18], which comprise a part of worst cases found by methods described
in [19,20,27,28]. Only last year a method has been proposed to compute bad
cases for trigonometric functions on large arguments [29]. So, to obtain the full
data on bad cases a lot of work is still required.

The experiments conducted demonstrated that most of the test data can be
excluded from a test suite without any loss of its error detection power. In
particular, for exponential function the test suite constructed using the method
described and consisting of about 3.7 million test cases, and the reduced test suite
of about 10000 test cases detect all the same errors. The reduction was made
by simple removing the test points that do not reveal specific errors or do not
add something new to inaccuracy distribution on available 17 implementations
of exponential. Now the author tries to formulate a set of rules that can help to
reduce test suites without losses in errors revealed.
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The interesting problem is to extend the method proposed for functions in
two or more variables (and so, in complex variables). One idea is rather straight-
forward – it is necessary to use not intervals, but areas of uniform behavior of
the function under test. But extension of rules concerning FP numbers of special
structure and bad cases seem to be much more peculiar, since their straightfor-
ward generalizations gives zillions of test cases without any hope to get all the
data in a reasonable time. So, some reduction rules should be introduced here
from the very beginning to obtain observable test suites.

The tests developed with the presented approach can also facilitate and sim-
plify construction of correct mathematical libraries giving more adequate and
precise means for evaluation of their correctness.
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