XML Storing and Processing Techniques

© Andrey Fomichev

Institute for System Programming of the Russian Academy of Sciences,
Moscow State University
fomichev@ispras.ru
Ph.D. Advisor S. D. Kuznetsov

Abstract DBMS. Both systems were built from scratch with the
))) goal to support XML storing and processing effidign
This paper gives an overview of the current The query language of both systems is XQuery.

research activities of the author in the area of The rest of the paper is Organized as follows.
XML data management. It sketches the gsection 2 gives an outlook at related work. Sect®n

following topics of interest of the author: XML presents our data representation for XML. Section 4
data organization methods, query evaluation describes our query evaluation model. Section 5
model for XQuery and physical optimization sketches our work on physical query optimization.

of XPath and XQuery queries. The paper Section 6 draws some future plans and concludes the
presents author’s current results in these areas paper.

and outlines the plan for future work.
2 Related Work

We start with the description of related work
There is no doubt that XML has already gained gmbun concerning XML storage systems that concentrate on
as a widespread format for information exchangetiWi data organization for XML (which also includes the
significant growth of amounts of XML data being problems of efficient regular path queries procegsi

transmitted industry needs systems dealing withehug Then we outline what is done in the area of XQuery
XML documents in efficient way. To be successfutbu processing.

1 Introduction

systems should have stromiysical layer which can The problem of storing and processing XML
serve as a basis for the full-featured native XML gocuments efficiently has been admitted by the biase
DBMSs that satisfies any user need. community as a challenge and caused high research

Under the term ophysical layerwe understand the activity in this field. Historically, the first wae of
following: data representation in secondary andmai research was adopting relational DBMSs for storing
memory, memory management, query evaluationxML. The whole paper is not enough for detailed
facilites and physical query optimization (i.e. description of work that has been done, so we caly o
optimization, which depends on the knowledge aboutecommend a summary [6]. But the result of this
data and data structures). Summing up the expegiefic research consists in principle constraints of pure
a number of research papers, industry needs and oyg|ational DBMS to handle XML documents efficiently
own experience, we would like to outline the follmy Actually, XML documents are stored in relational

requirements to physical layer: systems either as atomic entities such as BLOBs or
= Support for large XML documents (much more peing decomposed into relations. The first way of
than 1Gb); storing cannot guaranty high performance of query
= Efficient support for data updates; evaluation because we need to extract the whole
= Efficient access to data by regular path expressiongocument from database. The second way leads to a
such as XPath [1] queries; great number of resource consuming joins to compose
» Fast execution of queries formulated in high-level regyit.
query languages such as XQuery [2], XSLT [3]. Understanding drawbacks of using relational DBMSs

This paper describes the effort of the author infor storing XML caused high activity in developmentt
solving the problems discussed. The results present native XML DBMSs, which would not be straitened by
were achieved during the work under the fOIIOWing any existing infrastructure. Not pretending to gm
projects: BizQuery [4] — virtual data integration complete classification we would like to underlitiee
system and Sedna [5] — native full-featured XML essential characteristics of these systems. Thst fir

group consists of the systems that decompose XML
Proceedings of the Spring Young Researcher's documents at the node level like in case of using

Colloguium On Database and Information Systems relational DBMSs, but make an accent on efficient
SYRCoDIS, St.-Petersburg, Russia, 2004

reconstruction of XML documents (reconstructiortie operations are performed for queries and updatesut
inverse operation for decomposition). The key tisth work we explore this idea and try to apply the
problem lies in efficient determination of pareriid descriptive schema to the XML storage organization.
and ancestor-descendent relationships between nodes In contrast with the XML storing methods, XML
For that reason the notion afumbering schemés query processing is not very well elaborated. The
introduced. The reconstruction of XML is performby developers have been concentrating on the support f
special join operations (structural joins or contaent full XQuery rather than on sophisticated methods of
joins) with the help of the numbering scheme. Usual ~ XQuery implementation. We would like to mark out
is insufficient to have only a numbering scheme andonly an effort made to bring the iterative query
such systems have a set of indexes to get quickssc execution model to the XML world from the relatidna
to nodes by name and to avoid tree traversal (bg&eau one. Several implementations of this model appeared
tree traversal leads to a number of structural §pin nearly simultaneously, so it hard to say who was th
Most papers, which play around that idea, paydittl first. We made itin [4].
attention to storage system and updates, but rather
concentrate on efficient numbering scheme3 Data Organization
implementation and optimization of structural jaidan o o o
example of such systems is XISS [7]. Desgnmg data organlzatlon, we would like it to be

Native XML systems, that make up the second€fficient for both queries and updates. As the leshe
group, work on placement of an XML document (which following main dgqsmns were mald. First, we have
is essentially a tree) into a number of secondarydeveloped alescriptive schema driven storage strategy
memory blocks. In this case an XML document is Which consists in clustering nodes of an XML
represented as a number of nodes, which are somehopcument according to their positions in the destove
connected with each other by references, and thleisa ~ Schema of the document. Secorttirect pointers are
to distribute these nodes among the blocks to fatis Used to represent relationships between nodes of an
some requirements. For instance, the requirement maXML document such as parent, child, and sibling
consist in minimizing the number of blocks usedior ~ relationships. Because of lack of space we do dat#
organizing blocks in a balanced tree, so any Idahe Of details here and present main ideas only. More
XML tree can be accessed by reading a small fixedhformation can be found in [12], [13].
number of blocks (usually 2 or 3). A drawback ofcbu oo
approach is that it requires the resource consurrieg SitlesFoundations of Databases</tile>
traversal operation for path queries, so some irdex Sauthor HullJauthor> |
should be introduced to speed up query executiam. A </book>
example of such systems is Natix [8]. Cfewan ntroducton to Database

The third group of native XML DBMSs is the most

Systems</title>
<author>Date</author>

promising from our point of view. Their main e ehersAddison-Wesley</publisher>
characteristic is that they ussescriptive schemdgor _oyear2004ciyear>

data guide which is nearly the same) of XML <book>
document.Descriptive schemas defined as follows: <paper>

<title>A Relational Model for
Large Shared Data Banks</title>

every path of the document has exactly one patthen

descriptive schema, and every path of the deserpti
schema is a path of the document.

The earliest work on exploiting descriptive schema
for XML data management, as far as we know, is the
Lore project [9]. Their data guide was primarily ags
for query optimization. SphinX [10] system uses
descriptive schema for organizing indexes on XML
documents. We appreciate this work and think that o
approach is closer to theirs than to any other. Bialy
concentrate on indexing XML and do not discuss
storage system and updates at all. One of the tlates
works on compressing XML [11] also takes into
account the advantages of descriptive schema.
Compressing skeleton that presents the structuregba
an XML document they get a variant of data guide,

which takes litle memory and speeds up query;,

execution.

But to the best of our knowledge there is no anyivea
full-featured XML storage system built on the
principles of the third group, which not only intlaces
indexes for XML, but also takes into account how XM

is stored in secondary memory and how many /O

<author>Codd</author>
</paper>
</library>

element
library

element element

lement elemen
itle author

Figure 1. Data Organization

The overall principles of the data organization are
strated in Figure 1. The central component fe t
descriptive schema that is presented as a treetefma
nodes. Each schema node is labeled with an XML node
kind name (e.g. element, attribute, text, etc.) &iad a
pointer to data blocks where nodes correspondinte¢o
schema node are stored. Some schema nodes depending
on their node kinds are also labeled with namestaDa

blocks belonging to one schema node are linked viad.1 Suspended Element Constructors

pointers into a bidirectional list.

?parent
prev-in-block L 3 NN next-in-block
<«—e o—>
left-sibling » e right-sibling

children

Figure 2. Common structure of node descriptor

Besides the well-known heavy operations like joins,
sorting and grouping, XQuery has a specific reseurc
consuming operation — XML element constructor. The
construction of an XML element requires deep copy o
its content that leads to essential overheads. The
overheads grow significantly when a query considta
number of nested element constructors. Understandin

The common structure of node descriptors for ally,e importance of the problem, we propcsespended

node kinds is shown in Figure 2. The meaning of thegiement

left-sibling , parent and right-sibling
pointers is straightforward. Theext-in-block and
prev-in-block pointers are used to link nodes
within the block. children pointers are used for

referencing the children nodes. These pointers arelement.

pointers to the first children by the descriptivehema,
but not the pointers to ‘all’ children. This idealps us
to achieve the fixed size descriptors in the blotke

label field contains a label ohumbering scheme

constructor The suspended element
constructor does not perform deep copy of the aointe
of the constructed element but rather stores atpoito
it. The copy is performed on demand when some
operation gets into the content of the constructed
Using suspended element constructor is
effective when the result of the constructor is tkeal
by operations that do not analyze the content of
elements.

The research [14] of our colleagues allows us to

Numbering scheme is used for operations based onlaim that for a wide class of XQuery queries therid

notion of document order [2].

be no deep copies at all. Most XQuery queries can b

The data organization presented has the followingewritten in such a way that above the element
advantages. First, Descriptive schema servers as awnstructors in the execution plan there will be no
universal structure index for a wide class of XPathoperations that analyze the content of elements.

queries. Having the querfiibrary/booki/title

we can simply evaluate this query on the descriptiv 4-2 Combining Lazy and Strict Semantics
schema and get access to blocks with data we neegh Section 2 we have mentioned that we adapted the

Note that we read blocks that contains only theadae

iterative query execution model to XQuery language.

need and nothing more. As the result we minimize th The iterative model is highly suitable for query

number of blocks accessed. Second, direct poirteawa
us passing from one node to its neighbours almost f
free (if the neighbours are in memory buffers), atis
important for effective XQuery implementation.

languages because it avoids unnecessary data
materialization and deals with the intermediateuttss
effectively. But keeping in mind that XQuery is a
functional language, the iterative model can bearegd

Besides the main idea of data representation givergs an implementation of lazy semantics. On the othe

there is a number of minor ideas and developmedmds t
we would like to emphasize. For complete descriptio
see [12], [13].

hand, it is generally accepted that computation
efficiency of implementation of strict semanticsr fa
programming language is higher comparing with

Not to restrict the size the documents beingimplementation of lazy semantics for this languags.

processed with the size of the virtual address spae

far as XQuery is considered as a general-purpose

have developed our own layered virtual address espacprogramming language [15] that can be used for

(LVAS). The size of the pointer in LVAS is 64 bitsp
we can handle really huge documents.

expressing application logic, implementing lazy
semantics only has bad impact on overall executor

To support updates efficiently we have made aperformance. To let the XQuery implementation be
number of design decisions. First, we have made thefficient for both query and application logic pessing
implementation of numbering scheme based on stfingsye combine these two evaluation models. We are

which allows us to avoid XML tree reconstruction
because of lack of free labels (we exploit the idkat
for every two stringstrl andstr2 such asstrl <

str2 there exist a stringtr for which strl < str

working at the XQuery executor, which keeps tradk o
amounts of data being processed and automatically
switches from the lazy to strict modes and viceszeat
run-time.

< str2). Second, we have achieved node descriptors The query evaluation starts in the lazy mode having

to be of a fixed size. It simplifies managementfode

the execution plan constructed. The overheads ef th

space in block. And third, we have introduced thelazy model strongly correlates with a number of
indirection table for parent pointers to avoid massfunction calls made during the evaluation procelse

updates.

4 Query Evaluation

In this section we would like to concentrate on X&pu
specific tasks that have great influence on thergue
processing performance.

more function calls are made, the more copies of
function bodies are performed. The goal is to fitha
tradeoff between the copying of function body ahe t
materializing of intermediate results of function’s
operations. The mechanism is as follows. Every
function call is a reason to switch to strict modiehe
sizes of arguments are relatively small. Vice vetbe

large input sequence for any physical operatiorthie http://www.w3.org/TR/2003/WD-xquery-

strict mode is a subject to switch this operatianthe 20031112/

lazy mode. [3] XSL Transformations (XSLT) Version 2.0, W3C
Working Draft, 12 November 2003,
http://www.w3.0rg/TR/2003/WD-xsIt20-
20031112/

] Antipin, K., Fomichev, A., Grinev, M., Kuznetsp
S., Novak, L., Pleshachkov, P., Rekouts M. and

5 Physical Optimization

Data structures presented in the Section 3 givesimgi 4
for alternative ways of processing queries. Let us

consider the following example: /library/ Shiryaev, D.: Efficient Virtual Data Integration
book[issue/year=2004]/title . The first Based on XML, Proceedings of ADBIS 2003
strategy of evaluation of this query is to select[5] Sedna native XML DBMS
/library/book elements using the descriptive http://modis.ispras.ru/Development/sedna.htm
schema, then apply the predicate and the rest ef th[6] Tian, F., DeWit, D., Chen, J., Zhang, C.: The
query using pointers in data. The second strategyi Design and Performance Evaluation of Alternative
execute query /library/book/issue/year/ XML Storage Strategies. SIGMOD Record 31(1):
text() and then to apply the predicate (we selectonly ~ 5-10 (2002).
those nodes, for which the text is equal to 20@4)d at [7] Li, Q., Moon, B.: Indexing and Querying XML
last, to apply../...../title to the result of the Data for Regular Path Expressions, Proceedings of
previous step. The idea is that we select blockshih the 27th VLDB Conference, Roma, Italy, 2001.
the predicate applies on the first step omittingdls [8] Fiebig, T., Helmer, S., Kanne, C.-C., Moerkatte
with book elements. Then we apply the predicateahhi G., Neumann, J., Schiele, R., Westmann, T.:
potentially cuts off lots of data and then go ug tkML Anatomy of a native XML base management
hierarchy to obtain the final result. system, The VLDB Journal, Volume 11, Issue 4.
Numbering scheme also adds a number of strategie®] McHugh, J., Abiteboul, S., Goldman, R., Quass,
for query evaluation. Let us consider the following ~ D., Widom, J.: Lore: A Database Management
query: I*/book[author="Date"}/issue System for Semistructured Data. SIGMOD Record,
[year=2004]/publisher . Besides the strategies 26(3):54-66, September 1997.

given above we can use numbering scheme. First, wbtO]L€ela, K., Haritsa, J.: SphinX: Schema-conssio
execute/library/book/[author="Date"] and XML Indexing, Technical Report, TR-2001-04,
llibrary/book/issue[year=2004] queries as DSL/SERC http://dsl.serc.iisc.ernet.in/pub/TR/TR-

was shown above. On the second step we filter th?ll]é?}?lle_r?lin de, Grohe, M., Koch, C.: Path Quedas
obtained elementssue with the help of numbering o P e

- Compressed XML, Proceedings of the 29th VLDB
scheme by determining ancestor-descendant

i i Conference, Germany, 2003.
relationship between them and the selectedok [12] Fomichev, A GrinevyM Kuznetsov. S.-
elements. A » M., , S.

,) Descriptive Schema Driven XML Storage,
The examples of accessing to data given above g,pmitted at ADBIS 2004.
demonstrate the richness of the strategy spaceldita

;) X ; ; [13]Grinev, M. et al: Sedna: A Native XML DBMS,
representation described in Section 2. A priory, we

cannot prove that one strategy is better than ttiemn
So, the optimizer should make a decision based o
statistics which strategy is the best one. The awuik
planning to work it through in the nearest future.

6 Conclusion and Future Work

In this paper we described three directions of the
author's current work: XML data organization,
XPath/XQuery query evaluation and physical
optimization. The first direction is the basis ftre rest

ones and is very well elaborated and implemented.

Query evaluation and physical optimization are the
subjects for future work.

References

[1] XML Path Language (XPath) 2.0, W3C Working
Draft, 12 November 2003,
http://www.w3.0rg/TR/2003/WD-xpath20-
20031112/

[2] XQuery 1.0: An XML Query Language, W3C
Working Draft, 12 November 2003,

rL14]

Submitted at XIME-P 2004.

Grinev, M., Pleshachkov, P.: Rewriting-based
Optimization for XQuery Transformational
Queries, Submitted at VLDB 2004. Available at
WWW.ispras.ru/~grinev

[15]Fernandez, M., Simeon, J.: Growing XQuery.

ECOOP 2003: 405-430.

