
XML Storing and Processing Techniques

© Andrey Fomichev

Institute for System Programming of the Russian Academy of Sciences,
Moscow State University

fomichev@ispras.ru
Ph.D. Advisor S. D. Kuznetsov

Abstract

This paper gives an overview of the current
research activities of the author in the area of
XML data management. It sketches the
following topics of interest of the author: XML
data organization methods, query evaluation
model for XQuery and physical optimization
of XPath and XQuery queries. The paper
presents author’s current results in these areas
and outlines the plan for future work.

1 Introduction

There is no doubt that XML has already gained ground
as a widespread format for information exchange. With
significant growth of amounts of XML data being
transmitted industry needs systems dealing with huge
XML documents in efficient way. To be successful such
systems should have strong physical layer, which can
serve as a basis for the full-featured native XML
DBMSs that satisfies any user need.

Under the term of physical layer we understand the
following: data representation in secondary and main
memory, memory management, query evaluation
facilities and physical query optimization (i.e.
optimization, which depends on the knowledge about
data and data structures). Summing up the experience of
a number of research papers, industry needs and our
own experience, we would like to outline the following
requirements to physical layer:
�� Support for large XML documents (much more

than 1Gb);
�� Efficient support for data updates;
�� Efficient access to data by regular path expressions

such as XPath [1] queries;
�� Fast execution of queries formulated in high-level

query languages such as XQuery [2], XSLT [3].
This paper describes the effort of the author in

solving the problems discussed. The results presented
were achieved during the work under the following
projects: BizQuery [4] — virtual data integration
system and Sedna [5] — native full-featured XML

DBMS. Both systems were built from scratch with the
goal to support XML storing and processing efficiently.
The query language of both systems is XQuery.

The rest of the paper is organized as follows.
Section 2 gives an outlook at related work. Section 3
presents our data representation for XML. Section 4
describes our query evaluation model. Section 5
sketches our work on physical query optimization.
Section 6 draws some future plans and concludes the
paper.

2 Related Work

We start with the description of related work
concerning XML storage systems that concentrate on
data organization for XML (which also includes the
problems of efficient regular path queries processing).
Then we outline what is done in the area of XQuery
processing.

The problem of storing and processing XML
documents efficiently has been admitted by the database
community as a challenge and caused high research
activity in this field. Historically, the first wave of
research was adopting relational DBMSs for storing
XML. The whole paper is not enough for detailed
description of work that has been done, so we can only
recommend a summary [6]. But the result of this
research consists in principle constraints of pure
relational DBMS to handle XML documents efficiently.
Actually, XML documents are stored in relational
systems either as atomic entities such as BLOBs or
being decomposed into relations. The first way of
storing cannot guaranty high performance of query
evaluation because we need to extract the whole
document from database. The second way leads to a
great number of resource consuming joins to compose
result.

Understanding drawbacks of using relational DBMSs
for storing XML caused high activity in development of
native XML DBMSs, which would not be straitened by
any existing infrastructure. Not pretending to give the
complete classification we would like to underline the
essential characteristics of these systems. The first
group consists of the systems that decompose XML
documents at the node level like in case of using
relational DBMSs, but make an accent on efficient

Proceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2004

reconstruction of XML documents (reconstruction is the
inverse operation for decomposition). The key to this
problem lies in efficient determination of parent-child
and ancestor-descendent relationships between nodes.
For that reason the notion of numbering scheme is
introduced. The reconstruction of XML is performed by
special join operations (structural joins or containment
joins) with the help of the numbering scheme. Usually it
is insufficient to have only a numbering scheme and
such systems have a set of indexes to get quick access
to nodes by name and to avoid tree traversal (because
tree traversal leads to a number of structural joins).
Most papers, which play around that idea, pay little
attention to storage system and updates, but rather
concentrate on efficient numbering scheme
implementation and optimization of structural joins. An
example of such systems is XISS [7].

Native XML systems, that make up the second
group, work on placement of an XML document (which
is essentially a tree) into a number of secondary
memory blocks. In this case an XML document is
represented as a number of nodes, which are somehow
connected with each other by references, and the task is
to distribute these nodes among the blocks to satisfy
some requirements. For instance, the requirement may
consist in minimizing the number of blocks used or in
organizing blocks in a balanced tree, so any leaf of the
XML tree can be accessed by reading a small fixed
number of blocks (usually 2 or 3). A drawback of such
approach is that it requires the resource consuming tree
traversal operation for path queries, so some indexes
should be introduced to speed up query execution. An
example of such systems is Natix [8].

The third group of native XML DBMSs is the most
promising from our point of view. Their main
characteristic is that they use descriptive schema (or
data guide, which is nearly the same) of XML
document. Descriptive schema is defined as follows:
every path of the document has exactly one path in the
descriptive schema, and every path of the descriptive
schema is a path of the document.

The earliest work on exploiting descriptive schema
for XML data management, as far as we know, is the
Lore project [9]. Their data guide was primarily used
for query optimization. SphinX [10] system uses
descriptive schema for organizing indexes on XML
documents. We appreciate this work and think that our
approach is closer to theirs than to any other. But they
concentrate on indexing XML and do not discuss
storage system and updates at all. One of the latest
works on compressing XML [11] also takes into
account the advantages of descriptive schema.
Compressing skeleton that presents the structure part of
an XML document they get a variant of data guide,
which takes little memory and speeds up query
execution.
But to the best of our knowledge there is no any native
full-featured XML storage system built on the
principles of the third group, which not only introduces
indexes for XML, but also takes into account how XML
is stored in secondary memory and how many I/O

operations are performed for queries and updates. In our
work we explore this idea and try to apply the
descriptive schema to the XML storage organization.

In contrast with the XML storing methods, XML
query processing is not very well elaborated. The
developers have been concentrating on the support for
full XQuery rather than on sophisticated methods of
XQuery implementation. We would like to mark out
only an effort made to bring the iterative query
execution model to the XML world from the relational
one. Several implementations of this model appeared
nearly simultaneously, so it hard to say who was the
first. We made it in [4].

3 Data Organization

Designing data organization, we would like it to be
efficient for both queries and updates. As the result, the
following main decisions were maid. First, we have
developed a descriptive schema driven storage strategy
which consists in clustering nodes of an XML
document according to their positions in the descriptive
schema of the document. Second, direct pointers are
used to represent relationships between nodes of an
XML document such as parent, child, and sibling
relationships. Because of lack of space we do omit lots
of details here and present main ideas only. More
information can be found in [12], [13].

<library>
 <book>
 <title>Foundations of Databases</title>
 <author>Abiteboul</author>
 <author>Hull</author>
 <author>Vianu</author>
 </book>
 <book>
 <title>An Introduction to Database
 Systems</title>
 <author>Date</author>
 <issue>
 <publisher>Addison-Wesley</publisher>
 <year>2004</year>
 </issue>
 </book>
 . . .
 <paper>
 <title>A Relational Model for
 Large Shared Data Banks</title>
 <author>Codd</author>
 </paper>
</library>

element
library

element
book

element
title

element
author

element
issue

element
publisher

element
paper

element
title

element
author

textelement
year

texttext text

text text

Figure 1. Data Organization

The overall principles of the data organization are
illustrated in Figure 1. The central component is the
descriptive schema that is presented as a tree of schema
nodes. Each schema node is labeled with an XML node
kind name (e.g. element, attribute, text, etc.) and has a
pointer to data blocks where nodes corresponding to the
schema node are stored. Some schema nodes depending
on their node kinds are also labeled with names. Data

blocks belonging to one schema node are linked via
pointers into a bidirectional list.

label
. . .

children

right-siblingleft-sibling

next-in-blockprev-in-block

parent

Figure 2. Common structure of node descriptor

The common structure of node descriptors for all
node kinds is shown in Figure 2. The meaning of the
left-sibling , parent and right-sibling
pointers is straightforward. The next-in-block and
prev-in-block pointers are used to link nodes
within the block. children pointers are used for
referencing the children nodes. These pointers are
pointers to the first children by the descriptive schema,
but not the pointers to ‘all’ children. This idea helps us
to achieve the fixed size descriptors in the block. The
label field contains a label of numbering scheme.
Numbering scheme is used for operations based on
notion of document order [2].

The data organization presented has the following
advantages. First, Descriptive schema servers as an
universal structure index for a wide class of XPath
queries. Having the query /library/book/title
we can simply evaluate this query on the descriptive
schema and get access to blocks with data we need.
Note that we read blocks that contains only the data we
need and nothing more. As the result we minimize the
number of blocks accessed. Second, direct pointer allow
us passing from one node to its neighbours almost for
free (if the neighbours are in memory buffers), which is
important for effective XQuery implementation.

Besides the main idea of data representation given,
there is a number of minor ideas and developments that
we would like to emphasize. For complete description
see [12], [13].

Not to restrict the size the documents being
processed with the size of the virtual address space, we
have developed our own layered virtual address space
(LVAS). The size of the pointer in LVAS is 64 bits, so
we can handle really huge documents.

To support updates efficiently we have made a
number of design decisions. First, we have made the
implementation of numbering scheme based on strings,
which allows us to avoid XML tree reconstruction
because of lack of free labels (we exploit the idea that
for every two strings str1 and str2 such as str1 <
str2 there exist a string str for which str1 < str
< str2). Second, we have achieved node descriptors
to be of a fixed size. It simplifies management of free
space in block. And third, we have introduced the
indirection table for parent pointers to avoid mass
updates.

4 Query Evaluation

In this section we would like to concentrate on XQuery
specific tasks that have great influence on the query
processing performance.

4.1 Suspended Element Constructors

Besides the well-known heavy operations like joins,
sorting and grouping, XQuery has a specific resource
consuming operation — XML element constructor. The
construction of an XML element requires deep copy of
its content that leads to essential overheads. The
overheads grow significantly when a query consists of a
number of nested element constructors. Understanding
the importance of the problem, we propose suspended
element constructor. The suspended element
constructor does not perform deep copy of the content
of the constructed element but rather stores a pointer to
it. The copy is performed on demand when some
operation gets into the content of the constructed
element. Using suspended element constructor is
effective when the result of the constructor is handled
by operations that do not analyze the content of
elements.

The research [14] of our colleagues allows us to
claim that for a wide class of XQuery queries there will
be no deep copies at all. Most XQuery queries can be
rewritten in such a way that above the element
constructors in the execution plan there will be no
operations that analyze the content of elements.

4.2 Combining Lazy and Strict Semantics

In Section 2 we have mentioned that we adapted the
iterative query execution model to XQuery language.
The iterative model is highly suitable for query
languages because it avoids unnecessary data
materialization and deals with the intermediate results
effectively. But keeping in mind that XQuery is a
functional language, the iterative model can be regarded
as an implementation of lazy semantics. On the other
hand, it is generally accepted that computation
efficiency of implementation of strict semantics for a
programming language is higher comparing with
implementation of lazy semantics for this language. As
far as XQuery is considered as a general-purpose
programming language [15] that can be used for
expressing application logic, implementing lazy
semantics only has bad impact on overall executor
performance. To let the XQuery implementation be
efficient for both query and application logic processing
we combine these two evaluation models. We are
working at the XQuery executor, which keeps track of
amounts of data being processed and automatically
switches from the lazy to strict modes and vice versa at
run-time.

The query evaluation starts in the lazy mode having
the execution plan constructed. The overheads of the
lazy model strongly correlates with a number of
function calls made during the evaluation process. The
more function calls are made, the more copies of
function bodies are performed. The goal is to find the
tradeoff between the copying of function body and the
materializing of intermediate results of function’s
operations. The mechanism is as follows. Every
function call is a reason to switch to strict mode if the
sizes of arguments are relatively small. Vice versa, the

large input sequence for any physical operation in the
strict mode is a subject to switch this operation to the
lazy mode.

5 Physical Optimization

Data structures presented in the Section 3 gives ground
for alternative ways of processing queries. Let us
consider the following example: /library/
book[issue/year=2004]/title . The first
strategy of evaluation of this query is to select
/library/book elements using the descriptive
schema, then apply the predicate and the rest of the
query using pointers in data. The second strategy is to
execute query /library/book/issue/year/
text() and then to apply the predicate (we select only
those nodes, for which the text is equal to 2004), and at
last, to apply ../../../title to the result of the
previous step. The idea is that we select blocks to which
the predicate applies on the first step omitting blocks
with book elements. Then we apply the predicate which
potentially cuts off lots of data and then go up the XML
hierarchy to obtain the final result.

Numbering scheme also adds a number of strategies
for query evaluation. Let us consider the following
query: /*/book[author=”Date”]/issue
[year=2004]/publisher . Besides the strategies
given above we can use numbering scheme. First, we
execute /library/book/[author=”Date”] and
/library/book/issue[year=2004] queries as
was shown above. On the second step we filter the
obtained elements issue with the help of numbering
scheme by determining ancestor-descendant
relationship between them and the selected book
elements.

The examples of accessing to data given above
demonstrate the richness of the strategy space for data
representation described in Section 2. A priory, we
cannot prove that one strategy is better than the other.
So, the optimizer should make a decision based on
statistics which strategy is the best one. The author is
planning to work it through in the nearest future.

6 Conclusion and Future Work

In this paper we described three directions of the
author’s current work: XML data organization,
XPath/XQuery query evaluation and physical
optimization. The first direction is the basis for the rest
ones and is very well elaborated and implemented.
Query evaluation and physical optimization are the
subjects for future work.

References

[1] XML Path Language (XPath) 2.0, W3C Working
Draft, 12 November 2003,
http://www.w3.org/TR/2003/WD-xpath20-
20031112/.

[2] XQuery 1.0: An XML Query Language, W3C
Working Draft, 12 November 2003,

http://www.w3.org/TR/2003/WD-xquery-
20031112/.

[3] XSL Transformations (XSLT) Version 2.0, W3C
Working Draft, 12 November 2003,
http://www.w3.org/TR/2003/WD-xslt20-
20031112/.

[4] Antipin, K., Fomichev, A., Grinev, M., Kuznetsov,
S., Novak, L., Pleshachkov, P., Rekouts M. and
Shiryaev, D.: Efficient Virtual Data Integration
Based on XML, Proceedings of ADBIS 2003

[5] Sedna native XML DBMS
http://modis.ispras.ru/Development/sedna.htm

[6] Tian, F., DeWit, D., Chen, J., Zhang, C.: The
Design and Performance Evaluation of Alternative
XML Storage Strategies. SIGMOD Record 31(1):
5-10 (2002).

[7] Li, Q., Moon, B.: Indexing and Querying XML
Data for Regular Path Expressions, Proceedings of
the 27th VLDB Conference, Roma, Italy, 2001.

[8] Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte,
G., Neumann, J., Schiele, R., Westmann, T.:
Anatomy of a native XML base management
system, The VLDB Journal, Volume 11, Issue 4.

[9] McHugh, J., Abiteboul, S., Goldman, R., Quass,
D., Widom, J.: Lore: A Database Management
System for Semistructured Data. SIGMOD Record,
26(3):54-66, September 1997.

[10] Leela, K., Haritsa, J.: SphinX: Schema-conscious
XML Indexing, Technical Report, TR-2001-04,
DSL/SERC, http://dsl.serc.iisc.ernet.in/pub/TR/TR-
2001-04.pdf.

[11] Buneman, P., Grohe, M., Koch, C.: Path Queries on
Compressed XML, Proceedings of the 29th VLDB
Conference, Germany, 2003.

[12] Fomichev, A., Grinev, M., Kuznetsov, S.:
Descriptive Schema Driven XML Storage,
Submitted at ADBIS 2004.

[13] Grinev, M. et al: Sedna: A Native XML DBMS,
Submitted at XIME-P 2004.

[14] Grinev, M., Pleshachkov, P.: Rewriting-based
Optimization for XQuery Transformational
Queries, Submitted at VLDB 2004. Available at
www.ispras.ru/~grinev.

[15] Fernandez, M., Simeon, J.: Growing XQuery.
ECOOP 2003: 405-430.

