
XQuery for Streams (XQS):
XQuery Streaming Extensions Design

Ivan Shcheklein

Moscow State University
shcheklein@mail.ru

Andrey Fomichev

Institute for System Programming of the
Russian Academy of Sciences

fomichev@ispras.ru

Abstract

In this paper we introduce a new language for
the XML streams querying – XQuery for
Streams or XQS for short. Its primary purpose
is to make possible to query potentially
unbounded XML streams using the whole
expressive power of the XQuery language
which is the standard for the XML data
manipulation today.
Proposed XQS language extends XQuery with
sliding windows and special streaming
operators. Sliding windows is an essential and
powerful technique proven by the relational
data streams management systems that can be
applied to the XML streams querying as well.
In this paper we describe syntax and semantics
of the XQS language.

1 Introduction
Today a considerable part of research papers is focused
on the XML streams and continuous queries over them
[1, 2, 3]. In our opinion, there are a number of reasons
of such intense interest. No doubt that the main cause is
the growing force of XML positions as a universal data
presentation and exchange format. By virtue of its
comparative simplicity and ease of human and machine
understanding, XML is used today everywhere; starting
with the information exchange between different
applications or services (using SOAP [4] for example)
and up to the data formats for sport news [5] and stock
prices providers [6].

Second important reason is the growing data streams
querying requirement in general. Most modern
applications need efficient facilities for storing,
processing and analyzing data, which arrives from the
network. For instance, such information can arrive from
Web Services.

In contrast to persistent data, data streams may have
behavior that interferes with an effective work with
them using modern database management systems

(DBMS). In general, we can consider data stream as
potentially unbounded, continually arriving information
[7]. Data streams considered in this work are supposed
to be homogeneous. It means informally that there is
only one data format (exactly XML) that is used to
present streamed information. Also we assume that one
or multiple parameters of the stream can vary with time
(e.g., incoming rate can differ).

In this paper we introduce a new language for the
XML streams querying – XQuery for Streams (XQS).
There are two important goals, which we kept in mind
during the development of the XQS language:

• Queries must be well-understood and
semantically clear.

• Language must provide powerful and effective
facilities for unbounded XML streams
processing.

1.1 Our Contribution

We believe that goals pointed previously have been
successfully achieved during our research and suppose
that the main contributions of this paper are the
following:

• We distinguish and provide an overview of
two approaches to the XML streams
processing. Point out strengths and weaknesses
of these methods.

• We formalize the XML stream notion as an
unbounded sequence of items defined in the
XQuery language data model.

• We propose XQS language for processing
unbounded XML streams. Our language is
based on XQuery and extends it with sliding
windows operators. Similar approach was
proposed heretofore and successfully
implemented in CQL language [17], supported
by the relational data stream management
system STREAM [18].

• We believe that examples of XQS queries over
XML streams within this paper show that
many techniques proven by the relational data
streams management systems (e.g., sliding

Proceedings of the Spring Young Researcher's
Colloquium on Database and Information Systems
SYRCoDIS, Moscow, Russia, 2006

<bid>
 <itemno> … </itemno>
 <bidder> … </bidder>
 <bid-amount> … </bid-amount>
 <bid-date> … </bid-date>

</bid>

Figure 1: ‘bid’ node structure.

<item>

 <itemno> … </itemno>
 <seller> … </seller>
 <description> … </description>
 <reserve-price> … </reserve-price>
 <end-date> … </end-date>

</item>

Figure 2: ‘item’ node structure.

for $i in stream(“items”)//item,
 $b in stream(“bids”)//bid
where $i/itemno = $b/itemno
return
 <description>
 {$i/description, $b/bidno}
 </description>

Query 1: Simple example of the two streams join.

windows) can be successfully incorporated
into the XML streams processing.

1.2 Paper Outline

The rest of the paper is organized as follows. Within the
next section we consider existing approaches and key
concepts in XML streams querying. In Section 3 we
survey related work. Section 4 defines data model of
our language. Primarily, the notion of the XML streams
is discussed there. Section 5 proposes the XQS
language and gives its detailed description. In this
section we provide syntax and usage examples of the
language’s constructs. And finally, Section 6 concludes
and points out possible directions of our future work.

2 XML Streams Querying Principles
Queries over continuous data streams have much in
common with queries in traditional database
management systems. However, there is one important
distinction related to data streams, namely, queries over
continuous streams are evaluated continuously as
information continues to arrive. Such queries are called
continuous queries [7].

 Many areas of the data management can benefit
from employing XML streams processing and querying.
Among them are:

• efficient transformation of sequentially
accessed XML documents (e.g., XSLT
processors that “on the fly” convert XML,
arrived from the web, into XHTML [2]);

• data integration from slow and distributed
sources [8];

• streams filtering according to complex queries
before distribution to subscribers or, simply,
personalized content delivery [3];

So far as we know, there are two approaches to
querying XML streams – pure automata approach [1, 2,
3] and combined automata and algebraic approach [9].
Both approaches use essential XML streams data
representation as streams of tokens and represent
queries as state machines. But there is important
distinction between them. Each query in the second
approach initially is represented in algebraic form, so as
in the most relational databases. It allows making more
efficient query optimization.

Although, systems based on one of these methods
solve the problem of the XML streams processing well,
both approaches have some constraints. In the first
approach developers face with hard balance between the
expressive power of the query system can handle and
the manageability of queries presentation constructs.
Even if you write simple filtering queries expressed in
limited XPath you can be confronted with huge number
of states [26] or transitions [3] in the final query
presentation. Moreover, it is hard to make effective
optimization that allows multiple queries in the form of
state machines to be simultaneously evaluated against
the same stream, the crucial feature for the SAX-like
XML streams processing [27, 11].

In order to solve these problems developers of the
Raindrop system [9] proposed second approach, which
we called combined above. They use Rainbow [13] (the
XQuery engine for persistent inputs) for initial algebraic
plan construction and query optimization. Then this
plan is rewritten in the state machines style to process
tokenized streams.

Though, described problems seem to be easier with
such combined framework, it has own restrictions. Just
as the first approach it is not well suitable to process
one or more complex continuous queries over multiple
unbounded input streams.

One of the hardest problems in querying high-rate
continuous streams with powerful XQuery-like
language is that we are not able to store all incoming
information – simply, we don’t have unbounded
secondary storage. Hence, we have problems with the
blocking operators processing, e.g. aggregation or join.
In addition, if streams are not being saved, we won’t be
able to query historical data, i.e. arrived earlier.

These challenges of limited memory and blocking
operators processing over unbounded streams were
discussed previously in the context of the relational
streams [7, 14], but never for the XML streams so far as
we know.

To illustrate this problem in context of the XML
streams let us informally consider simple join example
(shown in Query 1) over two hypothetical streams from
online auction (nodes structure of the “items” and
“bids” streams are shown in Figure 2 and in Figure 1
respectively). In this query stream function is used to
get access to the streams and retrieve data that is being
processed by XQuery FLWR operator.

Even so simple example gives us the idea of this
challenge – we are not able to save all items and bids to

perform join afterwards. Moreover, if blocking version
of join operation is used then we will never get the
answer to this query.

2.1 Sliding Windows

In the case of the relational data streams management
systems there are two solutions that help to solve these
problems. Firstly, we can use non-blocking versions of
operators, e.g. XJoin [16], to get results at the same
time as new information continues to arrive. It is
necessary to notice, that there are no problems with
blocking operators in querying streams using state
machines. Nevertheless, in most systems, exploiting
this approach, we aren’t able to run even such simple
query as we considered above.

Secondly, to solve the main problem of the
insufficient space, which we have pointed out above,
special streaming operators, called sliding windows [7,
14] are used. Sliding windows allow producing
approximate answer to a query by evaluating this query
not over the entire stream, but rather only over one
specially described part of this stream. For example,
only data, arrived within the last day, can be considered
in producing query answers.

Any query, using sliding windows to approximate
streams, is evaluated by the system just in the same way
as a simple query over persistent documents, when
system has strictly defined bounded data to work with.
Nevertheless, query is still considered as continuous,
and system restarts it every time after the finite part of
the arriving information (i.e., streams, bounded by the
windows and possible persistent data) has been
processed. It is obvious, that each “restart” includes
windows’ updating. Some old data are possible to be
dropped from the window and recently arrived to be
attached to the window.

As a rule, systems which can handle streams, using
sliding windows, propose extensions to query language
that permit at least to specify type and size of the
window [18, 14]. SQL is usually used as a base
language in the case of the relational streams.

For example, let us consider simple CQL query
(shown in Query 2), which is borrowed from [17] (CQL
or Continuous Query Language, is supported by the
STREAM system [18]):

SELECT DISTINCT vehicleId
FROM PositionSpeedStream

 [RANGE 30 Seconds]

Query 2: CQL example with sliding windows.

This query is composed from a sliding window

operator, followed by an operator that performs
projection and duplicate-elimination. The output
relation of this query contains, at any time instant, the
set of vehicles, transmitted a position-speed
measurement within the last 30 seconds.

Incorporating sliding windows in the data streams
processing is an essential method for data streams
approximation that has several advantages. Firstly, it is

well-defined and easily understood. The semantics of
such approximation is clear, so that users of the system
can be sure that they understand what result means.
Most importantly, it accentuates recent information,
which in the most cases of real-world applications is
more important than old data. Moreover, for many such
applications, sliding windows can be regarded not as an
approximation technique imposed due to the
impossibility of computing over all historical data, but
rather as part of the desired query semantics explicitly
expressed as part of the user’s query.

3 Related Work
Although the problem of streams management was
raised several years ago [20], there have been not so
many researches in the area of the XML streams
processing.

A number of XML processing systems have been
developed to efficiently evaluate XPath [10] queries
over streaming documents. We suppose, the XFilter
system [21] was the first to define this problem, and to
describe several evaluation techniques. It converts each
query expressed in a limited XPath into a separate
Finite State Machine (FSM); as a result it does not
exploit commonality that exists among the path
expressions. As an evolution of the XFilter system,
YFilter [3] was proposed. It is also used to evaluate
filtering queries expressed in a limited XPath, but it is
able to detect common structure navigational parts of
the queries. Approach that eliminates both common
subexpressions in the structure navigation and in the
predicates is presented in [11].

Olteanu et al. [22] describe a method which relaxes
usage restrictions on the XPath reverse axes (e.g.
parent, preceding) that usually exist in streams
processing systems. It proposes two sets of rewriting
rules that replace XPath expressions with equivalent
ones without reverse axes. Unfortunately, the first set
produces the same number of joins as there are reverse
steps in the input path and the second set has an
exponential complexity in the length of the input path.

XML streaming processor SPEX [1], based on
transducer networks (i.e. state machines with stacks),
uses some ideas of [22] to effectively evaluate complex
XPath expressions.

All previous works discuss automata approach to
XPath or limited XPath queries evaluation against XML
streams. Also there are several papers that propose
streaming execution of the XQuery language that is
more flexible and powerful. Small non-recursive subset
of XQuery is evaluated by state machines networks in
[2]. Each primitive XQuery subexpression is translated
into individual XML State Machine (XSM), optimized
and then connected in one XSM network. This approach
results in a huge number of states and transitions in
final XSM and is not appropriate for querying
potentially unbounded XML streams.

The issue of rewriting XQuery expressions (only
supported subset) to have an ability to execute them
correctly with a single pass through the dataset is

Streaming
Sequence XQuery Sequence XQuery

Sliding
Windows Operators

Special Stream
Operators

(Stream-to-XML)

(XML-to-Stream)

Figure 3: XQS Operator Classes.

discussed in [23]. Just as in [22] for XPath language, set
of transformations for XQuery and method to determine
if given XQuery query can be correctly rewritten are
proposed in [23].

Instead of using state machines for each
intermediate presentation form of the query, as in [23,
2] for example, combined, i.e. algebraic with automata,
approach was presented in Raindrop system [9]. As we
pointed above, the Rainbow persistent XQuery engine
[13] is used to optimize query on first stages of
rewriting. Moreover, in contrast to previous works,
where final query is presented usually as one state
machine, which can be used only in a “black box” style,
modularity of the query is saved on all phases of its
transformation and execution. Such method, we
suppose, is more appropriate for streaming processing.

It is important to notice that neither of the discussed
works solves the general XML streams processing
challenge, i.e., when streams are unbounded and system
supports powerful query language (XQuery, for
example). Considered papers can be divided into two
groups. Possibility of unbounded streams is explicitly or
implicitly considered in the first group, but queries can
be expressed only in restricted query languages [3, 21,
22]. On the other hand, papers from the second group
[9] consider powerful languages, but “stream” notion
there is equivalent to the sequentially accessed
document, arrived from the network, but it is not
unbounded indeed.

4 XQS Data Model
The data model that we want to define serves one
purpose. It defines all permissible input and output
values of operators and expressions in the XQS
language. “Streaming variant” of the relational data
model [7] usually is considered as extended traditional
data model. Stream in this case is presented as
potentially unbounded sequence of items, where each
item is a conventional tuple. Furthermore, usually tuples
within one stream have identical structure, i.e. they all
have the same collection of attributes. Hence, we can
informally point out that relational stream is considered
as unbounded sequence of tuples or simply unbounded
relation. Also, it is significant that this model does not
exclude conventional finite relations. For instance,

STREAM project [18] is positioned as a system that
works with streams and persistent data simultaneously.

XQS data model is based on XPath/XQuery data
model [24] that is called XDM for short. The key
concept of the XDM is a sequence – ordered collection
of zero or more items. Item can be either atomic value
or one of the seven kinds of nodes - document, element,
attribute, comment, namespace, text and processing
instruction.

The same way as relational stream is unbounded
relation, XML stream in XQS data model is considered
as sequence with one important distinction – this
sequence of items can be potentially unbounded. At the
same time it is significant to note two features. First,
XQS data model include XDM, thus we are able to
work with XML streams and persistent XML storage
simultaneously. And, second we must point out that
each item of stream is identical to item in the XDM.

For instance, we can consider streams, which are
used above on the Query 1. In the XQS data model bids
stream can be presented as one potentially unbounded
sequence of items, where each item is node ‘bid’,
shown in Figure 1. In a similar manner items stream can
be presented.

5 XQuery for Streams
As we remarked above, XQS language consists of three
parts (classes of operators). Our language structure and
mappings between the XDM and XQS data models are
outlined in Figure 3:

• Stream-to-XML class - consists of three sliding
windows operators, which perform mapping
from unbounded streaming sequences to
XQuery sequence;

• XML-to-Stream class performs reverse
mapping and allows us to explicitly create new
streams, which can be used as an answer or
reused by Stream-to-XML operators;

• XML-to-XML class is equivalent to the XQuery
language and is used to perform all required
processing over information that can be
produced by Stream-to-XML operators or
retrieved from the persistent storage;

Although, most part of the computational and
transformational expressions within the queries is

let $b := stream("bids"){range 4}
 //bid[itemno = “10”]

return avg($b/bid-amount)

Query 3: Range operator simple example.

$3

itemno=7

bid2

itemno=10

$5

bid1

$2

itemno=3

bid3

$7

itemno=10

bid4

$8

itemno=10

bid5

[itemno=10]

stream(“bids”){range 4}//bid

itemno=10

$5

bid1

$7

itemno=10

bid4

$6 avg(/bid-amount)

...
$8

itemno=8

bid6

...

Figure 4: Range operator working mechanism.

expressed using XML-to-XML class or simply XQuery
(you can see this from the examples presented in the
paper), we don’t consider this class later. XQuery
language is widely discussed and described and it is not
the direct point of this paper.

At the remainder of this section syntax and
descriptive semantics of Stream-to-XML and XML-to-
Stream classes are considered.

5.1 Stream-to-XML Operators

Any Stream-to-XML sliding window operator takes a
stream as input and produce finite sequence, which then
can be passed to XQuery expressions. Currently there
are three types of sliding windows in XQS language:
data, time and node based. Syntax of these operators is
as follows:

WindowExpr ::= “{” (TimeWindow |
 DataWindow |
 NodeWindow)
 [“,” Predicates] “}”.
TimeWindow ::= “time” Time.
DataWindow ::= “range”

 IntegerLiteral.
NodeWindow ::= “node”

 IntegerLiteral
 “,” PathExpri.

Any windowed expression can be used only in the

streaming context, which is provided by XML-to-
Stream operators (we will consider them later) and by
means of special stream($uri as xs:string)
function. It is used to retrieve a streaming context by the
name of the stream, just as fn:doc function retrieves a
persistent XML document.

5.1.1 Data-Based Sliding Windows

The simplest sliding window operator is the data-
based window (DataWindow in the grammar above). It
takes one integer required parameter (its value must be
one or greater) that defines size of the window over
stream. To illustrate how it works, let us consider a
simple example with the range operator – “for last
received 4 bids select average bid amount on the item
with itemno equal 10” (shown in Query 3).

In this query the function call stream(“bids”)
provides streaming context for the data sliding window
{range 4}, which then returns sequence consisting of
the last received 4 items from this stream (bid1,
bid2, bid3 and bid4). Afterwards this sequence is
being processed by well-known XQuery operators. Data
window working algorithm is illustrated in Figure 4.

It is obvious, that query over streaming data in most
cases would have been useless if it was evaluated in the
same way as queries over persistent data that is bounded
in contrast to potentially unbounded streams.
Conventional query over persistent storage is evaluated

i XPath, IntegerLiteral and some other non-terminals in
grammars, presented within this paper, are used in the same
meaning as in the XQuery EBNF [12].

once and deleted from the system afterwards. Therefore,
all queries with sliding windows over streams are
considered as continuous queries, which we have
described above.

With such continuous semantics query (shown in
Query 3) is being evaluated as before, until $6 is
returned. After that system slides window over stream
for one item ahead (bid2, bid3, bid4 and bid5 on the
figure) and restarts query evaluation again – and so on.

XPath expression //bid[itemno = “10”] used
in Query 3 filters sequence consisting of 4 items and
returned by windowed operator {range 4}. Thus, in
this case we have no any precise information about
items quantity in variable $b. Such semantics is
appropriate in some situations and almost useless in
many others. For instance, if query computes some
statistics it would be important condition to know and
to define exact size of information processed on given
iteration of the continuous query computation.

$3

itemno=7

bid2

itemno=10

$5

bid1

$2

itemno=3

bid3

$7

itemno=10

bid4

$8

itemno=10

bid5

stream(“bids”){range 4 [itemno = 10]}

avg(/bid-amount)

...
$8

itemno=10

bid6

...

$7

Figure 5: Range operator with predicates
working mechanism.

let $b := stream("bids")
 {range 4, [itemno = 10]}//bid
return avg($b/bid-amount)

Query 4: Range operator with predicates
simple example.

let = strea $b : m("bids"){time 1 day}
return

<statistics> {
for $i in distinct($b/itemno)
return

<item>
{$i, count($b/itemno[. = $i])}
</item> }

</statistics>

Query 5: Example of the time-based sliding
window usage.

This problem can be solved by incorporating
[Predicates] part in any windowed expression.
Syntax of predicates is just the same as in the XPath
language. With this clause every sliding window in
XQS language is executed just as before, but for one
distinction. Window in this case is made up only with
items that meet the predicates conditions.

In Figure 5 and in Query 4 illustration of sliding
window range operator with predicate and algorithm
are given. In this case the same XPath predicate,
[itemno = “10”], has quite another meaning. It is
used in this example to filter bids stream before
window generation in such a way that every time
window will consist of 4 items with itemno equals 10.

5.1.2 Time-Based Sliding Windows

Another way for streaming approximation in the
XQS language is provided by the time-based sliding
windows (TimeWindow non-terminal in the grammar).
As you can see from the grammar, this type of windows
can be defined in any query by the {time T} operator,
in which parameter T specifies time distance. Just as
execution of the next continuous query iteration begins,
system fixes current starting timeτ . Explicit parameter
T and internal, dynamically (from iteration to iteration)
changing parameter τ completely determine behavior of
the time-based sliding window operator. It selects from
the stream only items arrived into the system within the

time interval. (]ττ ,T−
We haven’t said anything about the type of

parameter T yet, because it doesn’t matter and can be
defined in any implementation-dependent way. For
instance, in our approach we use integer number so far,
which presents time interval in milliseconds. But more
complicated variants (e.g. xs:duration, defined in the
XMLSchema data types specification [25]) can be used
in the same manner.

It’s obvious, that time-based windows are almost
irreplaceable when there is need to work with the time
intervals in the query. Assume, for example, we have to
compute statistics for the bids, arrived within the last
day – “for the bids, arrived within the last day, return
<statistics> element, contained all distinct item
numbers (itemno) and quantity of the bids for each
item”. Such query is very simple to express using XQS
language constructs – as it is shown in Query 5, for
instance.

Time-based sliding windows are able to include
predicates, as before data windows were. In addition,
semantics in this case also remains just the same –
XPath predicates block filters stream before the window
construction.

But careful reader may observe that such filters
inside time-based window yield the same result as
identical predicates outside do. E.g. queries, shown in
Query 4 and in Query 3, will be the same if range
operator is replaced by time one. It happens, because in
the first place system approximates stream by strict time
interval, as we have described before. Hence, result

doesn’t depend on position of predicates indeed.
Outside or inside it is – we will have the same sequence
in both cases.

Nevertheless ability to define inside predicates for
time-based windows is not useless at all. It is enough to
realize that every window must be completely saved
into internal buffers to be recalculated during next
iteration beginning – some items of the previous
window can be dropped, some can be added. However,
inside predicates in the time-based windows case may
significantly reduce quantity of items to be saved and
can be viewed as explicit query optimization or system
ability to optimize some queries, by pushing down
predicates.

To understand this statement you can consider two
similar cases - {time T} window and {time T, P}
window, where P is some given XPath predicate. In the
first case we have sequence of items arrived within the
given time interval and all these items will be saved.
Possibly, they will be filtered later by outside predicate
P. In the second case, on the other hand, system will
save only predicate proven items from the ones, arrived
within the same time interval.

<bids>
<bid>

<itemno> … </itemno>
<bidder> … </bidder>
<bid-amount> … </bid-amount>
<bid-date> … </bid-date>

</bid>
…
<bid>

<itemno> … </itemno>
<bidder> … </bidder>
<bid-amount> … </bid-amount>
<bid-date> … </bid-date>

</bid>
…

<bids>

Figure 6: Possible individual item of the new
‘bids’ stream.

let ("bids") $b := stream

{node 4, bid}[itemno = “10”]
return avg($b/bid-amount)

Query 6: Node operator simple example.

a

b

c

Figure 7: Visualization of join operation over two streams.

5.1.3 Node-Based Sliding Windows

The last sliding window operator, supported in XQS
language is node-based sliding window (according to
the NodeWindow non-terminal in the grammar). This
window permits to take into consideration irregular
nature of XML data.

Let’s consider more complicated version of the
bids stream. Single item of this new stream is shown
on the Figure 6. The only distinction from the first
version lies in the ability of every stream item to
include several bids. But we are still interesting in
working with precise number of the bid nodes, which
is impossible or, at least, very hard to do with sliding
windows previously described.

The node-based operator is able to solve this
problem. It depends on two required parameters –
positive integer number and XPath expression define
size and required content of the window respectively.
For instance, node-based window, shown in Query 6,
selects exactly 4 bids (as before) from the new version
of the bids stream.

Mechanism of the window construction in this case
is similar to the one of the data window with predicates.
It is composed of three steps. Firstly, given XPath
expression is evaluated on every received item. Second
step filters results of the first step over optional
predicates. And the last step selects required amount of

items. So, we are able to have a window with exact size
and content.

5.2 XML-to-Stream Operators

Since every previously described XQS example over
streams is considered and evaluated as continuous
query, than its result (in the iterations aggregation) can
be considered as a stream too. The straightforward
approach is to consider result of the continuous query as
a stream obtained by concatenation of every iteration
result. Nevertheless, such method has some obvious
shortcomings that can be reduced only by possibility of
the explicit output stream definition with required
characteristics.

In order to illustrate the problem let’s consider
example that shows that straightforward concatenation
can be useless in some cases. Example which performs
join over two streams is shown in Query 7 (a). It
includes two simple data-based windows that ‘slide’
(i.e. oldest item is dropped from the window’s buffer
and next received is inserted into it) simultaneously
before the iteration’s beginning.

Such evaluation and results’ composing strategies
lead to the possible existence of duplicate items in the
output stream. Example of duplicates is shown in Figure
7 (a, b), which visualizes join of the two integer
streams.

To sum up, XML-to-Stream operators were added

Query 7: Query example of the two streams join.

a – with potential duplicates
for $i in stream(“items” {range 4})
for $b in stream(“bids”){range 4}
where $i/itemno = $b/itemno
return <bid-with-info>
 <description>{ $i/description }
 </description>
 <bid-amount>{ $b/bid-amount }
 </bid-amount>
 </bid-with-info>

b – with duplicates elimination
istream(

for $i in stream(“items”){range 4}
for $b in stream(“bids”){range 4}
where $i/itemno = $b/itemno
return <bid-with-info>
 <description>{ $i/description }
 </description>
 <bid-amount>{ $b/bid-amount }

 </bid-amount>
 </bid-with-info>)

into XQS for a number of reasons that we have pointed
briefly above:

• explicit output parameters definition (such as
the duplicates absence, for example);

• explicit streaming and non-streaming context
and operators separation;

• streaming and sliding windows operators’
reusability inside queries.

There are two streaming operators, supported by
XQS language – istream, which allows performing
duplicates elimination, and fstream operator, which
presents straightforward concatenation semantics
described at the begin of this section. First is shown in
Query 7 (b). It presents the same query, but in this case
we can be fully confident in duplicate absence within
the output stream.

6 Conclusion and Future Work
In this paper we have proposed a new language for the
XML streams processing. Sliding windows and special
streaming operators combined with well-known and
powerful XQuery make XQS a powerful and very
convenient language for querying unbounded XML
streams with unpredictable behaviour. We have
presented syntax, semantics and usage examples of new
operations within this work.

Extensions to XQuery, incorporated by the XQS
language, were successfully prototyped in the Sedna
XML database system [15]. This implementation is
based now on tuple-based algebraic approach, used in
the Sedna system. We suppose it can be suitable almost
for all streaming processing scenarios, especially for
document-centric XML data. In future work we are
planning to analyse capability of the XQS
implementation with combined approach, described in
this paper.

References

[1] D. Olteanu, T. Furche, F. Bry. Evaluating Complex
Queries against XML Streams with Polynomial
Combined Complexity. Technical Report,
Computer Science Institute, Munich, German, 2003

[2] B. Ludascher, P. Mukhopadhyay, Y.
Papakonstantinou. A Transducer Based XML
Query Processor. Proceedings of the 28th VLDB
Conference, China, 2002

[3] Y. Diao, M. Altinel, M. Franklin, H. Zhang, P.
Fischer. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. ACM
Transactions on Database Systems, 28(4):467—
516, December 2003

[4] SOAP Version 1.2 Part 1: Messaging Framework.
W3C Recommendation, 24 June 2003,
www.w3.org/TR/2003/REC-soap12-part1-
20030624

[5] SportsML – Sports Markup Language. The
International Press Telecommunications Council
(IPTC), www.iptc.org

[6] Delayed Stock Quote. Web-service,
www.xmethods.com

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, J.
Widom. Models and Issues in Data Stream
Systems. Invited paper in Proceedings of the 2002
ACM Symposium on PODS, June 2002

[8] A. Levy, Z. Ives, D. Weld, Efficient Evaluation of
Regular Path Expressions on Streaming XML Data,
Technical report, University of Washington, 2000.

[9] H. Su, E. A. Rundensteiner, M. Mani. Semantic
Query Optimization in an Automata-Algebra
Combined XQuery Engine over XML Streams. In
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

[10] XML Path Language (XPath) Version 1.0. W3C
Recommendation, 16 November 1999,
http://www.w3.org/TR/xpath.html

[11] A. Gupta, D. Suciu. Stream Processing of XPath
Queries with Predicates. SIGMOD, San Diego,
June 2003.

[12] XQuery 1.0: An XML Query Language. W3C
Candidate Recommendation 3 November 2005,
http://www.w3.org/TR/2005/CR-xquery-20051103

[13] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B.
Murphy, B. Pielech, M. Mulchandani, L. Ding, E.
A. Rundensteiner. Rainbow: Multi-XQuery
Optimization Using Materialized XML Views. In
SIGMOD Demo, page 671, 2003.

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M.
Franklin, J. Hellerstein and others. TelegraphCQ -
Continuous Dataflow Processing for an Uncertain
World. Proceedings of the CIDR Conference,
Asilomar, CA, January 2003.

[15] M. Grinev, A. Fomichev, S. Kuznetsov, K. Antipin,
A. Boldakov, D. Lizorkin, L. Novak, M. Rekouts,
P. Pleshachkov.”Sedna: A Native XML DBMS”,
Submitted to International Workshop on XQuery
Implementation, Experience and Perspectives
(XIME-P), 2004.

[16] T. Urhan, M. Franklin. XJoin - Getting Fast
Answers from Slow and Bursty Networks.
University of Maryland, Technical Report CS-TR-
3994, February 1999

[17] A. Arasu, S. Babu , J. Widom. The CQL
Continuous Query Language: Semantic
Foundations and Query Execution. Stanford
University, Technical Report, October 2003

[18] R. Motwani, J. Widom, A. Arasu and others. Query
Processing, Resource Management, and
Approximation in a Data Stream Management

System. Proceedings of the CIDR Conference,
Asilomar, CA, January 2003

[19] M. Sullivan. Tribeca: A Stream Database Manager
For Network Traffic Analysis. In Proceedings of
the 1996 VLDB, page 594, Sept. 1996.

[20] D. Terry, D. Goldberg, D. Nichols, B. Oki.
Continuous Queries over Append-Only Databases.
In Proceedings of the 1992 ACM SIGMOD, pages
321–330, June 1992.

[21] M. Altinel, M. Franklin. Efficient Filtering of XML
Documents for Selective Dissemination. In
Proceedings of the 2000 VLDB, 2000.

[22] D. Olteanu, H. Meuss, T. Furche, F. Bry. XPath:
Looking forward. In Proceedings of EDBT
Workshop XMLDM, pages 109-127, 2002.

[23] X. Li, G. Agrawal. Efficient Evaluation of XQuery
over Streaming Data. In Proceedings of the 31st
VLDB Conference, Trondheim, Norway, 2005

[24] XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Candidate Recommendation, 3 November
2005, http://www.w3.org/TR/2005/CR-xpath-
datamodel-20051103/

[25] XML Schema Part 2: Datatypes Second Edition.
W3C Recommendation, 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/

[26] Todd J. Green, Gerome Miklau, Makoto Onizuka,
Dan Suciu. Processing XML Streams with
Deterministic Automata. Technical report,
University of Washington, 2001

[27] Tim Furche. Optimizing Multiple Queries against
XML Streams. Diploma thesis, University of
Munich, July 2003

