XQuery Function Inlining for Optimizing
XQuery Queries

Maxim Grinev! and Dmitry Lizorkin?

! Institute for System Programming RAS, Russia,
grinev@ispras.ru
2 Moscow State University, Russia,
lizorkin@hotbox.ru

Abstract. Function inlining replaces a call to a function with the body
of the function. In this paper, we investigate the application of function
inlining technique to user-defined functions expressed in XML Query
Language (XQuery). XQuery function inlining eliminates function call
overhead and allows statically optimizing the inlined function body with
the rest of the query. We suggest an inlining algorithm that inlines calls
to all non-recursive functions and usually allows completely inlining calls
to structurally recursive functions, a class of recursive functions most
interesting from practical viewpoint. The suggested algorithm reason-
ably terminates infinite inlining for recursive functions of any kind that
makes the algorithm applicable to any XQuery query. Experimental mea-
surements show the efficiency of the suggested approach for optimizing
XQuery queries and for speeding up their evaluation.

1 Introduction

XML is a popular format for data representation. A query language to XML
data sources is being developed by the W3 Consortium and is called XQuery [1].
The growing amounts of information stored in XML and the growing number of
XML applications make optimization of XQuery queries a crucial task.

Two XQuery queries are considered equivalent if they produce the same result
when evaluated. By optimization we mean a machine transformation of a given
query into an equivalent one, such that the latter is better than the former with
respect to some criteria. In this paper, we consider two such criteria for XQuery
queries:

— The total number of nodes accessed in target XML documents during query
evaluation. Query optimization should be aimed at minimizing the number
of nodes required to be accessed. Thus, the optimized query ideally should
access only those nodes that affect the query result, and skip nodes that do
not affect it.

— The total number of operations performed over target XML data to produce
the query result. Query optimization should follow the strategy of minimizing
the number of operations that are required to be performed during query
evaluation.



These criteria are closely related to execution time required for query evaluation:
by accessing only the minimally required number of nodes and by executing the
minimal number of operations over them, we minimize the running time required
to obtain the query result.

In accordance with the XQuery Specification [1], a query is processed in two
phases: static type analysis phase and dynamic evaluation phase. Static type
analysis phase deals with the query expression itself and not with input data.
Next occurs dynamic evaluation phase. During dynamic evaluation phase the
value of the query is computed using input data.

In this paper we consider query optimization techniques that are applied
during static type analysis phase, and the optimized query is then passed to
dynamic evaluation phase. To produce the optimized query, we use type infor-
mation available about the query during static analysis phase. This information
includes:

— Statically-known schema for target XML documents. Such schemas may be
supplied with XML documents and are specified in schema definition lan-
guage, such as DTD, XML Schema, Relax NG. Statically-known schema
allows us to statically obtain the type of the document node that would
result from calling the fn:doc function within the XQuery query.

— Static typing rules for XQuery operations, formally specified in [2]. These
typing rules specify types for XQuery primary expressions like literals, and
allow to determine a type of a more complex XQuery expression based on
types of its sub-expressions. Typing rules thus allow us to infer a type for
any expression, because types can be determined recursively for its sub-
expressions, until we reach primary expressions like literals and a function
call to fn:doc.

This paper focuses on the query optimization technique based on XQuery
function inlining. Function inlining is the replacement of a function call with
the corresponding function body with arguments of the function call substituted
instead of the corresponding function parameters. Function inlining allows reduc-
ing the number of nodes required to be accessed in the target XML documents
during query evaluation, because function inlining facilitates the application of
the other optimization techniques [3] to the inlined function body expression.
Once the function body expression is inlined into the query, it becomes indepen-
dent of the function declaration, and optimization techniques from [3] can freely
be applied to the inlined expression, without corrupting the function declara-
tion. Function inlining also eliminates function call overhead and thus reduces
the total number of operations required to evaluate a query.

This paper is organized as follows. Section 2 introduces the notion of XQuery
functions and discusses their inlining into the query. Section 3 discusses related
works on the subject of XQuery function inlining for optimization purposes. Sec-
tion 4 suggests classification of XQuery functions and analyses the possibility of
inlining for optimization purposes for each of the function classes introduced. In
Sect. 5 we give a detailed description of the suggested inlining algorithm, illus-
trate it with examples and prove the algorithm correctness. Section 6 presents



limitations possessed by the inlining algorithm. Results of practical experiments
are shown in Sect. 7.

2 XQuery Functions and their Inlining into the Query

XQuery queries can contain different operators, and in particular they can con-
tain function calls. A function call consists of a function name followed by a list
of zero or more arguments enclosed in parentheses. A function name identifies
the XQuery function. The XQuery function produces a value which is evalu-
ated with respect to the argument list provided in the function call. The value
produced by the function becomes the result of the function call.

XQuery introduces two kinds of functions:

— A set of built-in functions, described in XQuery 1.0 and XPath 2.0 Functions
and Operators [4]. This document formally specifies how the result of each
built-in function is computed from its parameters.

— User-defined functions®. These are specified in the XQuery prolog. Each user-
defined function declaration specifies the name of the function, its parameters
and an expression called the function body that defines how the result of the
function is computed from its parameters.

To speed up query evaluation, we suggest to statically perform XQuery func-
tion inlining for XQuery user-defined functions. Function inlining is the replace-
ment of a function call with the corresponding function body, with arguments of
the function call substituted instead of the corresponding function parameters.
Function inlining is a well-known optimization technique that is first introduced
in compilers for programming languages [5] and is proven to be especially effec-
tive to optimize program evaluation.

However, unlike programming languages, XQuery has its own slightly differ-
ent semantics for function evaluation. This semantics is reflected in XQuery 1.0
and XPath 2.0 Formal Semantics [2] and can involves atomization, subsequence
extraction and implicit conversion operations:

— Atomization converts an argument to a sequence of atomic values, if atomic
values are required by the corresponding function parameter.

— Subsequence extraction extracts just the first item from a sequence.

— Conversion operations convert an argument value to its expected type spec-
ified in the function declaration.

The above 3 operations are applied implicitly to each of the argument when the
XQuery function call is evaluated. When we inline a function, we have to insert
these 3 operations explicitly, to guarantee the correct semantics of a function
call with respect to the XQuery formal semantics.

3 In the XQuery specification such functions are called both ”user-defined” and ”user-
declared”, because the XQuery draft recently replaced the keyword ”define” with
the keyword ” declare”. Since the terminology is not currently fixed, in this paper we
use the older term ”user-defined” to denote such a class of functions



Compared to function inlining for programming languages, the task of func-
tion inlining for XQuery is simplified in that user-defined XQuery functions may
not be overloaded [1].

2.1 Inlining Example

To illustrate the idea of function inlining for XQuery functions, we consider
the following example. Let us introduce a simple user-defined XQuery function
which counts text nodes that are descendants of a given element node. XQuery
declaration for this function is given in Fig. 1. To calculate descendant text nodes
for a given element node $e, the function:

1. counts child text nodes of $e (with a built-in function fn:count);

2. recursively applies to each of child element nodes of $e to count their descen-
dant text nodes (with for-return expression), recursion terminates when
$e has no child element nodes;

3. takes the sum of all these results (with the addition operation ”+” and a
built-in function fn:sum).

declare function count_leaves($e as element()) as xs:integer {
fn:count ($e/text()) + fn:sum(for $c in $e/* return count_leaves($c))

}

Fig. 1. Sample XQuery user-defined function which counts descendant text nodes for
a given node $e

Now let us consider a sample function call to count_leaves, which looks as
follows:

count_leaves( fn:doc("address-book.xml")/addressBook )

We will now discuss how XQuery function inlining can help us to optimize this
function call. As it was mentioned in Sect. 1, a schema for a target XML doc-
ument ("address-book.xml" in our case) allows us to obtain the type of the
document node that would result from calling the built-in function fn:doc. Sup-
pose that the schema for "address-book.xml" looks as described in Fig. 2: it is
an addressBook element definition that contains zero or more cards, and each
card contains a person name and an email [6].

We see that count_leaves is called with the argument whose type is element
addressBook, and this type information helps us to inline this function call and
further optimize it. This process is described in Fig. 3. Since count_leaves is a
recursive function, several inlinings are performed one after another, and each
inlining is expressed in Fig. 3 in its own nested frame.



type AddressBook = element addressBook(Cardx*)
type Card = element card ( element name(xs:string),
element email(xs:string) )

Fig. 2. Sample schema that describes an address book

Starting in Frame (1) in Fig. 3, we replace the call to count_leaves with its
function body, with the argument of the function call substituted instead of the
formal parameter $e. Exploiting type information, we can see that the argument
of fn:count function is an empty sequence, since element addressBook has
no child text nodes. Function fn:count is a built-in XQuery function and it
returns the number of items in the argument; thus we can statically determine
that this function call would always evaluate to 0, since an argument supplied is
always an empty sequence (i.e. a sequence that contains no items). Variable $c
in the for-return expression iterates over card elements (according to schema
in Fig. 2). The recursive call to the function count_leaves is underlined, to show
that it will be further inlined, as illustrated in the nested Frame (2) in Fig. 3.

In Frame (2), we inline the function call to count_leaves in the same man-
ner as in Frame (1). Again, we can statically determine that a function call to
fn:count would always evaluate to 0, since the static type of $cis element card
which has no child text nodes. Considering static type information, we can fur-
ther notice that the for-return expression in Frame (2) iterates just over two
elements: name and email, and thus the whole expression can be replaced by
the direct sequence of two items. Both items are function calls to function
count_leaves, however with different arguments. Both function calls are un-
derlined in Fig. 3 to show that they will be further inlined, in Frames (3) and
(4) respectively.

In Frame (3), after we inline the function call, static type information again
helps us to further optimize the expression. Namely, fn: count would always eval-
uate to 1, since element name defined in Fig. 2 has exactly one child text node.
Similar considerations allow us to determine that for-return expression on
Frame (3) would always iterate over an empty sequence, because element name
cannot have child element nodes. Thus the result of the whole for-return ex-
pression in Frame (3) would be an empty sequence, and consequently the result
of fn:sum in Frame (3) would always be 0. Function inlining and type analysis
allow us to statically determine that the function call in Frame (3) would always
evaluate to 1.

The same considerations fully apply to Frame (4), because element email
also has exactly one child text node and no child element nodes.

In the bottom of Frame (2) we substitute the result obtained in Frames (3)
and (4) instead of previously underlined function calls to count_leaves. Ex-
pression that results from optimization is shown in the bottom of Frame (1).
This expression fully reflects the intuitive notion of the expected result: the



(1) count_leaves(fn:doc("address-book.xml")/addressBook)
fn:count (fn:doc("address-book.xml") /addressBook/text ()) +
fn:sum(for $c in fn:doc("address-book.xml")/addressBook/*
return count_leaves($c) )
fn:count( () ) +
fn:sum(for $c in fn:doc("address-book.xml")/addressBook/*
return count_leaves($c) )
fn:sum(for $c in fn:doc("address-book.xml")/addressBook/*
return count_leaves($c) )

(2) count_leaves($c)

==>

fn:count ($c/text()) +

fn:sum(for $c2 in $c/* return count_leaves($c2))

==>

fn:count( () ) +

fn:sum(for $c2 in $c/* return count_leaves($c2))

fn:sum(for $c2 in $c/* return count_leaves($c2))

fn:sum( ( count_leaves($c/*/self: :name) ,
count_leaves($c/*/self::email) ) )

(3) count_leaves($c/*/self: :name)

fn:count ($c/*/self: :name/text()) +
fn:sum(for $c3 in $c/*/self::name/*
return count_leaves($c3))

1 + fn:sum(for $c3 in () return count_leaves($c3))
1

+ fn:sum( () )

fn:sum( (1, 1) )

2

fn:sum(for $c in fn:doc("address-book.xml")/addressBook/*
return 2)

Fig. 3. XQuery function inlining example




addressBook has twice as text nodes as there are card child elements in the
addressBook element.

It is worth noting that this optimization helped us to significantly reduce
the number of nodes required to be accessed in the target XML document
"address-book.xml" during dynamic evaluation phase. Before inlining, the
whole content of the document had to be scanned. Now, dynamic evaluation
phase requires only the document element addressBook and its child card ele-
ments to be accessed. Also the less number of operations is required to evaluate
the optimized expression, because we were able to statically determine results
of many operations. The optimization considered can make evaluation faster, as
practically proven by experimental results reflected in Sect. 7.

3 Related Works

Structural Function Inlining Technique suggested in [7] greatly influenced our
work. For a query class called structurally recursive queries, that paper proposes
the optimization technique that actively involves function inlining. However, that
approach is not suitable for queries that are not structurally recursive, and [7]
does not suggest any mechanisms to determine whether a given query is struc-
turally recursive or not. Also, the algorithm proposed in [7] is strongly based
on the typeswitch operator, which limits the class of recursion termination
conditions to conditions on argument types, not on their values. Although ap-
plicable, Structural Function Inlining Technique produces a poor optimization
for XQuery recursive functions whose recursion termination conditions involves
argument values, even when this function is structurally recursive.

Our approach, which we suggest in this paper, pays more attention on when
to stop recursive function inlining. Our algorithm is applicable to every user-
defined XQuery function, not just structurally recursive one. Instead of limiting
the class of functions, as it was done in [7], our algorithm is applicable to every
XQuery function: the algorithm makes the decision not to inline some function
call if this inlining is unlikely to produce a better query or threats to fall into a
recursive infinite loop. Our algorithm is able to handle any recursive termination
condition, not just the typeswitch operator, and uses static type information
available to produce a better query via function inlining.

4 Classification of XQuery User-defined Functions

This section gives a simple classification of XQuery user-defined functions from
the viewpoint of inlining. The idea behind this classification is to introduce
classes of XQuery user-defined functions for which function inlining is possible,
and classes of functions for which function inlining is impossible. Three function
classes are introduced, each in its own of the three following subsection. The de-
scription of each function class contains a discussion on whether function inlining
is possible as an optimization technique for an XQuery function of that class.
Obviously, every non-recursive function can always be inlined [5]; that is why



classification listed below is given for recursive XQuery user-defined functions
only.

4.1 Structurally Recursive Functions

Structurally recursive functions are functions that follow the structure of XML
data. For structurally recursive functions, recursion is used to walk an XML tree
being processed: the function body processes a given node, and recursive calls
are used to process its descendant nodes.

Structurally recursive functions constitute the a practical subset of XQuery
user-defined recursive functions. In particular, all user-defined recursive functions
introduced in XQuery Use Cases [8] are structurally recursive.

By definition, structurally recursive user-defined functions have an important
feature: each of the following function calls is supplied with different types of
arguments. This feature makes structurally recursive functions very attractive
from the viewpoint of their inlining into the query, because we can actively use
type information for further simplification of each function body inlined and for
recursion termination.

XQuery user-defined function in Fig. 1 is structurally recursive. As discussed
in Sect. 2, information about type declarations (like the one shown in Fig. 2)
can be effectively used to inline function calls to structurally recursive functions
to produce optimized queries.

4.2 Recursive Functions that Iterate over Sequences

Another practical class of XQuery user-defined recursive functions are those
which iterate over sequences. For a user-defined function that iterates over a
sequence, the function body generally processes only some items of the given
sequence, and a recursive call is applied to process the rest items.

An example of an XQuery user-defined recursive function that iterates over
a sequence, is shown in Fig. 4. This function simply reverses the order of items
in a given sequence?.

declare function reverse_sequence($s as node()*) as node()* {
if (empty($s)) then ()
else ( reverse_sequence($s[position()>1]), $s[1] )

}

Fig. 4. User-defined XQuery function which reverses the given sequence

4 There is such a built-in function called fn:reverse specified in XQuery 1.0 and
XPath 2.0 Functions and Operators [4]. However, we introduce a user-defined func-
tion with the same semantics to keep our examples concise



By nature, recursive user-defined functions that iterate over sequences have
the following feature: each of the following function calls is supplied with the
same types of arguments — the same sequences to be processed. Of course, the
sequence being processed generally gets shorter with each of the following func-
tion calls, but this cannot usually be utilized during static analysis phase. The
idea can be illustrated by the following sample function call:

reverse_sequence( doc("address-book.xml") /addressBook/card )

If we recall the type definition for an address book in Fig. 2, this function
call returns cards in reverse order. But if we attempt to recursively inline such
a function call, we would see that the argument always has the type Cardx.
This information does not allow us to terminate inlining because we do not
possess static information about the number of cards that would be in the
target document. We are unable to make any reasonable simplifications in the
function body inlined as well.

Actually, it is not reasonable to inline function calls to XQuery user-defined
functions that iterate over sequences, because information available during static
phase is usually not sufficient to make this inlining justified.

4.3 Recursive Functions over Simple Types

Another practical subset of XQuery user-defined recursive functions are functions
applied for calculations over simple types, usually numbers. As an illustration
of such a class of functions, we can mention the calculation of mathematical
factorial, implemented in Fig. 5.

declare function factorial($n as xs:integer) as xs:integer {
if ($n=0 or $n=1) then 1
else $n * factorial($n - 1)

}

Fig. 5. User-defined XQuery function which calculates mathematical factorial

Static information about types cannot help us to reasonably inline recursive
functions over simple types, because information about argument values is gen-
erally required for effective inlining and optimization, and information about
values can generally be possessed during dynamic evaluation only. Figure 5 il-
lustrates this observation: condition on argument value (not type) is used for
terminating recursion, and operations on values (not types) are applied to per-
form a recursive call.

The nature of XQuery user-defined functions over simple types opposes to
their function calls being inlined when argument values cannot be determined
during static phase.



5 Inlining Algorithm

As we could conclude from the classification given in the previous section, inlin-
ing algorithm should be able to implicitly determine the class of the user-defined
XQuery function, a function call to which is currently processed, because func-
tions from different classes should be given different treatment. We developed
the inlining algorithm which possesses this feature, and remains simple for its
practical implementation.

Before discussing the inlining algorithm, we introduce a notion of type depth,
which is required for the algorithm and is described in Subsect. 5.1. After that,
the inlining algorithm itself is described in Subsect. 5.2. The algorithm is illus-
trated by examples in Subsect. 5.3. Subsection 5.4 gives the proof of the inlining
algorithm correctness.

5.1 Type Depth

With each schema type T' we associate its depth which we denote as u(T'). Type
depth is a non-negative integer and is calculated as follows:

— For all atomic types, text nodes and an empty sequence, their depth is 0.

— For attribute nodes, comment nodes and processing-instruction nodes, their
depth is 1.

— For an element node, its depth is defined recursively as the depth of its child
nodes plus 1:

T = element(x) =
w(T) = pu(T/child :: node()) + 1

If element schema type contains recursive schema definitions, the element
depth is considered +oo (positive infinity).
— For a document node, its depth is the depth of its document element, plus 1.
— For a type that is a choice among several alternatives, its depth is the max-
imal depth for all alternatives:

u(T|Ts| . . .|T,) = max(u(T1), w(T2), ..., pw(Th))
The same treatment applies for a type that is a sequence:

p((T1, T, . .., Tn)) = max(u(Th), p(T2), . . ., u(Th))

— For a type that contains occurrence indicator, its depth is the depth of the
type standing under that occurrence indicator:

w(T?) = (T
p(T*) = (T
w(T+) = (T

— For xs:anyType, its depth is considered +oco (positive infinity).



5.2 Algorithm Description

Throughout its work, the algorithm stores information about XQuery user-

defined function previously inlined. For each previously inlined function f(z1, z2,. - -

this information includes:

— The name of the function: f

— Type depth for each of its arguments for the previously inlined function call
to f: Mprev,1; Mprev,2s -« - s Mprev,

— A mask: a vector of length n consisting of 0-s and 1-s. A number in each
position denotes whether the depth of the corresponding argument decreased
with respect to the previous inlining of f.

The inlining algorithm consists of the following steps:

1. Analyze the query prolog and store information about all user-defined XQuery
functions.

. Expression Ezpr to be further processed is the QueryBody.

3. Expr is traversed from outer query operations to inner operations, in the
tree style. For each function call f(expry,exprs,...,expr,) encountered:

4. If f is not a user-defined XQuery function, keep this function call unchanged
and resume step 3 for each of expry, expra,...,expr,.

5. Otherwise, f is a user-defined function. Let us consider its signature to be

N

declare function f(x1 as T1,...,xn as Tn) as resT
{ body_expr }

6. Perform inlining for each argument: expry,exprs, ..., expr,. Let us denote
these expressions after inlining as expr!,expry,. .., expr,,.

7. If function f is not stored by the algorithm as previously inlined in the outer
expression, inline this function call, as specified in Fig. 6. Store information
about f, type depth for each of its arguments

(T (expry)), w(T (expry)), . - -, (T (expry,))

and a mask of 1s: (1,1,...,1). Go to step 3 to process the inlined body_expr.

8. Otherwise, function call to f was previously inlined in the outer XQuery
expression, and we have information about the previous arguments type
depths

Nprev[l]a Nprev[z]; v aﬂprev[n]

and the previous mask:
maskprey [1], maskpres[2], . . . ,maskprey 1]

9. Calculate current type depths:

preurr[i] = p(T (ezpry)),i = 1,n

1y Tn),



and the delta between the corresponding previous and current type depths:

A'u[z] = ma‘x(“’PT‘ev [Z] — Heurr [i]a 0):i = 1; n

The new mask is calculated as follows:

maskeyrr[i] = sgn(Apfi] - maskprey[i]), s = 1,n
10. If Vi = 1,n : maskeyr[i] = 0, this function call to f should not be inlined,
because the current mask shows that the type depth decreased for none of
the arguments, compared to the previous function call to f.

11. Otherwise, inline this function call, as specified in Fig. 6. Store information
about f, current type depths

,U/curr[]-]; /churr[z]; cee JIVLC’U/I"T[n]
and the current mask:
maskeyrr[1], maskeyrr[2], - - ., maskeyrr[n]

Go to step 3 to process the inlined body_expr.

let x1 := Convert_to_T1( Extract( AtomizeAtomic_for_T1( exprl ) ) ),
x2 := Convert_to_T2( Extract( AtomizeAtomic_for_T2( expr2 ) ) ),
xn := Convert_to_Tn( Extract( AtomizeAtomic_for_Tn( exprn ) ) ),
return
body_expr
where:

— AtomizedAtomic_for Tk($x) = fn:data($x) if Tk is the subtype of
xs:anyAtomic*, and the identity function otherwise.

— Extract($x) = fn:subsequence($x, 1, 1) if compatibility with XPath 1.0 is
set to true for specific XQuery implementation, and the identity function other-
wise.

— Convert_to_Tk($x) = $x cast as Tk if Tk is the subtype of xs:anySimpleType,
and the identity function otherwise.

Fig. 6. Formal form of the expression to replace the function call being inlined



5.3 Examples of the Algorithm Application

In this subsection, we consider the treatment the suggested inlining algorithm
provides to user-defined XQuery functions from each function class introduced
in Sect. 4. We also give a more formal consideration to the inlining example
discussed in Subsect. 2.1.

The inlining algorithm was developed to automatically identify structurally
recursive user-defined XQuery functions and inline such function calls as many
times as it is required to fully walk an XML tree being processed. A sample
function discussed in Subsect. 2.1 is obviously a structurally recursive one. If we
recall Fig. 3 once again and now consider it from the viewpoint of the inlining
algorithm, it is worth noting the following:

— In Frame (1), function count_leaves is called with the argument whose type
depth is 3:
u(addressBook) = p(card) +1=2+1=3

— In Frame (2), the type depth of the argument is 2:
p(card) = max(u(name), u(email)) +1=14+1=2
— In Frames (3) and (4), the type depth of the argument is 1:

u(name) = p(xs : string) +1=0+1=1
ulemail) = p(xs : string) +1=0+1=1

These values encourage the algorithm to proceed inlining calls to recursive func-
tion count_leaves, because type depth decreases for each of the subsequent
recursive function calls (Frames (3) and (4) are independent of each other for
the algorithm). Based on static type information, inlined expressions can be sig-
nificantly simplified, to finally form the resulting expression shown at the bottom
of Frame (1) in Fig. 3.

For XQuery user-defined functions that iterate over sequences (Subsect. 4.2),
type depth of their arguments remain stable throughout subsequent recursive
function calls. This condition instructs the inlining algorithm to terminate, and
this algorithm behavior fully corresponds to the conclusion formulated in Sub-
sect. 4.2: it is not reasonable to inline XQuery user-defined functions that iterate
over sequences.

Similar treatment is given by the algorithm to XQuery user-defined recursive
functions over simple types (introduced in Subsect. 4.3). The type depth of the
argument always remains 0 for such functions, and this instructs the algorithm
to terminate inlining, because inlining is quite likely to be fruitless here, as noted
in Subsect. 4.3.

5.4 Proof of the Algorithm Correctness

Theorem 1. For any XQuery query Q, the suggested function inlining algo-
rithm always terminates and produces the equivalent query Qg



Proof. We prove the theorem in two steps. As the first step, we prove that our
inlining algorithm produces the equivalent query. As the second step, we prove
that the algorithm successfully terminates for every XQuery query provided.

1. Inlining algorithm produces the equivalent XQuery query )1, because every
single function inlining produces the equivalent query. This leads from the
fact that function inlining is performed in full accordance with dynamic
evaluation of XQuery functions defined in XQuery Formal Semantics[2], i.e.
the function call is rewritten as it would be evaluated.

2. We will now prove that the inlining algorithm successfully terminates for
every XQuery query provided.

Let us consider an arbitrary XQuery query ). Suppose that this query con-

tains n functions fi, fa,..., fn defined in its prolog. Every such function f;
(for ¢ = 1,n) has a; parameters and contains ¢; function calls to f1, fo,. .., fa
in its body.

Suppose that our query ) considered involves m XML documents, and for j-
s document (for j = 1,m), the depth for its document element in accordance
with document schema is d;. Each d; is either a natural number or positive
infinity if document schema is recursive.

Finally, let us suppose that the query @) contains e element constructors and
¢ function calls to f1, fo,-- -, fn in its query-body.

With these symbols taken, the number of levels of inlining does not exceed

ald-agd-...-and
with
d= max d;+e
i=1,n,d; #oco
This statement leads from the fact that the longest chain of function calls (i.e.
when one function calls another one and so on in a chain) contains no more
than n different functions (f1, f2,.-., fn), and each of these will be inlined
for no more that ajd times, because for every following inlining the type
depth must decrease by at least 1 for at least single argument in comparison
with the previous inlining, and the initial depth for each argument does not
exceed d.
Thus, if we define
Cmazr = MaAX C;
i=1,n
the total number of functions inlined cannot exceed

C- Cma,zald.azd.m.and
This leads from the reason that we start with ¢ function calls to f1, f2, ..., fn,
and every following level of inlining multiplies this number of function calls
by at maximum cpq.. Since the number of such levels cannot exceed a;? -
as? - ...-a,? as previously noted, this finally proves the statement that the
suggested algorithm of function inlining always terminates.



Note 1. In practice, the suggested inlining algorithm allows reducing the number
of function calls in the query body and often even to eliminate function calls from
query body completely, because function inlining facilitates the application of
the other static query optimization methods, like the ones described in [9], [3].

6 Limitations of the Inlining Algorithm

The inlining algorithm suggested in this paper does not allow completely inlining
a structurally recursive XQuery user-defined function if it iterates over a type
whose schema is itself recursive. This limitation of the inlining algorithm leads
from the definition of the type depth, which is involved into the stop-condition
of the algorithm. Indeed, for a type with a recursive schema, its depth is infinite.
Even if a recursive XQuery user-defined function descends over such a type, its
statically calculated depth remains infinite because of recursive schema, and thus
the inlining algorithm cannot assert that the depth decreases. By having only
static information (i.e. the schema of the document), we cannot obtain a more
reliable information about the behavior of a recursive function. The suggested
inlining algorithm avoids falling into an infinite loop in the case of recursive
schema, at the price of keeping function calls as is.

The situation can be illustrated by the following example. Consider the
schema of a document in Fig. 7. (The idea of this schema definition is taken
from Relax NG Tutorial [6]). It contains a recursive definition, which states that
bold and italic elements are allowed to be arbitrarily nested into one another
and mixed with the remaining text.

type doc = element doc(markedText)

type markedText = ( xs:string |
element bold(markedText) |
element italic(markedText) )=*

Fig. 7. Sample recursive schema definition

Let us consider XQuery function count_leaves already discussed in Sub-
sect. 2.1, applied to doc element from Fig. 7. Although this function is struc-
turally recursive, it is clear that we cannot statically determine the number of
inlinings for such a function call, because we do not know the maximal depth
the document data might have, since the schema states that bold and italic
elements may be nested into one another as many times as possible. We thus
should avoid falling into an infinite loop during inlining, and this fully corre-
sponds to the description of inlining algorithm suggested in this paper. Inlining
of this function call to count_leaves terminates, because the argument type
depth is infinite and it remains infinite for a subsequent recursive function call.



For this example, the behavior of the inlining algorithm fully corresponds to
the intuitive point of view as well. Inlining the function call to count_leaves
cannot help us to statically optimize the query in this situation, because docu-
ment schema in Fig. 7 contains text nodes (described with xs:string) at any
level of hierarchy and the number of such levels in the document is statically
unknown.

We suppose that even for a type whose schema is itself recursive it may
be sometimes reasonable to inline a structurally recursive XQuery function that
iterates over that type. However, our algorithm does not allow doing this, because
it is based on the idea of type depth, which is infinite for a type with a recursive
schema, definition.

7 Experiments

We implemented the suggested inlining algorithm in our XML DBMS Sedna [10],
being developed by the Institute for System Programming, Russian Academy of
Science. We conducted several experiments to consider the qualificative effect of
XQuery function inlining for query optimization.

Table 1 summarizes the benchmark statistics for the example which we earlier
considered in Subsect. 2.1: counting descendant text nodes of an addressBook
element. Node counting is performed either in the form of the function call to a
structurally recursive function count_leaves (this case corresponds to the col-
umn ”Before optimization” in Table 1), or in the form of the expression that
results from inlining and optimizing this function call (this case corresponds to
the column ” After optimization” in Table 1). We measured the corresponding
query evaluation time by considering addressBook elements with different num-
ber of Card elements in them (the number of Card elements is reflected in the
left column of Table 1).

It is worth noting that the execution time in both columns in Table 1 depends
linearly on the number of Card elements in the address book. For this example,
the query after optimization can be evaluated by average 11 times faster than
before optimization.

We performed more experiments on different practical XQuery queries and
XML documents. The experimental results obtained show that XQuery function
inlining and optimization can make query evaluation up to 76 times faster, and
the running time of the inlining algorithm is negligible compared to time to
evaluate complex queries.

8 Conclusion

In this paper we considered the application of function inlining technique to XML
Query Language (XQuery) for optimizing XQuery queries. Two optimization
criteria and type information available for optimization purposes during static
analysis phase were discussed. The definition of XQuery user-defined function
and the peculiarities of its inlining into the query were considered.



Table 1. Benchmarks for the example considered in Subsect. 2.1

Number of card elements Execution time, seconds

in the addressBook Before optimization After optimization
1000 1.30 0.1

4000 5.18 0.41

16000 18.73 1.30

64000 75.11 5.31

256000 309.55 21.23

1024000 1425.96 129.18

We suggested the classification of XQuery functions from the viewpoint of
their inlining, and analyzed the suitability of function inlining for optimization
purposes for each of the function classes introduced. The inlining algorithm
was suggested and illustrated by examples. The formal proof of the algorithm
correctness was given and the limitations of the algorithm were considered.

Experiments conducted showed the efficiency of suggested inlining algorithm
for optimizing XQuery queries and the important qualificative effect in speeding
up query evaluation.

References

1. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie and J.
Simeon. XQuery 1.0: An XML Query Language. W3C Working Draft,
http://www.w3.org/TR/2003/WD-xquery-20031112/, 12 November 2003.

2. D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys, J. Simeon
and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working
Draft, http://www.w3.org/TR/2004/WD-xquery-semantics-20040220/, 20 Febru-
ary 2004.

3. M. Grinev. XQuery Optimization Based on Rewriting. Ph.D. Thesis Overview,
http://www.ispras.ru/ grinev/mypapers/phd-short.pdf, 2002

4. A. Malhotra, J. Melton and N. Walsh. XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Working Draft, http://www.w3.org/TR/2003/WD-xpath-
functions-20031112/, 12 November 2003.

5. D. F. Bacon, S. L. Graham and O. J. Sharp. Compiler Transfor-
mations for High-Performance Computing. ACM Computing Surveys,
http://citeseer.nj.nec.com/bacon93compiler.html, December 1994.

6. J. Clark and M. Makoto. RELAX NG Tutorial. Committee Specification,
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html, 3 De-
cember 2001.

7. Chang-Won Park, Jun-Ki Min and Chin-Wan Chung. Structural Function In-
lining Technique for Structurally Recursive XML Queries. 28" International
Conference on Very Large Data Bases, August 2002, Hong Kong, China.
http://www.vldb.org/conf/2002/S04P01.pdf

8. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori and J. Robie.
XML Query Use Cases. W3C Working Draft, http://www.w3.org/TR/2003/WD-
xquery-use-cases-20031112/, 12 November 2003.



9. P. Fankhauser. XQuery Formal Semantics: State and Challenges. ACM SIGMOD,
http://www.acm.org/sigmod/record/issues/0109/SPECIAL /fankhauser2.pdf,
September 2001.

10. Sedna — Native XML DBMS. Institute for System Programming RAS,
http://modis.ispras.ru/Development /sedna.htm.



