Conception of Programs Factory for Representing
and E-Learning Disciplines of Software Engineering

Ekaterina Lavrischeva', Artem Dzyubenko" and Andrey Aronov"
! Taras Shevchenko Kiev National University, Kiev, Ukraine

lavryscheva@gmail .com, asmer@asmer.com.ua

Abstract. The paper presents a new idea of knowledge representation for stu-
dents studying software engineering by developing artifacts and software com-
ponents accumulated in libraries or repositories for further reuse. The idea is
based on the concept of assembly line by V. Glushkov, further elaborated by
Soviet and foreign specialists (A. Ershov, V. Lipaev, J. Greenfield, G. Lenz, Y.
Bai, M. Fowler). The paper introduces the elements of program factory: reus-
able components, their interfaces, and assembly lines for designing and assem-
bling complex software products from components. It is shown that modern op-
erating environments provide prerequisites for such factories. The students’
program factory, implemented at Taras Shevchenko Kiev National University,
is then described. The technologies behind the factory, as well as its goals are
studied.

Keywords. Artifact, reusable component, applied system, interface, assembling
line

Key terms. Methodology, Technology, Process, Qualification

1 Introduction

The paper presents the elements of programs factories: reusable components (RC) and
their interfaces, assembly lines for designing and assembling complex programs from
RCs. It is shown that modern operating systems provide tools for creating specialized
programs factories (MS.NET AppFabric, SOAFab, SCAFab, IBM VSphere, CORBA,
etc.). Factories are built by different commercial structures for software product de-
velopment, as well as for studying purposes (e.g., the programs factory implemented
in Taras Shevchenko Kiev National University for the assembling artifacts from dis-
ciplines that are studied at the university). The purpose of such factories is to study
computer science, software engineering, programming technology and software sys-
tems with electronic textbooks, develop applied projects and thus train highly compe-
tent professionals in software industry.

Over last decades a huge amount of various programs has been accumulated in the
informational world that may be used as end products for complex programs devel-

Conception of Programs Factory for Representing and E-Learning Disciplines ... 253

opment. Therefore, a new approach has been formed in programming, namely reus-
ability — reuse of ready-made software resources (reuses, assets, services, compo-
nents, etc.), hereafter referred to as reusable components (RC). This term is used in
informational world to represent new knowledge acquired over researches in certain
fields of computer science. Being needed for somebody, it may be used in solving
certain problems concerning similar artifacts as well as for development of new soft-
ware systems (SS), applied systems (AS) or software product families (SPF).

All software artifacts and RCs may be stored in public warehouses (libraries, re-
positories) that may be searched by professionals to identify the necessary data for
implementation in their own research activities. That is, reuse of ready-made re-
sources becomes a capital-intensive activity in the field of software engineering and it
is particularly important that universities possess so-called factories for scientific
artifacts, programs and RCs needed by other students and professionals. With these
factories, students may participate in industry development of scientific artifacts for
mass use [1-3].

Based on such innovative ideas, Prof. E. Lavrischeva proposed fourth-year stu-
dents at KNU to establish the first programs factory over the course of theoretical and
practical labs on software engineering. This factory is focused on artifacts, software
development, and repository maintenance. Students’ programs factory operates on the
web site (http://programsfactoty.univ.kiev.ua) since December 2011. The web site has
been visited by more than 5,000 people — students, scientists and teachers.

2 Establishing Programs Factory

History of Software Industry in USSR. An idea of industry for computers and sup-
porting software has been formulated by Academician V. Glushkov at Cybernetics
Institute of NAS of Ukraine in 1960s-1970s. Under his guidance, a family of small
computers ‘Mir’ (1967-1975) has been developed together with a language of ana-
Iytical and formula transformations for solving differentiation, integration and for-
mula calculus problems. In addition, other computers (Dnepr, Dnepr-2, Kyiv-67, 70,
macro-conveyor etc.) have been elaborated with auto code-typed programming lan-
guages (PL) to develop information processing programs and automated management
systems (AMS) for various organizations and enterprises. For their development, the
problems of software quality and increase of production of reusable components have
been investigated with computers at state institutions [4—6].

In 1975 V. Glushkov first formulated the concept of assembling conveyor consist-
ing from technological lines for software products (SP). The core of Glushkov’s para-
digm is to accelerate the transition from programming as an art to industrial methods
of SP production in order to solve various economical, business, scientific problems
with automated management systems.

Then (1978), software development as joint scientific-technical production and the
projects requesting for automating SP creation have been decreed. The first pilot fac-
tory for software engineering was established for mass production of various AMSs
(1978, Kalinin); but, because of lack of ready-made programs and immaturity of pro-

254 E. Lavrischeva, A. Dzyubenko and A. Aronov

gramming technology for industry production, the factory had lasted for two years
and was closed [7]. Nevertheless the experiments aiming to elaborate programming
automation tools were lasting until the collapse of the USSR.

V. Glushkov’s idea concerning programs factories is now running at the several
industrial factories explored by different authors theoretically and in practice [8—13]:

Conveyor by K. Czarnecki and U. Eisenecker

Software factories for assembling applications by J. Greenfield, K. Short et al.

Continuous integration by Martin Fowler

EPAM assembly line for building various types of software, improving software

quality and reducing risk

e Automated assembling of the multi-language programs in heterogeneous environ-
ments by Y. Bai (VC++, VBasic, Matlab, Java, Visual Works, Smalltalk and oth-
ers)

e Command development and assembling programs for software projects in MS
Visual Studio Team Suite based on contracts

e G. Lenz’s program factory utilizing UML in .NET

e Assembling, configuration and certification of global scientific-technical software
on the European Grid factory

e Compositional (assembling) programming by E. Lavrischeva for developing soft-
ware products from reuses, services, artifacts, and so on

e Experimental KNU factory

Careful analysis allowed singling out the key components of programs factories
[13]:

e Prepared software resources (artifacts, programs, systems, reuses, assets, compo-
nents, etc.)

o Interface as a mediator between two components, containing passport information
for heterogeneous resources in a certain specification language (IDL, API, SIDL,
WSDL, RAS, etc.)

e Operating environment with system facilities and tools supporting assembly lines
with heterogeneous software resources

e Technological lines or product lines for mass production and assembling products.

e Methods of product development

The elements listed are the fundamentals of SP production industry at the factories
that operate at major foreign software companies such as Microsoft, IBM, Intel, Ap-
ple, Oberon etc. At the KNU students’ programs factory, these fundamentals are im-
plemented as certain lines for programs and scientific artifacts, which are the best
among student-developed programs factories.

The authors of the KNU programs factory consider it an integrated infrastructure
for organizing production of mass usage SPs that are needed for customers and users
from the fields of computer science, state government, commerce etc. The factory is
equipped with technology lines (TL) or product lines [7, 12], as well as a collection of
products, tools and services needed for automated processes execution over these

Conception of Programs Factory for Representing and E-Learning Disciplines ... 255

lines in modern operational environments (MS.NET, IBM, Sun Microsystems and so
on).

Web Site of KNU Programs Factory. The main objectives for the web site are:
improving students’ skills in software development using the system for exchange of
KNU students’ certified software products and scientific artifacts; increasing SP qual-
ity and reliability; and learning to support the methods of SS industrial production.

The web site presents lifecycle models, SP building lines, the line for program pro-
duction with the help of MS.NET platform, and examples of student programs.
Obligatory requirements are maintained during certification to store software products
in the repository of the factory (the library pool).

The main activities on the factory site are:

Organizing program and artifact development

Familiarizing students with tools and methods for program and SS development
Representing students’ software products in the repository

Citing excerpts from articles and textbook materials concerning various disciplines

The factory is equipped with tools that allow broadening its functionality by specify-
ing new software artifacts and storing them in the repository for further reuse. Each
artifact is uniformly documented based on WSDL, IDL standard used in Grid global
project.

3 Factory Lines and Components

Development of Technological Lines. Technological lines are created at the techno-
logical pre-production stage [7, 12] before SS production. They include activities for
designing the TL scheme from processes and actions that determine the processing
order of SS elements with appropriate technological modules (TM) or programming
systems. The basic requirement of TL engineering imposed on production of pro-
grams and components is to assemble TLs from lifecycle processes meeting problem
domain goals using standard tools, TMs, and the system of regulatory documents. The
TL is then supplied with ready-made components, tools and instruments that generate
and implement specific functions or elements, as well as the management plan for
processes for changing states of the elements and providing quality evaluation [13-
16].
The RC model for component-based development has the following specification:

RC={T. I F,Imp, S}, (12)

where T is type, [is interface, F'is functionality, /m is implementation, and S is inter-
operability service.
Basic operations over components are:

e Specifying components and their interfaces (pre- and post-conditions, which must
be satisfied by the caller) in such languages as IDL, API, WSDL, etc.

256 E. Lavrischeva, A. Dzyubenko and A. Aronov

e Maintenance of components, reuses and artifacts in the component repository for
search, change and future integration into applied systems

o Integration of components into applications, domains, applied systems, software
product families, etc.

All aspects of RC development and their usage in SP and software product families
are goals for reusability disciplines and building material for these systems.

Applied system is a collection of software means (or functions of SS), including
general tools (DBMS, protection systems, system services, etc.), constructed subsys-
tems or components together with the tools for marshalling from one AS to another
[14].

Product Lines at SEI. Product lines and product family (PF) is defined in
ISO/IEC FDIS 24765:2009 (E) — Systems and Software Engineering Vocabulary:
“Product line is a set of products or services that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way. Synonym:
product family”.

SEI professionals propose the two models for representation of activities for SS
development, namely engineering and process ones.

The engineering model assumes the three activities, namely RC development, PF
development through RC configuration and management of the both above activities.

The activity for RC development presupposes PF scoping and production planning
of SS collection accounting for the context of SS usage, production limitations and
the chosen strategy. The PF development activity includes designing each specific SS
implementation based on the set of developed RC, and building software systems
according to the PF implementation plan. The management activity is based on bal-
ancing activities for RC development and PF maintenance tasks, and includes both
organizational and technical management.

According to the process model, a set of processes is performed at the two levels,
namely domain engineering, being also referred to as the development “for reuse”,
and application (or SS) engineering — the development “with reuse” [15]. The last one
is performed over assembly line using ready-made RCs to shorten time and increase
SS availability. Therefore, configuring the product family from RCs according to the
specific requirements and needs of a particular market segment is the final one in the
cycle of production activities.

4 KNU Students’ Programs Factory

From the theoretical standpoint, program factories are based on the assembling con-
veyor that includes a collection of various more or less complex production lines for
software artifacts, programs and RCs. Conveyor lines contain process execution using
system tools or technological modules that automate process execution for obtaining
interim or final results.

From the perspective of information technology, the factory provides the data
processing toolset for the transition from individual programming of particular re-

Conception of Programs Factory for Representing and E-Learning Disciplines ... 257

sources to the industry of mass-usage SP. The factory increases SP development pro-
ductivity during each lifecycle process due to use of RCs that possess the necessary
functionality with due quality guaranteed by their developers. The assembling (com-
position, configuration) line may benefit through reduction of efforts because of use
of readymade artifacts or RCs stored in the repository.

Searching for RC Select Platform Searching for manuals Select Manual (if necessary)
= All Platforms 2 = All Books -
Select OS searching for publications Select category (if necessary)
All Platforms - [=] All category -

Input text for Searching

FFRrROGRANMS
FRACTORY
IRecent Reusable Components (RC) .
< Shingles algorithm Home CieE e
Dzubenko Artem
{ = Neepaens S & “Software Engineering” Manual
i Author: Lavryscheva Katerina Myhailovna
< PHP Image Processing PO TAMHA IKEHEPIS

Dzubenko Artem

Generic Line for particular programs production in MS.NET

o An Example of student’s program with the Line

Software Products sertifying for storing them in Repository

Recent Books
Learning

@8 APPLICATION 2.
The List

o Assembling with Conveyor

+ Line for Software Products Assembling from RCs and Processes
* Software Product Line
Visitors: 5242 You may ask questions &

Fig. 1. Main page of KNU programs factory

Programs Factory Technological Lines. The TL development is as a rule
matched with some lifecycle, e.g., implemented in the MS.NET environment with
guides, frameworks, programming languages, common libraries templates, system
tools that support new subject-oriented languages such as Domain Specific Language,
etc. For complex SP development, an assembly (compositional) line is proposed, as a
tool for composing RCs using their interfaces from various interim libraries within
development environments, as well as from RC repositories (Fig. 1). The figure
shows the main page of the web site of the factory: lines 1, 2, 3, 4 and a text-book for
e-learning fundamental aspects of software engineering [2].

The assembling conveyor has four implemented technological lines [1, 2] that,
since 2011, aid in artifacts and program development. The structure of these lines is
designed according to the technology explored by the author (Prof. E. Lavrischeva) in
1987-1991 [7, 12-16]. Simple TLs in factory are as follows:

e E-learning C# in VS.NET environment (Fig. 2)

e Saving components into corresponding repositories and selecting them from the
repository to meet market demands on specific SPs

258 E. Lavrischeva, A. Dzyubenko and A. Aronov

e Assembling or configuring RCs into complex program structures (SP, FS)
e E-learning basic knowledge on software engineering with the dedicated e-textbook

7\ VA
* Representation w -Verliﬁcationd I i « Software assets l J
t 5 il
tools oCH.Ct+_lava So:e:;ame .Operation tools egﬁgiact:t]i% N + MS.Net
aEditors « Files verification Operations

N N N

Fig. 2. Chart for components design in VS.NET environment

Web Site Lines. The depicted TL for learning C# programming is designed ac-
cording to the ISO/IEC 12207 standard of lifecycle processes while allowing for
NET specifics as to how to perform the following design tasks:

e Exploring demands on software products, singling out features and methods for
automated generation

¢ Fixing requirements on implementations of SP functions for the domain

e Specifying software elements or artifacts, documenting their passport data and
interfaces with a WSDL-like language

e Storing created software artifacts and programs in the repository

The line for repository maintenance includes the mechanisms for stored RCs being
uniformly documented with their WSDL passports, as well as the tools for selecting
ready-made RCs and artifacts from the repository based on their passport data, func-
tions and relevant solution examples (see Fig. 3). This line is pertained to the proc-
esses for quality assessment of artifacts or programs created, verifying them from the
perspective of reliability and quality.

7~ N\ -~ N\

1 TM™ fe i
+ Repository . r_o:ul$ fo{_ * asseosrsmjezltty
T inks Testing * TM for software
® Building task . E:zr;ys'::,g for » Factory Tools reliability assessment
5 o Certificate’s format

Sof_tware with requesting
various PL
(Programming

Languages)
Fig. 3. Flowchart of the line for component search in repository

The line for AS development at the factory includes the tools for engineering of
specific required components using various PLs, programs and artifacts, both just
developed and selected from repository; the line also supports building multilingual
RCs and marshalling non-relevant types of data exchanged by the components [11].
The constituents of this line include standard tools for building or configuring multi-
lingual components, testing both the sample components and the links between RCs

Conception of Programs Factory for Representing and E-Learning Disciplines ... 259

being composed together, as well as the tools for reliability and quality assessment
and certification of the product obtained.

The line for remote e-learning with the dedicated Software Engineering textbook
[14, 15] is now actively used in studying topics of this discipline with KNU students.
This line may also be used for independent studying in other high school institutions
where software engineering or computer science courses are established.

Design of Programs Factory. At the students’ factory, Visual Studio .NET li-
censed by KNU is used as the foundation for the programs factory; capabilities of
MS.NET platform in providing tools for multilingual AS development and support
using the components in C#, C++, Basic, etc., are utilized as well. Consequently,
third-party software developers for the factory may not be limited to the choice of a
single PL.

The factory web site is developed using PHP programming language, and, for its
external representation, HTML5, CSS3 and JavaScript. The system core is independ-
ently engineered by the authors with relying on known web frameworks [2].

5 E-learning SE Disciplines

Teaching students the aspects of software industry at Ukrainian universities is at its
initial stage. To solve several education problems, we have introduced a new ap-
proach to e-learning various aspects of SE, which assists in acquiring knowledge on
software industry.

A new concept for breaking down the software engineering disciplines (Fig. 4),
which is necessary in industrial factory production, was proposed [7, 14]. Basic goals
of software engineering disciplines are as follows:

e Scientific discipline consists of the classic sciences (theory of algorithms, set the-
ory, logic theory, proofs, and so on), lifecycle standards, theory of integration, the-
ory of programming and the corresponding language tools for creating abstract
models and architectures of the specified objects, etc.

e Engineering discipline is a set of technical means and methods for software devel-
opment by using standard lifecycle models; software analysis methods; require-
ment, application and domain engineering with the help of product lines; software
support, modification and adaptation to other platforms and environments

e Management discipline contains the generic management theory, adapted to team-
based software development, including job schedules and their supervising, risk
management, software versioning and support

e Economy discipline is a collection of the expert, qualitative and quantitative
evaluation techniques of the interim artifacts and the final result of product lines,
and the economic methods of calculating duration, size, efforts, and cost of soft-
ware development.

e Product discipline consists of product lines, utilizing software resources (reusable
components, services, aspects, agents, etc.), taken from libraries and repositories; it
also contains assembling, configuring and assessing quality of software

260 E. Lavrischeva, A. Dzyubenko and A. Aronov

Development Disciplines of Products at Factovies

Theory Engimeering Management
o Programming theory : . o DMethods of planning
o Specification languages o Lifecycle, quality standards o CRM, Pert
o V&V Methads o SWEBOK o Monitoring
o Interface of programs and o PMBDK_ o Risksmanagernent
objects ° ﬁﬂiﬁﬁ hnisw featur o Project management
o CASE (proving, testing, quality| ° PNES, SUBWAE feaires o Configuration contral
assessment) o Software measurernent
o Composing, assembling OOP
|
Econany Produdng
Expert methods Froduct lines
COCOMD methods Artifacts, reuses, programs in factories

Interface and software libraries
Tools {compilers, linkers, editors)
Assembling convey

Modern enwirontments

Quality and process assessment
Relighility assessment
Efficiency assessment

o oo o 0
o o 0 o o0 o0

Fig. 4. Software engineering disciplines

In our opinion, all the SE disciplines considered above and their theoretical foun-
dations must become the independent subjects to be taught to students specializing in
the field of SE with the orientation toward the industrial production of SPs from
readymade components (reuses, services, assets, and so on) [17]. The production cy-
cle will be repeated in case of bringing changes in the product structure as it is done in
technology of continuous integration by M. Fowler and in AppFabric in MS.NET
(Fig. 5) [18].

Approach to Teaching SE. The SE educational course must include intertwined
theoretical and practical fundamental positions and achievements in software devel-
opment and integration [15, 17, 19]. The directions of the SE teaching course are as
follows:

e Base concepts, principles and methods that constitute the basis of SE knowledge
and technology of programming (e.g., the five SE disciplines, life cycle, project
management, quality, configuration) and proved their productivity in practice

e Mathematics of systems analysis for subject domain with the use of elements of
theory of algorithms, logic and semantics of programming for the formal design of
key notions of the domain, reflection of their communications and relations in case
of formal task of their models and SP architecture

Conception of Programs Factory for Representing and E-Learning Disciplines ... 261

Eclipee / TFS

Pecl®

*.doc/ *.xls *.cs/*.xoml*.dll/*.exe/* jre,

Developer

Fig. 5. Structure of Microsoft AppFabric

e General principles and methods of designing programs, software products and
software product families using ready-made objects, components, services, aspects,
etc.

e Modern applied tools for representation of software products, which are widely
used by professionals in research and development (systems analysis, decomposi-
tions, architecture, design, OOP, ontology, etc.)

e Methods of measuring quality of software products

e Development environments (MS.NET, IBM, CORBA, Protégé, Eclipse, etc.)

e The directions of e-learning are summarized in the Software Engineering textbook.
The students learn and apply them on practice with the use of system tools, arti-
facts or programs developed by other students. Certain students’ achievements are
certified by the teacher and can be added to the repository of the factory

In terms of teaching SE, the author’s first textbook (2001), written in Ukrainian
[18], is dedicated to the foundations of SE from Curricula-2001; the second textbook
in Russian (2006) teaches the basics of Curricula-2004 [12]; the third textbook is
developed for modern approach towards teaching SE [15], including topical outlines
of some of the above-mentioned disciplines and fundamental aspects such as reliabil-
ity and quality engineering. In the new textbook, basic elements and engineering tools
are presented for development of various target SE objects and lifecycle processes,
methods for design and management of collectives of executors, quality, terms, and

262 E. Lavrischeva, A. Dzyubenko and A. Aronov

cost. The textbook on the web site describes new SE disciplines and fundamental
aspects of SE. The structure of the textbooks corresponds to the typical Curricula-
2004 program, and to the modern requirements on the subject imposed by the pro-
gram of the Ministry of Education and Science of Ukraine (2007).

6 Conclusions

The result of the authors’ work is an experimental programs factory web site, accessi-
ble on the Internet using address http://www.programsfactory.univ.kiev.ua/. This web
site is proposed for e-learning product line development at the high school institutions
on the specialties of informatics, computer sciences, information systems and tech-
nology.

The following concrete lines are established at the factory:

e Production of reusable components and artifacts

e Development of console applications, DLL component libraries, local Windows
applications with C# in VS.NET

e Developing Java programs (a manual by I. Habibulin)

e Assembling programs from RCs in MS.NET environment

e E-learning software engineering with dedicated textbooks on the web site in
Ukrainian (sestudy.edu-ua.net) and in Russian (intuit.ru)

The prospects of future factory evolution are its further adjunction with new re-
sources in the field of software engineering being yet prepared by the students,
namely:

e Description of the process of development of complex programs and SS using DSL
language (Eclipse-DSL, Microsoft DSL Tools)

o Transformation of general data types into fundamental data types from the perspec-
tive of the standard ISO/IEC 11404-2007 generation tools

e Ontological representations of new disciplines for study (e.g., computational ge-
ometry, lifecycle domains, verification)

e New applied product lines for business developed with appropriate mechanisms;

o SEI product lines approach, and so on

References

1. Lavrischeva, E.: Concept of Scientific Software Industry and Approach to Calculation of
Scientific Problems. Problems in Programming, 1, 3-17 (2011) (in Ukrainian)

2. Aronov, A., Dzyubenko, A.: Approach to Development of Students’ Program Factory.
Problems in Programming, 3, 42-49 (2011) (in Ukrainian)

3. Anisimov, A., Lavrischeva, E., Shevchenko, V.: On Scientific Software Industry. Techni-
cal report, Conf. Theoretical and Applied Aspects of Cybernetics. (2011) (in Ukrainian)

4. Glushkov, V., Stogniy, A., Molchanov, I.: Small Algorithmic Digital Computer. MIR, 11
(1971) (in Russian)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Conception of Programs Factory for Representing and E-Learning Disciplines ... 263

Glushkov, V.: Basic Research and Technology Programming. Programming, 2, 3-13.
(1980) (in Russian)

. Kapitonova, U., Letichevsky A.: Paradigms and Ideas of Academician Glushkov. Naukova

Dumka, Kiev (2003) (in Russian)

Lavrischeva, E.: Formation and Development of the Modular-Component Software Engi-
neering in Ukraine. V. Glushkov Institute of Cybernetics, Kiev (2008) (in Russian)
Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Boston, MA (2000)

Bai, Y.: Applications Interface Programming Using Multiple Languages: A Windows’
Programmer’s Guide. Prentice Hall Professional, Upper Saddle River (2003)

Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, Hoboken (2004)

Lavrischeva, E., Koval, G., Babenko, L., Slabospitska, O., Ignatenko, P.: New Theoretical
Foundations of Production Methods of Software Systems in Generative Programming
Context. Electronic Monograph, UK-2011, 67, VINITI RAN, Kiev, Moscow (2012) (in
Ukrainian)

Lavrischeva, E., Grischenko, V.: Assembly Programming. Basics of Software Industry.
2nd ed. Naukova Dumka, Kiev (2009) (in Russian)

Andon, P., Lavrischeva, E.: Evolution of Programs Factories in Information World. News
of NANU, 10, 15-41 (2010) (in Ukrainian)

Lavrischeva, E.: Classification of Software Engineering Disciplines. Cybernetics and Sys-
tems Analysis, 44(6), 791-796 (2008)

Lavrischeva, E.: Software Engineering. Akademperiodika, Kiev (2008) (in Ukrainian)
Lavrischeva, E.: Theory and Practice of Software Factories. Software—Hardware Systems.
Cybernetics and Systems Analysis, 47(6) 961-972 (2011)

Lavrischeva, E., Ostrovski, A., Radetskyi, I.: Approach to E-Learning Fundamental As-
pects of Software Engineering. In: Ermolayev, V. et al. (eds.) Proc. 8" Int. Conf. ICTERI-
2012, CEUR-WS, vol. 848, pp.176-187, CEUR-WS, online (2012)

Kolesnyk, A., Slabospitskaya, O.: Tested Approach for Variability Management Enhanc-
ing in Software Product Lines. In: Ermolayev, V. et al. (eds.) Proc. 8" Int. Conf. ICTERI-
2012, CEUR-WS, vol. 848, pp.155-162, CEUR-WS, online (2012)

Babenko, L., Lavrishcheva, E.: Foundations of Software Engineering. Znannya, Kiev
(2001) (in Ukrainian)

