
Program obfuscation as obstruction of program
static analysis

Kirill S. Ivanov, Vladimir A. Zakharov

Abstract. By obfuscation we mean any efficient semantic-preserving transformation
of computer programs aimed at bringing a program into such a form, which impedes
the understanding of its algorithm and data structures or prevents the extracting of
some valuable information from the plaintext of a program. Some results obtained
recently testify that it is very much uneasy to develop a provably secure program
obfuscator unless a capability of an adversary is restricted weakly. But in many prac-
tical cases when program re-engineering activity is restricted only to the application
of available static analysis algorithms an acceptable security of obfuscation can be
achieved by guaranteeing the obfuscated programs to obstruct completely some def-
inite static analysis technique. This approach to designing program obfuscators is
commonly used now though no rigorous study of its efficiency and security is made so
far. In this paper we give a preliminary framework for studying formally program ob-
fuscators as tools for the obstruction of program static analysis. We present a criterion
which provides a way of estimating the actual efficiency of static analysis obstruction
and demonstrate with example of two typical static analysis algorithms (Andersen’s
points-to analysis algorithm and Binkley-Horwitz-Reps slicing algorithm) how to use
our approach in practice.

1. Introduction
Protection of software against intelligent tampering and unauthorized purpose-
ful modifications is one of the central issues in computer security. An advent
of global computer networks has given rise to new computational environments
which provide remote execution, distributed computing, code mobility etc. Al-
though new models of computation bring great flexibility and new promises to
the world of computing they are accompanied with a set of new problems that
were not present when computation was carried out for the most part on local
stand-alone machines.
One of the most difficult security problem is that of protecting a code from
an untrustworthy environment which is known as malicious host problem. One
faces the challenge of the malicious host problem every time when downloads
or installs a code on a host computer which is shared by a second party. In this
case a client program becomes a subject of various threats, such as

137

• software piracy, the illegal copying and resale of applications;

• malicious reverse engineering, the illegal extraction of valuable pieces of
code for the purpose of unauthorized using of them in other applications;

• program tampering, the illegal extraction of valuable information from a
code for the purpose of unauthorized using of the code.

Unlike many similar problems (say, malicious code problem) the malicious host
problem has not been studied very much intensively and rigorously. Various
methods and tools are widely used for the purpose of software protection, in-
cluding sophisticated security policies, network filters, cryptosystems, tamper-
resistant hardware, etc. [1, 12, 13, 19]. But no matter how powerful these
techniques may be, they don’t cover the case when an adversary, having in
mind to make an illegal modification of a program or to gain some valuable
knowledge about algorithms or data structures, gets an access to the plaintext
of a program. The current trends in software engineering and communication
technology make it common to distribute software in such a form that hold most
of information presented in the program source code. This increases drastically
the risk of reverse engineering attacks aimed at extracting secret information
from a program. An important example is Java bytecode. Java applications
are distributed as Java class files, hardware-independent virtual machine codes
that retains almost all information of the original Java source. The customary
cryptographic tools can be very effective for protecting programs from illegal
usage at the stage of their distribution. But when a program is decrypted, it
becomes extremely vulnerable to software pirates seeking for private informa-
tion (passwords, data-keys, etc.) or valuable pieces of code to incorporate them
in their own applications.
In these cases the only way to prevent such malicious activity is to convert a
program into some tamper-resistant form, which has the property that under-
standing and making purposeful modifications to it are rendered difficult while
its original functionality and efficiency are preserved. Program transformations
of this kind are called obfuscating transformations.
Obfuscation attempts to transform a program into an equivalent one that is
harder for understanding and reverse-engineering. The concept of program ob-
fuscation was introduced in [8]. In this paper an obfuscator is defined informally
as any efficient probabilistic compiler O which transforms any source program
π into an equivalent program O(π) which is substantially less intelligible (read-
able) than π. In succeeding papers [9, 10] this concept has been specified in
more details and the program obfuscation problem has been set up as follows.

Given a set of programs P , P ⊆ U , find a transformation O : P → U
such that for every program π from P an obfuscated program π′ = O(π)
should satisfy the following requirements.

138

semantic-preservation: π′ has the same observable behavior as π;

obscurity: understanding and reverse engineering π′ is strictly more
time-consuming than understanding and reverse engineering π;

resilience: it is either difficult to construct an automatic tool to undo
the obfuscation transformation, or executing such a tool is ex-
tremely time-consuming;

stealth: the statistical properties of π′ are similar to those of π;

cost: execution time/space penalty incurred by the obfuscation of π are
small.

The key issue in this definition is an obscurity of program obfuscation. Unlike
other requirements this item does not admit a uniform indubitable formalization
since it involves such loose concepts as “understanding”, “semantic interpreta-
tion”, etc. Nevertheless in [3, 14, 27] serious efforts were made to find some
suitable formalism for capturing the obscurity requirement. As early as 1998
J.MacDonald [22] noticed that to protect a program “we are in search of security,
however, and not obscurity, so a formal proof of security is a necessity”.
To formalize the obscurity requirement Barak, Goldreich, et al. introduced in
[3] the concept of “perfect” obfuscation. Intuitively, a program obfuscator O is
called perfect if it transforms any program π into a “virtual black box” O(π) in
the sense that anything one can efficiently compute given O(π), one should be
able to efficiently compute given just oracle access to π. The main result of [3]
implies that perfect obfuscation is impossible. This is proved by constructing
a family F of functions and a predicate P : F → {0, 1} such that, given any
program that computes a function f ∈ F , the value P (f) can be efficiently
computed, whereas no efficient algorithm, being given only oracle access to a
randomly selected f ∈ F , can compute P (f) much better than by random
guessing.
An alternative approach to the development of the rigorous concept of obfusca-
tion security was initiated in [27]. In this paper a formal information-theoretic
definition of obfuscation security was introduced. Informally, O obfuscates se-
curely a property P of programs from some ensemble H if any adversary A,
being granted anaccess to programs from O(H), can extract in polynomial time
only a “negligibly small” amount of information on P . This definition was also
provided with novel obfuscation technique which takes advantage of crypto-
graphic primitives (one-way functions, hard-core predicates). To show that the
new formalization of obfuscation security enables one to design provably secure
program obfuscators one meaningful example was considered as a case study. In
this example a class of programs that implement a simple fixed password identi-
fication scheme is taken for H, and the property of a program to execute actual
password checking is considered as a secret property P . A program obfuscator

139

O is designed and, assuming that one-way permutations exist, it is proved that
O securely obfuscates P . Moreover, close relationships between obfuscation
problem and basic cryptographic primitives was established by demonstrating
that a secure obfuscation of P implies the existence of one-way functions.
But the mainstream of research in program obfuscation has been focused on the
development of obfuscation techniques which admit a straightforward applica-
tion to the solution of malicious host problem without giving strong evidence of
their security. A taxonomy of basic obfuscating transformations was presented
in [8]. It includes

lexical transformations: scrambling of identifier, deleting comments, etc.;

control transformations: inserting dead pieces of code and faked branch-
ings, unfolding of loops, splitting and merging control flow structures
etc.;

data transformations: variable splitting, data encoding, converting static
data into dynamic, etc.

The most important concept introduced in [8] is that of opaque predicate. A
predicate R is called opaque if its outcome is known at obfuscation time but
is difficult for the deobfuscator to deduce. Given such opaque predicates it
is possible to construct obfuscating transformations that entangle control flow
of a program so that no adversary could understand the intended meaning
of the program components. It looks like the very essence of obfuscation is
concentrated in this notion and the development of secure opaque predicates
may be regarded as a prime task of program obfuscation.
The main difficulty in solving this task is in providing security of opaque pred-
icates. But if an adversary is assumed to be restricted in her/his potency and
only currently available automatic tools are allowable for deobfuscation then an
obscurity of an opaque predicate R can be achieved by obstructing relevant pro-
gram static analysis techniques. It is well known (see [17, 20, 26]) that precise
static analysis of programs containing complex data structures and pointers is
either undecidable or extremely time consuming. Therefore one could obstruct
a static analysis toolset by using for obfuscation such an opaque predicate whose
precise analysis by means of the selected toolset is a hard problem.
This approach was implemented in many papers. In [9, 11] it was shown how
strong opaque predicates can be constructed based on intractability of alias
analysis. The basic idea is to extend the program to be obfuscated with a
code that builds a set of complex dynamic structures. The introduced code will
occasionally update the structures (modifying pointers, splitting and merging
fields, etc.) while maintaining certain invariants. These invariants are then used
to manufacture opaque predicates as needed. In [6, 28] it is demonstrated that
3-SAT problem which is known to be NP-complete can be simulated by means

140

of general pointers. This makes it possible to design opaque predicates whose
precise analysis is an NP-complete problem. A more sophisticated using of
function pointers is used in [24] for the same purpose. In [7] it was shown that
any PSPACE-complete problem can be used as the basis for manufacturing
opaque predicate and we could restrict ourselves to scalar boolean variables
only.
The principal drawback of all these techniques is that none of them has a
formal basis for making claims about the difficulty of understanding an obfus-
cated program. Therefore it is hardly possible to estimate to what extent such
methods serve the purpose — only the reference to the intractability of some
static analysis problems or to the hardness of combinatoric problem embedded
into obfuscated programs is not sufficient. Some highly speculative measures
for potency and resilience of obfuscating transformations were introduced in
[6, 8, 30] for the purpose of estimating the potency of obfuscating transfor-
mations. Usually, given a measure of program complexity E, a potency of
obfuscating transformation O in relation to obfuscated program π is defined as

Π(O, π) =
E(O(π))

E(π)
− 1.

The problem of measuring program complexity is quite long-term. In the frame
of software theory lot of different measures were created (see [6] for survey).
But all these measures characterize only static issues of program (e.g. length
of program, number of variables, cyclomatic number of control flow graph, etc)
and none of them gives an acceptable fit to our purpose.
In this paper we introduce a framework for the rigorous study of program
obfuscators as tools for the obstruction of program static analysis. Our main
idea is as follows. A program static analysis tool A computes a mapping A :
U → W , where U is a set of programs under consideration and W is a set
of possible outcomes of static analysis. For example, when static analysis is
applied for detecting useless variables a powerset P(V arπ), where V arπ is the
set of all variables of a program π, stands for W . As a rule, a set W of
possible outcomes constitutes a lattice which has the minimal element ⊥. This
distinguished element may be interpreted as a lack of any significant information
about the program property analyzed by means of A. In the case of useless
variables detection ⊥ = ∅ which means that static analyzer A can not detect
any useless variable.

Definition. Given a program obfuscator O and a program static analyzer A
we say that O is impervious to A if A(O(π)) = ⊥ holds for any program π.

Thus, a program obfuscator O impervious to static analyzer A makes this
toolset unsuitable for the purpose of program decompilation. Imperviousness
criterion has several advantages over other measures for the security/obscurity

141

of obfuscating transformations. Unlike complexity-theoretic [3, 14] and
information-theoretic [27] criteria it may be used not only in theory but also
in practice for demonstrating resilience of certain obfuscating transformations
against possible reverse engineering attacks. Imperviousness criterion defined
thus does not appeal to the worst-case complexity of static analysis (cf.
[7, 8, 9, 10, 11, 24, 28, 30]) and, hence, it could be used to guarantee absolute
resilience of obfuscating transformations against some specific decompilation
tools. Finally, given a specific static analysis algorithm A and an obfuscation
transformation O one could prove formally that O is impervious to A. The
aim of this paper is to demonstrate that the latter is possible at least for some
simple program analysis algorithms. We take two typical static analysis algo-
rithms (Andersen’s points-to analysis algorithm A1 and Binkley-Horwitz-Reps
slicing algorithm A2) as examples. For each of these algorithms Ai, i = 1, 2,
we develop a corresponding obfuscating transformation Oi and prove that Oi

is impervious to Ai.
The paper is organized as follows. In Section 2 we discuss briefly the problems
of pointer analysis and slicing for computer programs. We introduce also the
model of programs these algorithms deal with. In Section 3 we consider in
more details a flow-insensitive points-to analysis algorithm A1 presented in [2],
introduce our obfuscating transformation O1 aimed at obstructing A1, prove
its imperviousness to A1, and estimate the cost of obfuscation. In Section 4
the same investigation is applied to a slicing algorithm A2 presented in [18].
Finally, in Section 5 we discuss further lines of research.

2. Program static analysis
Program static analysis is a branch in formal methods which incorporate a va-
riety of techniques intended for deducing the safe information about program
behavior immediately from the text of a program. Static analysis holds an
intermediate position between complete formal verification of programs and
program testing. Static analysis algorithms are used mostly for revealing some
specific semantic properties of programs (like dead code detection, constant
propagation, etc.) which may be helpful for program optimization, under-
standing, re-using, etc. The efficiency of such algorithms is characterized by
complexity and accuracy. Therefore to obstruct static analysis one has to bring
a program into such a form which is either intractable for the current static
analysis algorithms or drastically degrade their accuracy. Since many static
analysis algorithms operate in polynomial time, the only way to obstruct them
is to reduce the precision of their outcome to the minimal possible level.
In this article we will consider two typical static analysis algorithms. One of
these algorithms is intended for detecting aliasing. Two variables x and y are
said to be aliasing if they could refer to the same memory location during a
program execution. Alias analysis is necessary for revealing implicit updating

142

of variables. It is well known that aliasing problem is undecidable in general
(see [26]) and remains hard even for simple programs (see [5, 17]). Nevertheless
in [2, 23] (see also [4, 15])it was shown that some reasonable approximation for
pointer aliasing can be computed in polynomial time. Each of these algorithms
associates a pointer p with a set of variables W c

p and guarantees that no variables
beyond W c

p can be alias of p. The precision of an alias analysis algorithm is

characterized by the ratio #(W c
p)

#(W a
p) , where W a

p is the set of actual aliases of a
pointer p. Clearly, the least possible precision is attained when W c

p coincides
with the set of all variables declared in the program. In this case alias analysis
by means of fast algorithms from [2, 23] are completely obstructed. In the
next section we will demonstrate how to transform a program into such a form
which guarantees a complete obstruction of fast alias analysis. According to
the definition above this program transformation is impervious to the fast alias
analysis. For the sake of simplicity we restrict ourselves with flow-insensitive
and context-insensitive variants of alias analysis algorithms.
Another type of static analysis algorithms considered in this paper are static
slicing analysis algorithms. Program slicing is a viable method to restrict the
focus of a task to specific sub-components of a program. A slice [29] is an exe-
cutable subset of program statements that preserves the original behavior of the
program with respect to a subset of variables of interest and at a given program
point. The applications of slicing technique include debugging, testing, pro-
gram comprehension, restructuring, downsizing, and parallelization. The most
advanced algorithms (see, e.g. [18]) compute static slices as backward traversals
of a Program Dependence Graph (PDG) [25], a program representation where
nodes represent statements and predicates while edges carry information about
control and data dependencies. A PDG based algorithm considers slicing cri-
teria of the type 〈p, V 〉, where p is a program point and V is a set of variables
referenced at p. A slice with respect to such a slicing criterion consists of the
set of nodes that directly or indirectly affect the computation of of the variables
in V at node p.
Since slices are very much helpful for revealing hidden dependencies between
data structures and program components, program obfuscation has to be re-
silient against slicing algorithms.The efficiency of a slicing algorithm C is char-
acterized by its time complexity and by the ratio #(SC

p,V)

#(Sa
p,V) , where SC

p,V is the
set of program points included into the slice computed by the algorithm with
respect to a slice criterion 〈p, V 〉, and Sa

p,V is the minimal set of program nodes
that are necessary to be kept intact for computing correctly the values vari-
ables from V at point p. The worst possible solution to static slicing problem
is given by the trivial slicing algorithm which outputs as Sc

p,V the set Sw
p,V of

all program points that precede p in a Control Flow Graph. Thus, according to
the definition above program obfuscation is said to be impervious to a slicing

143

algorithm C if for every slicing criterion 〈p, V 〉 an algorithm C after being ap-
plied to an obfuscated program O(π) outputs the worst possible slice Sw

p,V as
the result. In this case static slicing algorithm is completely obstructed. In the
next section we will demonstrate how to transform a program into such a form
which guarantees a complete obstruction of static slicing algorithm introduced
in [18].
For the sake of clarity we restrict ourselves with considering programming lan-
guage whose syntax includes only simple data types, assignment statements,
if-then-else statements, while-do statements and function calls.

3. Obstructing alias (points - to) analysis
3.1. Points-to analysis algorithms

Given a program π a points-to analysis algorithm C computes a function fC,π :
V ar → 2V ar such that for every variable x the set fC,π(x) includes all variables
x may refer to along some run of π. Usually the function fC,π is presented as
a directed graph whose nodes are associated with variables or sets of variables.
An arc from a node p to a node q means that q is included in fC,π(x).

��
��

��
��

�p q

Since the problem of detection given a program π and a pair of variables p, q
whether π admits a computation such that p refers to q is undecidable, any
function fC,π : V ar → 2V ar computed by a points-to analysis algorithm only
approximates true points-to relation between program variables.
We will consider three points-to analysis algorithms presented in [23], [16], and
[2]. The most fast algorithm is that by Steensgaard [23] (in what follows this
algorithm will be identified as S-algorithm), and the most precise is that by
Andersen [2] (A-algorithm). The points-to analysis algorithm presented by
Shapiro and Horwitz [16] (SH-algorithm) has a parameter k. This parameter
allows one to tune speed and precision of the algorithm. If k = 1 then it gives
the same result as that of Steensgaard’s algorithm, and if k = n (where n is the
number of variables) then it’s result is the same as that of Andersen’s algorithm.
To explain in more details the difference between these algorithms let us con-
sider the following program:
a = &b;
a = &d;
a = &c;
c = &d;

144

The results of each algorithm are as follows:

1. Steensgaard’s algorithm (Shapiro and Horwitz with k = 1)

��
�� �

�
�
	�a (b,c,d) �

	
�
2. Shapiro and Horwitz algorithm with k = 2

�	
�� �

�
a (c,d)� �

��

�	
��

b

�

�
�

�	
�� �

�
�a (b,d) �

��

�	
��

c

�

3. Shapiro and Horwitz algorithm with k = 3 (Andersen’s algorithm)

��
��

��
��

��
��

��
��

� �

�

�
�

�
���

b a d

c

3.2. Equivalent transformations

Any insertion of the assignment statement in some program point may change
the value of at least one variable and affect program runs. To preserve program
behavior we will use only those transformation that restore or keep the value

145

of the affected variable until it’s next use in predicate, calling of a function
or in a right-hand side of some assignment statement. Examples of equivalent
transformations are presented below.

1. Use of opaque predicates. A predicate P is called opaque predicate if it’s
value is constant and it is known before the compilation but is hard for
computing by means of static analysis algorithms. Instructions of the
inserted block that affect the value of p can be hidden in a branch of
conditional statement with a predicate P ≡ 0. For example:

. . .
p = &b;
. . .
//beginning of a block
. . .
if(P) // P ≡ 0

p = q; // hiding obfuscation instruction
. . .
a = *p + 3c;
. . .
//end of a block

2. The simplest way to preserve the values of selected variables is to use
extra variable. In what follows it will be demonstrated that extra variable
won’t affect anything in the obfuscation process in this case. Example:

. . .
p = &b;
. . .
// inserting a block
. . .
v = p; //storing a value
p = q;
. . .
p = v; //restoring a value
a = *p + 3c;
. . .

3.3. Obfuscation algorithm O1

Since Andersen’s algorithm [2] is the most precise points-to analysis algorithm,
it is suffice to show how to obstruct this static analysis technique.
The main weakness of points-to analysis algorithms under consideration lies in
their flow-insensitivity. If some fragment contains a pair of instructions

146

. . .
p = &a;
. . .
q = &a;
. . .

then Andersen’s algorithm characterizes variables p and q as an aliased pair of
pointers in relation to value a independently of points of their occurrence in a
program. One should also notice that instructions like p = q expand the set of
possible values of p with the set of q (Xp = Xp ∪ Xq, where Xi is the set of
possible values for pointers i).
The main idea of our obfuscation technique is based on inserting additional
assignment and de-reference statements and using additional pointer variables
aiming at making all pointers of the same reference level aliased (their set of
possible values will be equal). Since now by the set of pointer p we will mean
a set of possible values of a pointer p at the end of the points-to analysis. The
obfuscation algorithm is as follows:

1. Pointer Analysis.

• collecting information about pointers, determine the maximum
pointing level (mark it as max_level);

• collecting the set V of all variables (we will denote by Vi the subset
of V containing pointers of level i).

• extracting instructions p = q; and coping them into the set W in
the form of p → q;

• extracting de-reference instructions p = &a; and coping a into the
set Sp.

The sets W and Sp will be used later to avoid superfluous insertions of
statements.

2. Optimization of the Set W . Since the set W can contain cycles (e.g. it
can contain both pairs p → q and q → p), it requires optimization. The
optimization procedure is as follows:

• build a directed graph whose arcs are all pairs from W ;

• delete nodes that have no in-going arcs;

• mark all nodes and arcs that form cycles in the graph;

• delete all marked nodes that has no marked in-going and out-going
arcs. If there are no such nodes in a cycle then select randomly
any node in the cycle and delete all other nodes;

147

• delete all nodes that has no in-going edges.

We deleted thus all pointers that are necessary for the obfuscation al-
gorithm. The obfuscation is not necessary for pointers remaining in W
since the instruction p = q; will ensure that the set of p is larger than
the set of q. And the set of q will cover the entire level.

3. Preparing Additional Variables.
At this step the set of additional pointer variables is defined. Let k ≥ 1
be an input parameter indicating the number of additional pointer per
reference level. So we have k∗max_level additional pointers. Denote by
Pi is the set of such variables on the i-th level, |Pi| = k, i = 1, max_level,
P0 = ∅.

4. Building Lists of Additional Assignments.
We describe this step for the i-th level, i = 1, max_level.

(a) Denote by (Vi−1 ∪ Pi−1)p the set of variables associated with a
pointer p. This set should satisfy the following requirements:

• For any pair s, p ∈ Pi

(Vi−1 ∪ Pi−1)s ⊂ (Vi−1 ∪ Pi−1),
(Vi−1 ∪ Pi−1)p ⊂ (Vi−1 ∪ Pi−1).

• If s �= p then (Vi−1 ∪ Pi−1)s ∩ (Vi−1 ∪ Pi−1)p = ∅,
• ⋃

p∈Pi

(Vi−1 ∪ Pi−1)p = (Vi−1 ∪ Pi−1).

For each p ∈ Pi and q ∈ (Vi−1 ∪ Pi−1)p form a de-reference as-
signment p = &q; and add it to the list List1. Thus, additional
pointers have the set of values from the lower level.

(b) For each v ∈ Vi ∩ (V \ W) and for each p ∈ Pi such that
(Vi−1 ∪ Pi−1)p � Sv form an assignment statement v = p; and add
it to the list List2. Thus, every pointer at the level i will gain a
set of possible values equal to the set of variables from the lower
level. Now expand the set for additional variables. For each p ∈ Pi

and any randomly selected v ∈ Vi form an assignment statement
p = v; and add it to the list List1.

5. Inserting additional statements.
Add statements from the lists A and I into the program code. Statements
from A can be inserted evenly. Statements from I must be inserted in
according to the rule specified in Section 3.2).

An example below demonstrates how this algorithm operates. Let us consider
the following program π.

148

int a, b, c *p, *q, **r;
p = &b;
q = &c;
r = &p;
a = **r + *q;
q = p;
p = &a;

By applying Andersen’s points-to analysis algorithm we obtain the reference
graph for π:

��
��

��
��

��
��

��
��

��
��

��
��

� �

�

�

�

�

r p b

a q c

After applying our obfuscation algorithm for k = 2 we obtain the following
program O(π):

Step 1&2: V0 = {a, b, c}, V1 = {p, q}, V2 = {r}, Sp = {b, a}, Sq = {c}, Sr = {r}
Step 3: P0 = ∅, P1 = {s11, s12}, P1 = {s21, s22}
Step 4: A = {“s11 = &a; ”, “s11 = &b; ”, “s12 = &c; ”, “s21 = &p; ”, “s21 =

&q; ”, “s22 = &s12; ”, “s22 = &s11; ”, “s11 = p; ”, “s12 = q; ”, “s22 = r; ”, “s21 =
r; ”}, I = {“r = s21; ”, “r = s22; ”, “p = s12; ”, “p = s11; ”}

Step 5: Program O(π) (possible form):

int a,b, c,*p, *q, **r;
int *s11, *s12, **s21, **s22;
s11 = &a;
p = s11;
s21 = &p;
r = s21;
s22 = r;
p = &b;
s11 = &b;
s22 = &s11;
q = &c;
s21 = r;
s12 = &c;
if(0) p = s12;

149

r = &p;
s22 =&s12;
a = **r + *q;
r = s22;
s11 = p;
q = p;
s21 = &q;
p = &a;
s12 = q;

�
�

�
	

��
�

�
	

�

�
�

�
��	

�

��
��

��
��

��
��

ab c

(r, s21, s22)

(p, q, s11, s12)

Andersen’s algorithm graph for O(π):

3.4. Correctness, complexity and overheads of the obfusca-
tion O1

Transformations specified above preserve functions computed by programs, i.e.
they are semantic-preserving (equivalent) transformation.

Claim 1. Let π be an arbitrary program and O1(π) be a result of transforma-
tion of π as described in Section 3.3. Then O1(π) computes the same function
as π.

The obfuscating transformation O1 obstructs flow-insensitive points-to analy-
sis algorithms by hiding differences between pointer variables and making thus
each variable to be an alias of any other variable at the same level of the refer-
ence graph: for every obfuscated program O1(π) Andersen’s points-to analysis
algorithm builds only the trivial reference graph as depicted in Section 3.3.
Thus, we arrive at:
Claim 2. The obfuscating transformation O1 is impervious to flow-insensitive
variant of points-to analysis algorithms (A-algorithm, S-algorithm and SH-
algorithm).

150

Now we are to find upper bound of the obfuscating transformation complexity.
Assume that a program π contains n statements and m variables. The first step
(Pointer Analysis) requires O(n) operations. The next step (Optimization of the
Set W) takes about O(m2) operations on the reference graph. The maximum
number of additional variables is k∗max_level, where k is a parameter used in
SH-algorithm. So on the step of Preparing Additional Variables the algorithm
builds O(max_level ∗ k ∗ m2) additional instructions. The insertion of new
instructions into the code takes O(m ∗ n) operations. So the total complexity
of O1 is O(max_level ∗ k ∗ m2 + nm).

Claim 3. Time complexity of obfuscating transformation O1 is O(|π|3).
The overheads of the obfuscating transformation O1 can be characterized in
terms of the number of additional instructions.

Claim 4. For any program π

|O1(π)| − |π| = O(m ∗ k ∗ max_level)

If a program π is such that n � m (which seems reasonable for most programs
appeared in practice) then |O1(π)|

|π| ≈ 1 and the obfuscating transformation O1

can be accepted as cheap according to the Taxonomy of Obfuscating Transfor-
mations [8].
The scripting languages appear to be one of the developing directions in the
programming. The distinguished feature of scripts is that they are formally
typeless. So our obfuscating transformation can be easily adopted to scripting
languages. We have to replace all the occurrences of Pi with P , Vi with V and
so on. Finally if (v1, . . . , vn) is the set of variables and (u1, . . . , um) is the set
of additional pointers, the analysis graph for the program will be as follows:

�
�

�
	(v1, . . . , vn, u1, . . . , um)

� �
	�

4. Obstructing program slicing
Any static slicing algorithm based on Program Dependence Graphs (PDG)
begins to work with building PDG and the size of a slice obtained is determined
by the size of PDG. PDG presents both control and data dependencies between
variable. We say that a variable x at a program point p depends (semantically)
on a variable y at a program point q if some spontaneous change of a value of y
may affect either a value of x or an access to the point p via q by some execution

151

of a program. In general, dependency relation is intractable but admits safe
approximation which can be computed efficiently relying only on the syntactic
structure of a program: a program point p depends (syntactically) on a point q
if

• some variable y is defined at q (e.g. y is in the left-hand side of an
assignment statement), used at p (e.g. y occurs in the right-hand side of
an assignment statement), and there is a syntactically admissible path
from q to p in the control-flow graph of the program such that no other
definitions of y occurs along this path;

or

• y is defined at q and used as an argument of a predicate at a branching
point p and there is a syntactically admissible path from q to p such that
no other definitions of y occurs along this path.

PDG represents all syntactic dependencies between program points.

4.1. Introducing extra dependencies

To obstruct static slicing algorithm we introduce some additional syntactic
dependencies so that any point p in a program becomes dependent from all
points q preceding p in the control flow graph of the program. In this case any
slice will cover all such points giving thus no useful information about control
and data dependencies in an obfuscated program. To this end we introduce a
series of specific equivalent transformations.

T1 Given an assignment statement S of the form y = f(�x) and an arithmetic
expression g(z) such that g(z) ≡ c we may induce a dependency relation
between y and an arbitrary variable z by replacing the above statement
by y = f(�x) + g(z) − c. We will denote this transformation by T z

1 (S).

T2 The same effect can be achieved by replacing any occurrence of a variable
x in a right-hand side of an assignment by the expression x+z

2 − x−z
2 .

We will denote this transformation by T z
2 (S).

T3 Boolean identities also provide a vast possibility for inserting new de-
pendencies:

1. P = (R ∧ P) ∨ P ;

2. P = (R ∧ P) ∨ (¬R ∧ P).

This transformation will be denoted by T R
3 (P).

152

4.2. Obfuscation algorithm

The obfuscation algorithm O2 presented in this section when being applied
to a statement S transforms it given a list of variables L to an equivalent
statement O2(S, List) and builds a new list of variables List(S, L) according to
the following rules.

1. If a statement S is a sequential composition of statements S1 and S2 (i.e.
S = S1; S2) then O2(S, L) = O2(S1, L); O2(S2, L

′) and List(S, L) =
List(S2, L

′), where L′ = List(S1, L).

2. If S is an assignment statement of the form x := t(y1, . . . , yn) and
L \ {y1, . . . , yn} = {z1, . . . , zk} then O2(S, L) is either T z1,...,zk(S)1 or
T z1,...,zk(S)2, and List(S, L) = {x}.

3. If S is a conditional branching statement of the form if P then S1 else
S2 fi, where P is a predicate whose arguments are variables y1, . . . , yn,
then O2(S, L) is a statement of the form if T R

3 (P) then O2(S1, ∅) else
O2(S2, ∅) fi, where R is an arbitrary predicate whose arguments are all
variables from the list L \ {y1, . . . , yn}, and List(S, L) = List(S1, ∅) ∪
List(S2, ∅).

4. If S is an iteration of the form while P do S od, where P is a predicate
whose arguments are variables y1, . . . , yn, then O2(S, L) is a statement
of the form while T R

3 (P) do O2(S1, ∅) od, where R is an arbitrary
predicate whose arguments are all variables from the list L\{y1, . . . , yn},
and List(S, L) = List(S1, ∅).

Given a program π an obfuscation algorithm O2 begins to operate with an
empty list of variables and results with a program O2(π, ∅).

4.3. Correctness, complexity and overheads of the obfusca-
tion O2

Since all transformations presented in Section 4.1 are semantic-preserving, the
transformation O2 also preserves the function computed by a source program.

Claim 5. Let π be an arbitrary program and O2(π, ∅) be a result of trans-
formation of π as described in Section 4.2. Then O1(π) computes the same
function as π.

It is easy to demonstrate that the extra dependencies introduced by O2 make
each statement S in a program O2(π) dependent on all statements that precede
S in the control flow graph of O2(π). In this case any static slicing technique
based on PDG outputs the worst possible result — for every slicing criteria
〈p, x〉, where p is a program point and x is a variable defined at p the corre-

153

sponding static slice will include all statements that precede p in the Control
Flow Graph of a program under consideration. Thus, we arrive at:

Claim 6. The obfuscating transformation O2 is impervious to any PDG-based
static slicing technique.

Each transformation T1, T2, T3 takes time O(m), where m is a number of new
variables inserted into a statement or a predicate, and each basic statement or
a predicate is modified along the application of O2 at most once. Thus, we
arrive at:

Claim 3. Time complexity of obfuscating transformation O2 is O(|π|2).
The obfuscating transformation O2 does not introduce new statements but it
could extend some statements by inserting extra variables. In the worst case
all variables of a program could be inserted into a statement.

Claim 4. For any program π

|O2(π)|
|π| = O(m),

where m is the number of variables used in π.

Since in practice in most cases |π| � m, the obfuscating transformation O2 can
be accepted as cheap according to the Taxonomy of Obfuscating Transforma-
tions [8].

5. Conclusion
In this paper we demonstrate that one could estimate formally a resilience of
obfuscating transformations against possible re-engineering activity based on
static analysis algorithms (points-to analysis and static slicing). We think that
our approach can be extended to the cases when more involved program analysis
algorithms are applied and this will be our line of further research.

References
[1] Amoroso E.G. Fundamentals of Computer Security Technology. Englewood

Cliffs, NJ: Prentice Hall PTR, 1994.

[2] Andersen L.O.,Program Analysis and Specialization for the C Programming
Language, DIKU, University of Copenhagen, May 1994.

[3] Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vedhan S.,
Yang K., On the (Im)possibility of obfuscating programs. CRYPTO’01 —
Advances in Cryptology, Lecture Notes in Computer Science, 2139, 2001,
p. 1-18.

154

[4] Bruns G., Chandra S., Searching for points-to analysis, IEEE Transactions
on software engineering, v. 29, 2003, N 10, p. 883-897.

[5] Chakaravarthy V.T., Horwitz S., On the non-approximatibility of points-to
analysis, Acta Informatica, v. 38, 2002, p.587-598.

[6] Chernov A.V. On the analysis of obfuscating transformations, Proceedings
of ISP RAN, v. 3, 2002, p. 7-39. (in Russian)

[7] Chow S., Gu Y., Johnson H., Zakharov V., An approach to the obfusca-
tion of control flow of sequential computer programs. Information Security
Conference, Lecture Notes in Computer Science, 2200, 2001, p. 144-156.

[8] Collberg C., Thomborson C., Low D., A taxonomy of obfuscating transfor-
mations, Tech. Report, N 148, Dept. of Computer Science, Univ. of Auck-
land, 1997.

[9] Collberg C., Thomborson C., Low D., Manufacturing cheap, resilient and
stealthy opaque constructs. Symposium on Principles of Programming Lan-
guages, 1998, p.184-196.

[10] Collberg C., Thomborson C., Low D. Breaking abstraction and unstruc-
turing data structures. IEEE International Conference on Computer Lan-
guages, 1998, p.28-38.

[11] Collberg C., Thomborson C., Watermarking, tamper-proofing and obfus-
cation — tools for software protection. IEEE Transactions on Software En-
gineering, 28, N 2, 2002, p. 735-746.

[12] Devanbu P.T., Stubblebine S. Software engineering for security: a
roadmap. Future of SE Track, 2000, 227-239.

[13] Gollmann D. Computer Security. New York: Willey, 1999.

[14] Hada S., Zero-knowledge and code obfuscation. ASIACRYPT’2000 — Ad-
vances in Cryptology, 2000.

[15] Heintze N., Tardieu O., Ultra-fast alias analysis using CLA, in Proc. of
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2001.

[16] Horwitz S., Shapiro M., Fast and Accurate Flow-Insensitive Points-To
Analysis, , CS Dept., University of Wisconsin-Madison.

[17] Horwitz S., Precise flow-insensitive may-alias analysis is NP-hard. ACM
Transactions on Programming Languages and Systems, 19, N 1, 1997, p.
1-6.

[18] Horwitz S., Reps T., Binkley D. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, v.12,
No 1, p. 26-60.

155

[19] Howard M., LeBlank D., Writing Secure Code, Microsoft Press, 2003.

[20] Landi W. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems, 1, N 4, 1992, p. 323-337.

[21] Linn C., Debray S., Obfuscation of executable code to improve resistance
to static disassembly, in Proceedings of the 10th ACM conference on Com-
puter and communication security, 2003, p.290–299.

[22] MacDonald J., On Program Security and Obfuscation, Technical Report,
University of California, 1998.

[23] Steensgaard B., Points-to analysis in almost linear time, March 1995.

[24] Ogisso T., Sakabe Y., Sochi M., Miyaji A. Software obfuscation on a theo-
retical basis and its implementation, IEEE Transactions on Fundamentals,
E86-A(1), 2003.

[25] Ottenstain K.J., Ottenstain L.M., The program dependence graph in a
software development environment, ACM SIGPLAN Notices, v. 19, 1984,
N 5, p. 177-184.

[26] Ramalingam G., The undecidability of aliasing. ACM Transactions on
Programming Languages and Systems, 16, N 5, 1994, p. 1467-1471.

[27] Varnovsky N.P., Zakharov V.A., On the possibility of provably secure ob-
fuscating programs, in Proceedings of Andrei Ershov Fifth International
Conference ”Perspectives of System Informatics”, Novosibirsk, 2003, p.76–
86.

[28] Wang C., Hill J., Knight J. Davidson J., Software tamper resistance: ob-
structing static analysis of programs, Tech. Report, N 12, Dep. of Comp.
Sci., Univ. of Virginia, 2000.

[29] Weiser M., Program slicing, IEEE Transactions of Software Engineering,
v. 10, 1984, N 4, p. 352-357.

[30] Wroblewski G., General method of program code obfuscation, in Proceed-
ings of the International Conference on Software Engineering Research and
Practice (SERP), 2002, p. 153-159.

156

