Searching Method of Personal Details on the Basis of Fuzzy Comparison

Natalia Limanova <Nataliya.I.Limanova@gmail.com>,
Maxim Sedov <SedovMN@inbox.ru>
Povolzhsky State University of Telecommunications and Informatics,
443010, L. Tolstogo, 23, Samara, Russia

Abstract. During the information exchange from one department to another there is a problem of personal identification. This problem concerns people who have partially or completely not coinciding personal details. For the correct comparison of personal data in databases of the source and the receiver it is necessary to perform intellectual search of such data and to bind them to an existing personal identification number. In the article the method and the algorithm of fuzzy search of personal details in databases are offered. The method is based on the modified Levenshtein metrics with use of three operations with symbols: inserts, replacements and removals where all three operations have identical weight. The general flowchart of the algorithm of the fuzzy search with the detailed description of its operation and features is submitted. The developed procedure of identification can be considered as part of the decision-making support system. Procedure doesn't require the operator intervention, gains experience and trains in the process of operation, allowing to exempt specialists completely from low-profile, inefficient, manual operations directly with the sets of personal details which are stored in databases. The built-in system of details priority allows to identify the person in such cases as change of the surname, name, moving and mistakes at manual data input, and in case of partially absent details. Results of technical and economic indicators comparison of the offered method with existing are given. The algorithm is implemented in PL-SQL in the Oracle database 11g and is used since 2007 in commercial operation at the automated information processing in several municipal authorities of the Samara region. In the long term the offered method has potential of successful introduction in systems of global merging of the state or commercial organizations storages for maintaining the uniform database of population of any country of the world. The logical structure of the developed algorithm gives the chance to implement it in any programming language. Features of the offered method allows to apply program procedures on its basis both in small organizations, and in large corporations, everywhere, where is the register of physical persons data.

Keywords: interdepartmental exchange of information; indistinct matching; search of personal details; function of intellectual matching; personal identification number (PIN).

DOI: 10.15514/ISPRAS-2015-27(3)-23

1. Introduction

In the course of the interdepartmental information exchange there is an approval problem of the main personal details (full name, birth date, address, passport data, etc.) in databases of various departments. The problem of personal identification has the greatest relevance for physical persons who have partially or completely not coinciding personal details.

For optimum control of big data files, in which the information about physical persons is included, it is necessary to provide centralized storage regulations of such personal details as full name, birth date, address, passport data, etc. Recently various departments – holders of local databases have aimed to combine these arrays for simplification and improvement of work quality. But there is a problem of personal details comparison in different databases. In such cases the elaborated intellectual algorithm of data search in databases or, in the other words, the algorithm of identification of physical persons comes to the aid.

For convenience of data processing to each set of details the so-called personal identification number (PIN) is assigned. In the cases of handling or transferring of physical person data all binding is performed to this PIN. Unfortunately, in Russia, there is no uniform database with personal details of all residents, and therefore in each department the separate register of physical persons is kept, and own PINs are given. The problem arises in the case of residents’ information exchange between the organizations. So it is necessary to execute a binding of the entering personal data to the already available information. For an unambiguous binding it is necessary to execute intellectual search of physical person in base receiver which shall consider a set of factors: the mistakes in the case of manual input in the database, the absent or obsolete personal details and etc. It is reasonable to assume that similar search must be implemented in the form of the specialized software [1].

2. Automated search problem

Traditionally this problem is solved by the analysis of identity of the main personal details. There are several details: name, surname, middle name, date of birth, series, passport number and address. Having unambiguously determined coincidence of the existing and new details, it is possible to execute identification of personal details in a database [1][2]. This method of search is carried out manually only in that case when the amount of the transmitted data is small (number of personal details is no more than 30). In case of large volumes of transmitted data the computer comparison of identity of details is used. Such approach allows to determine (50 – 60) % of total number of identifiable personal details. The remained (40 – 50) % is the personal data in which the details in parts or in full don't match. It is more difficult to handle such information manually. Accordingly, the computer search
task is divided into three subtasks depending on the type of input data. As a result of comparison the following three types of results can turn out.

1. The person is found. This conclusion can be created as a result of direct comparison of details, and equality of sets of certain key data. In this case the personal details are attached directly to the corresponding PIN.

2. The person is ambiguously determined. This result is displayed in the presence of mistakes, both in new data, and in the earlier received one. For example, the operator's mistakes in the case of manual input of the main details are possible, data corruption during transmission, incorrect work of package requests in case of information processing, etc. In this case the list of PINs which main details are mostly approached to identifiable data is displayed.

3. The person isn't found. This case shows that this personal details is absent in the database and for a binding of this person to the PIN it is necessary to add him to the available data set with assignment of a new PIN.

When creating an automated complex software, which yields above-mentioned results, the most important was to determine borders between the first and second cases, and also between the second and third. The software working without similar differentiation will put down PINs to all found persons unambiguously, and those whose data are determined ambiguously, are removed in the report for manual handling by the operator. Thus all not found persons will be added to base with assignment of a new PIN. Now let us imagine that in case of any discrepancy of the main details, the data will be provided to the report, or that is even worse, will be added as new. For example, the woman name is Natalia, she got married, respectively she has replaced her surname, she has moved to other residence and she has changed the passport. Besides, in the database she is registered under the name of Natalya, and in her birth date there is a mistake, an incorrectly specified number. When handling such data the program will decide that it is the new person and will add them with assignment of a new PIN. Of course, any task will set to a new PIN in compliance. As a result it turns out that data on one personal detail is doubled and different PINs of one person operate with different tasks. If the error is not corrected immediately, the number of incorrect data will grow up in the geometric progression. On correction of consequences of operation of such software a large number of competent employees of organization will spend a lot of time and forces

The wrong identification can also lead to a large number of data in the report of manual working off, to assignment of the PIN to incorrect person and to addition of excessive data. At worst case the consequences of such mistakes can completely paralyze work of organization for indefinite time, at the best case – to take away more than 10% of working hours of specialists for errors correction. The analysis of the existing software showed that there is no single identifier; the universal algorithm of identification is also absent.

3. Mathematical model of searching method on the basis of fuzzy comparison

Some types of the metrics reflecting intuitive concept of similarity of lines are known. The most common are Hamming’s distance, Levenstein’s metric and distance editing [6][7][8].

Hamming’s distance is determined for lines of identical length and is set as number of line items in which symbols don’t match. In fact, Hamming’s distance is calculated as minimum price of transformation of one line in another when the only operator’s mistakes in the case of manual input of the main details are possible, data corruption during transmission, incorrect work of package requests in case of information processing, etc. In this case the list of PINs which main details are mostly approached to identifiable data is displayed.

In a case when it is required to make comparison of lines of different length, Levenstein's metrics or distance editing are used. These two metrics are very similar on creation and actually are the same metrics, little modified for each case. For example, Levenstein's metrics is determined as minimum price of transformation of one line in another with the use of three transactions: inserts, replacements and removals of a symbol, and all three transactions have identical weight.

The distance editing is modification of Levenstein’s metrics in the case when only two transactions are allowed: insert and removal.

Due to the above, Levenstein’s general metrics which supports all three transactions with line was chosen. For further operation the linguistic variable "similarity of lines" was constructed. It is decided to allocate the following terms: "lines match", "lines almost match", "lines are similar", "lines are similar and dissimilar at the same time", "lines aren't similar".

In the result of the analysis of functions of accessory of linguistic terms there was a need to modify the method of calculation of Levenstein’s metrics. It was required to modify metrics so that the distance between lines depended on length of the compared lines.

Theorem 1:
We will designate by means of size \(p(s_1, s_2) \) Levenstein's metrics, and size \(||s|| \) – length of line \(s \). Then function:

\[
r(s_1, s_2) = \frac{p(s_1, s_2)}{\max\{||s_1||, ||s_2||\}},
\]

is the metrics.

Proof (not strict proof):
Because \(p(s_1, s_2) \) is a metrics, we have:

\[
p(s_1, s_2) \geq 0,
\]

\[
p(s_1, s_2) = p(s_2, s_1),
\]

\[
p(s_1, s_2) + p(s_2, s_3) \geq p(s_1, s_3)
\]

for any lines \(s_1, s_2 \) and \(s_3 \). Considering these ratios and equality (1) we come to a conclusion that \(r(s_1, s_2) \) satisfies to the first two axioms determining metrics. It is
necessary to prove that for any lines \(s_1, s_2 \) and \(s_3 \) function \(r(s_1,s_2) \) satisfies to a triangle inequality:

\[
r(s_1,s_2) + r(s_2,s_3) \geq r(s_1,s_3).
\]

Write this inequality in the form:

\[
\frac{p(s_1,s_j)}{\max \{|| s_1 ||,|| s_j ||\}} + \frac{p(s_2,s_j)}{\max \{|| s_2 ||,|| s_j ||\}} - \frac{p(s_1,s_2)}{\max \{|| s_1 ||,|| s_2 ||\}} \geq 0.
\]

The following cases are possible:

1. \(||s_1|| \leq ||s_2|| \leq ||s_3|| \)
2. \(||s_2|| \leq ||s_1|| \leq ||s_3|| \)
3. \(||s_3|| \leq ||s_1|| \leq ||s_2|| \)
4. \(||s_1|| \leq ||s_3|| \leq ||s_2|| \)
5. \(||s_2|| \leq ||s_3|| \leq ||s_1|| \)
6. \(||s_3|| \leq ||s_2|| \leq ||s_1|| \)

Consider the first case. We have:

\[
\frac{p(s_1,s_j)}{\max \{|| s_1 ||,|| s_j ||\}} + \frac{p(s_2,s_j)}{\max \{|| s_2 ||,|| s_j ||\}} - \frac{p(s_1,s_2)}{\max \{|| s_1 ||,|| s_2 ||\}} = \frac{p(s_1,s_j)}{|| s_1 ||} + \frac{p(s_2,s_j)}{|| s_2 ||} - \frac{p(s_1,s_2)}{|| s_1 ||} \geq \frac{1}{|| s_1 ||} (p(s_1,s_j) + p(s_2,s_j) - p(s_1,s_2)) \geq 0.
\]

Thus, for the first case the triangle inequality is carried out. As the second case is similar to the first one, based on similar calculations we draw a conclusion that for the second case the triangle inequality is also carried out.

We will turn to consideration of the third case. So, in the third case we have:

\[
r(s_1,s_j) + r(s_2,s_j) - r(s_1,s_2) = \frac{1}{|| s_2 ||} (r(s_1,s_j) + r(s_2,s_j) - r(s_1,s_2)) \geq 0.
\]

We'll consider a question when the minimum of the function which is in the right part of this equality is reached. It is clear that if expression of \(r(s_1,s_2) + r(s_2,s_3) \) reaches the minimum, and \(r(s_1,s_3) \) reaches the maximum, the value of all expression will be minimum. The two specified conditions can be satisfied at the same time if two following statements are carried out at the same time:

- lines \(s_1 \) and \(s_2 \) have no common symbols,
- lines \(s_1 \) and \(s_3 \) are included as sublines in \(s_2 \).

Then:

\[
r(s_1,s_3) = \max \{|| s_1 ||,|| s_3 ||\} = || s_1 ||,
\]

\[
r(s_1,s_2) = || s_1 || + || C ||, \quad r(s_2,s_3) = || s_2 || + || C ||,
\]

thus, the minimum value of expression (2) will register in a form:

\[
\frac{|| s_1 || + || C || + || s_2 || + || C ||}{|| s_1 || + || s_2 || + || C ||} = \frac{|| C ||}{|| s_1 || + || s_2 || + || C ||} \geq 0.
\]
OR ((SOUNDEX(TO_TRANSLIT(p.lastname)) =
SOUNDEX(TO_TRANSLIT(fo_Lastname)))
AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =
SOUNDEX(TO_TRANSLIT(fo_Patronymic)))))

OR ((SOUNDEX(TO_TRANSLIT(p.firstname)) =
SOUNDEX(TO_TRANSLIT(fo_Firstname)))
AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =
SOUNDEX(TO_TRANSLIT(fo_Patronymic)))));

4. Creation of models consists in detection of regularities in the analysis of data,
 obtained as the result of step 3, shown in this data set and perhaps suitable for future sets.

5. Check and assessment of models represent testing of regularities for quantity of
data sets satisfying with them. The more sets are suitable for specific models the
more valuable are revealed regularly.

6. The choice of model consists in detection of the most significant regularities for
 further using in case of identification procedure future starts.

7. The model application represents regularity using received and approved in case of
 last start of identification procedure in the current data sets.

8. Correction and updating of models consist in the analysis of result of regularity
 appendix to a new data set, and, if necessary, correction of model for circle
 expansion of suitable sets by fuzzy search of personal details compliance.

Programmatically it looks approximately like this (with use of dynamic SQL):

-- Perform fast identification
OPEN cur_Ref_fast_ident
FOR 'SELECT t.['v_Col_pin']'
 FROM ['v_Table'] t
 WHERE UPPER(TRIM(t.['v_Col_lastname']))) =
 UPPER(TRIM(FO_Lastname)))
AND UPPER(TIRM(t.['v_Col_firstname']))) =
 UPPER(FO_Firstname)))
AND NVL(UPPER(TRIM(t.['v_Col_patronymic']))) =
 NVL(UPPER(FO_Patronymic)))
AND t.['v_Col_birthdate'] =
 TO_CHAR(FO_Birthdate, 'dd.mm.yyyy')
FETCI CUR_REF_FAST_IDENT BULK COLTECT
INTO c_fast_ident;
CLOSE cur_Ref_fast_ident;
-- Depending on the number of pins of identical persons
IF (NVL(c_fast_ident.count, 0) = 1) THEN
 fout_Pin := c_fast_ident(1);
ELSIF (NVL(c_fast_ident.count, 0) > 1) THEN
 FOR i IN c_fast_ident.first..c_fast_ident.last LOOP
 fout_Pin_list:=fout_Pin_list||TO_CHAR(c_fast_ident(i))';
 END LOOP;
-- If fast identification didn't yield results
ELSIF (NVL(c_fast_ident.count, 0) = 0) THEN
 -- write down data from the cursor in collection
 OPEN cur_Ref_full_ident FOR v_Cur_ident;

Fig. 1. The integrated flowchart of developed algorithm of search method on
the basis of fuzzy comparison.
FETCH cur_Ref_full_ident BULK COLLECT INTO c_full_ident;
CLOSE cur_Ref_full_ident;
IF (NVL(c_full_ident.count, 0) > 0) THEN
FOR i IN c_full_ident.first..c_full_ident.last LOOP
-- Perform complete identification
-- The block of comparison of details on the basis of alternative choice (see Fig. 1)
CASE
 WHEN (UPPER(TRIM(c_full_ident(i).ima)) = UPPER(TRIM(fo_Firstname))
 AND UPPER(TRIM(c_full_ident(i).oth)) = UPPER(TRIM(fo_Patronymic))
 AND ((analyzer_two_number(TO_NUMBER (TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy')), TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy'))) = 1
 AND analyzer_two_number(c_full_ident(i).nom, fo_Passport_number) = 1) OR
 ((analyzer_two_number(TO_NUMBER (TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy')), TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy'))) = 1
 OR analyzer_two_number(c_full_ident(i).nom, fo_Passport_number) = 1)
 AND c_full_ident(i).dom = fo_House
 AND c_full_ident(i).kva = fo_Flat))
 THEN fout_Pin_list := fout_Pin_list||TO_CHAR(c_full_ident(i).pin)||' ';
... WHEN (UPPER(TRIM(c_full_ident(i).fam)) = UPPER(TRIM(fo_Lastname))
 AND UPPER(TRIM(c_full_ident(i).ima)) = UPPER(TRIM(fo_Firstname))
 AND analyzer_two_string(c_full_ident(i).oth, fo_Patronymic) = 1)
 THEN v_Pin_list_sim := v_Pin_list_sim||TO_CHAR(c_full_ident(i).pin)||' ';
 ELSE NULL;
END CASE;
END LOOP;
ELSE NULL;
END IF;

In developed implementation of algorithm in PL-SQL DBMS Oracle 11g [10] language, key functions are allocated for logically selected procedures ANALYZER TWO STRING and ANALYZER TWO NUMBER, created on the basis of the modified method calculation of Levenstein’s metrics which allow carrying out intellectual comparison of two similar lines or numbers, taking into account possible inaccuracies or errors of input. These procedures can be applied not only for identification of details, but also everywhere where full text search with fuzzy set input data is required.

5. Technical and economic indicators of proposed algorithm

For the comparative analysis of developed algorithm consider technology of identification on the basis of direct comparison. Using this technology the emphasis goes on speed of records handling, but not on quality of decision making by system. As a result, after completion of procedure on the basis of direct comparison, there are many data (about 20-30% of total quantity of the lines) not connected with initial which need to be fulfilled manually that is extremely difficult in the case of large volumes of the processed data.

When comparing working indicators of two algorithms it is revealed:
Algorithm of direct comparison:
Data processing speed: ~ 100 000 lines per hour;
Identification accuracy (probability of exact searching method): ~ 80%
Algorithm of identification on the basis of fuzzy comparison:
Data processing speed: ~ 80 000 lines per hour;
Identification accuracy (probability of exact searching method): ~ 99.9%

It is possible to draw a conclusion that, operator’s work in manual operation of results is minimized in developed algorithm i.e. though the speed of handling is slightly less, but the algorithm allows to significantly unload operators at the expense of intellectual system of decision making that can't offer algorithm of direct comparison. When comparing economic characteristics of the developed software on the basis of described algorithm with procedure of direct comparison for annual amount of identification of 1 200 000 physical persons the following data were obtained: labor costs on information processing by the method of fuzzy comparison in comparison with method of direct comparison are reduced by 6,7 times, absolute decrease in labor costs constituted 1 446 hours, annual costs when using the fuzzy comparison method decreased by 3 times in comparison with the similar period of application of the direct comparison method, annual economic effect exceeded 580 000 rub. For descriptive reasons some cost indicators which are created when using the software developed and applied are displayed on the chart provided on Fig. 2. Sizes of costs are postponed on ordinate axis in rubles.

![Fig. 2. The chart for the comparative analysis of cost indicators when using methods of direct and fuzzy comparison.](image-url)
6. Conclusions

The considered method and algorithm are based on fuzzy comparison and on the metrics of Levenshtein. The algorithm, developed in the form of Data Mining process, allows defining people quickly according to earlier carried out search. The built-in system of personal details priority gives the opportunity to identify person in such cases as changing of surname, name, moving, mistakes from manual data input and if personal details are partially absent also.

Self-training systems allow releasing human resources for accomplishment of creative tasks. In this area the Data Mining technology provides a full range of theoretical and practical means for choice, development or use of intellectual computer systems.

The procedure of identification from this article can be considered as part of the system of decision support. The procedure does not require the operator intervention, gains experience and learns in the process of operation, allowing to completely exempt specialists from low-profile, inefficient, manual operation directly with the sets of personal details which are stored in databases.

The developed method and algorithm show good results when fields with different information inside (name, address, postcode, phone etc) are compared. Indeed, any symbolic value, whether it be full name, number of the passport or address, it is possible to present in the form of string. In the course of two strings comparison with the help of the offered algorithm, the distinctions of these lines are revealed, such as the admissions of separate symbols or incorrect single symbols which can arise at typographical errors in a manual data set. I.e., from the point of view of symbol-to-symbol comparison, there is no difference between comparison of two passport numbers or two surnames.

In long terms, this algorithm has the possibility of successful implementation in systems of global merger of storages of the state or commercial organizations, for maintaining a single database of the population of any country of the world. The logical structure of developed algorithm allows realizing it in any popular programming language. Features of algorithm allows applying program procedures on its basis both in small organizations, and in large corporations, everywhere, where the register of physical persons data is conducted and staticized. Possible examples of use: portal of state services, medical electronic systems, personnel and accounting systems of accounting of employees, bank systems of data storage on clients, etc.

The algorithm was carried out by PL-SQL of Oracle 11g database management system. The developed software realized the offered method of the computer search of personal data on the basis of fuzzy comparison was implemented and successfully operates since 2007 in the municipal institution «City information center» in Togliatti town of Samara region.
данных и привязку к уже имеющимся персональным идентификационным номерам. В статье предлагается метод и алгоритм нечеткого поиска реквизитов физических лиц в базах данных. Метод основан на модифицированной метрике Левенштейна с использованием трех операций: вставки, замены и удаления символов, где все три операции имеют одинаковый вес. Разработанную процедуру идентификации можно рассматривать как часть системы поддержки принятия решений. Процедура не требует вмешательства оператора, накапливает опыт и самообучается в процессе работы, позволяя, тем самым, полностью освободить специалистов от низкопрофильной, неэффективной ручной работы напрямую с наборами реквизитов физических лиц, хранящимися в базах данных. Встроенная система приоритета реквизитов позволяет идентифицировать человека в таких случаях, как смена фамилии, имени, пересезд, ошибки при ручном вводе данных, а также при частично отсутствующих реквизитах. Приведены результаты сравнения технических и экономических показателей предложенного метода с существующими. Алгоритм реализован на языке PL-SQL в СУБД Oracle 11g и используется с 2007 года в промышленной эксплуатации при автоматизированной обработке информации в нескольких муниципальных учреждениях Самарской области. В перспективе предложенный метод обладает возможностью успешного внедрения в системы глобального объединения хранилищ государственных или коммерческих организаций для ведения единой базы данных населения любой страны мира. Логическая структура разработанного алгоритма дает возможность реализовать его на любом языке программирования. Масштабируемость алгоритма позволяет применять программные процедуры на его основе, как в малых организациях, так и в крупных корпорациях, ведущих и актуализирующих реестр персональных данных физических лиц.

Keywords: interdepartmental exchange of information; indistinct matching; search of personal details; function of intellectual matching; personal identification number (PIN).

DOI: 10.15514/ISPRAS-2015-27(3)-23

Список литературы

341
342