A contract-based method to specify
stimulus-response requirements

4. Naumchev <a.naumchev@innopolis.ru>
'M. Mazzara <m.mazzara@innopolis.ru>
1.2.3B Meyer <Bertrand.Meyer@inf.ethz.ch>
3J.-M. Bruel <bruel@irit.fr>
3F. Galinier <galinier@jrit.fi>
3S. Ebersold <ebersold@irit.fr>
nnopolis University,
1 Universitetskaya st., Innopolis, 420500, Russian Federation.
2Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano MI, Italy.
3Paul Sabatier University,
118 Route de Narbonne, 31062 Toulouse, France.

Abstract. The verification of many practical systems — in particular, embedded systems —
involves processes executing over time, for which it is common to use models based on
temporal logic, in either its linear (LTL) or branching (CTL). Some of today’s most advanced
automatic program verifiers, however, rely on non-temporal theories, particularly Hoare-style
logic. Can we still take advantage of this sophisticated verification technology for more
challenging systems? As a step towards a positive answer, we have defined a translation
scheme from temporal specifications to contract-equipped object-oriented programs, expressed
in Eiffel and hence open for processing by the AutoProof program prover. We have applied
this scheme to a published CTL model of a widely used realistic example, the “landing gear”
system which has been the subject of numerous competing specifications. An attempt to verify
the result in AutoProof failed to prove one temporal property, which on further inspection
seemed to be wrong in the original published model, even though the published work claimed
to have verified an Abstract State Machine implementation of that model. Correcting the CTL
specification to reflect the apparent informal attempt, re-translating again to contracted Eiffel
and re-running the verification leads to success. The LTL-to-contracted-Eiffel process is still
ad hoc, and tailored to generate the kind of scheme that the target verification tool (AutoProof)
can handle best, rather than the simplest or most elegant scheme. Even with this limitation, the
results highlight the need for rigor in the verification process, and (on the positive side)
demonstrate that the highly advanced mechanized proof technology developed over several
decades for the verification of traditional programs also has the potential of handling the
demanding needs of embedded systems and other demanding contemporary developments.

Keywords: seamless requirements; design by contract; autoproof; eiffel; landing gear system

39

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

DOI: 10.15514/ISPRAS-2017-29(4)-3

For citation: Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A
contract-based method to specify stimulus-response requirements. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 39-54. DOI: 10.15514/ISPRAS-2017-29(4)-3

1. Overview and main results

The present article describes a technique for specification and verification of
stimulus-response requirements using a general-purpose programming language
(Eiffel) and a program prover (AutoProof [1]) based on the principles of Design by
Contract [2].

Real-time, or reactive, systems are often run by a software controller that repeatedly
executes one and the same routine and it is specified to take actions at specific time
intervals or according to external stimuli [3]. This architecture is reasonable when the
software has to react timely to non-deterministic changes in the environment. In this
case the program should react to the external stimuli in small steps, so that in the event
of a new change it responds timely.

Computation tree logics (CTL) [4] represent a frequent choice when it comes to
capturing stimulus-response requirements. Although it may be easier to reason about
requirements using declarative logic like CTL, the reasoning may be of little value
for the software developer who will implement the requirements. Mainstream
programming languages are all imperative, and the translation between declarative
requirements and imperative programs is semi-formal.

Requirements have to be of imperative nature from the beginning. This would bridge
the gap in how customers and developers understand them. For a software developer
it is preferable to reason about the future program without switching to an additional
formalism, notation and tools not connected to the original programming language
and the IDE.

The present article describes a technique to achieve this goal, in particular:

e Introduces the Landing Gear System (LGS) case study and the LGS baseline
requirements (Section 2).

e Generalizes the LGS baseline requirements, maps them to a well-established
taxonomy, and complements the taxonomy (Section 3).

e Provides a general scheme for capturing semantics of the stimulus-response
requirements in the form of imperative program routines with assertions
(Section 4).

e Exercises utility of the approach by applying it to an Abstract State Machine
(ASM) specification of the Landing Gear System case study (Section 5).

e Concludes the possibility of statically checking a sequential imperative
program directly against a stimulus-response requirement whose semantics
is expressed in the same programming language through conditionals, loops,
and assertions (Section 7).

40

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

Application of the technique leads to discovery of an error in the published model of
the LGS ASM [5]. The error is not present in the specification the authors have
actually used for proving the properties, but the error has found its way into the
publication.

2. The landing gear system

Landing Gear System was proposed as a benchmark for techniques and tools
dedicated to the verification of behavioral properties of systems [6]. It physically
consists of the landing set, a gear box that stores the gear in the retracted position, and
a door attached to the box (Figure 1). The door and the gear are actuated
independently by a digital controller. The controller reacts to changes in position of a
handle in the cockpit by initiating either gear extension or retraction process. The task
is to program the controller so that it correctly aligns in time the events of changing
the handle’s position and sending commands to the door and the gear actuators.

3. Stimulus-response requirements

The LGS case study defines a number of requirements, including several for the
normal mode of operation (Figure 2). The requirements communicate a common
meaning of the form: If stimulus holds, then response will eventually hold in the
future. For requirement Ri11bis, stimulus <

"The operation mode is normal and the handle is DOWN" and

response & (stimulus = "The gear is down and the door is closed").

The implication in the definition of response reflects the “and stays DOWN” part of
the original requirement. In addition to that, requirements Rz1 and R22 communicate
something else:

e Once response holds in the presence of stimulus, and stimulus holds forever,
response will hold forever.

3.1 Temporal interpretation of the requirements

The authors of the LGS ASM specification start with a ground model that satisfies a
subset of requirements, and then refine the model to satisfy more requirements. The
present article focuses on their ground model and the corresponding baseline
requirements it covers (Figure 2). The work expresses the baseline requirements as
CTL properties. The CTL interpretation assigns precise meanings to the requirements
by assuming small-step execution semantics of ASM’s. In particular, for requirements
R11bis and Ri2bis “the future” means “after a finite number of execution steps”, while
for R21and R2: “the future” means “after one execution step”.

41

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

landing-gear
box

’ landing-gear
P retracted

door

landing-gear
extended

Fig. 1. Landing set (source: [6]).

(R11bis) When the command line is working (normal mode), if the landing gear|
command handle has been pushed DOWN and stays DOWN, then|
eventually the gears will be locked down and the doors will be seen|
closed.

(R12bis) When the command line is working (normal mode), if the landing gear|
command handle has been pushed UP and stays UP, then eventually|
the gears will be locked retracted and the doors will be seen closed.

(R21) When the command line is working (normal mode), if the landing gear|
command handle remains in the DOWN position, then retraction|
sequence is not observed.

(R2»2) When the command line is working (normal mode), if the landing gear|
command handle remains in the UP position, then outgoing sequence
is not observed.

Fig. 2. Baseline LGS requirements.

The finite number of steps in R11bis and Ri2bis may be unacceptably large though for
a system like an LGS of an aircraft. In particular, flights have some expected
durations, and the gears have to react to commands in some limited time frame as
well. The following two major categories of stimulus-response requirements stem
from the speculations above:

o [fstimulus holds, then response will hold in not more than k execution
steps.

42

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

Requirements of this form are also called maximal distance requirements
[7].

o [fstimulus holds, then response will hold in exactly k execution steps.
Requirements of this form are also called exact distance, or delay
requirements.

These two categories are not enough though for capturing stimulus-response
requirements. For example, if according to R11bis the gears are locked down and the
doors seen closed as the result of the handle staying down, we want this state to be
stable if the handle stays down. This leads us to stimulusresponse requirements of the
following form:

e Ifresponse holds under stimulus, it will still hold after one execution step
in the presence of that stimulus.
Let us call such requirements response stability requirements.
It makes sense to complement requirements (Riibis) and (Riz2bis) with the
corresponding response stability requirements (Figure 3): not only do we want the
LGS to respond to a change in the handle’s position, but we also want it to maintain
the response if the position does not change.

(Rii7s) If the gears are locked extended and the doors are closed when the
landing gear command handle is DOWN, this state will still hold if the
handle stays DOWN.

(Ri2rs) If the gears are locked retracted and the doors are closed when the
landing gear command handle is UP, this state will
still hold if the handle stays UP.

Fig. 3. LGS response stability requirements.

4. Translation of stimulus-response requirements

Assuming the presence of an infinite loop from until False loop main end that runs a
reactive system, a temporal stimulus-response requirement (Section 3.1) takes the
form of a routine with an assertion (check end construct in Eiffel). The authors draw
this idea from the notion of a specification driver [8] - a contracted routine that forms
a proof obligation in Hoare logic. AutoProof'is a prover of Eiffel programs that makes
it possible to statically check the assertions.

response_holds within_k_steps
-- If stimulus holds, response will hold within k steps.
local
steps: NATURAL
do

43

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

if (stimulus) then
from
steps :=0
until
response or (steps = k)
loop
main
steps := steps + 1
end
check response end
end
end

Fig. 4. Representation of a maximal distance requirement. Regardless of the actual reason
for the loop to terminate, the response has to hold if the stimulus held at the entry to the loop.

response_holds_in_k_steps
-- If stimulus holds, response will hold in k steps.

local
steps: NATURAL
do
if (stimulus) then
from
steps :=0
until
response or (steps=k)
loop
main
steps = steps + 1
end
check (response and (steps = k)) end
end
end

Fig. 5. Representation of an exact distance requirement. Both of the loop exit conditions have
to hold for the first time simultaneously if the stimulus held at the entry to the loop.

44

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

4.1 Maximal distance

In the representation of a maximal distance requirement (Figure 4) the “if stimulus
then” clause captures the presence of the stimulus before the up-to-k-length execution
fragment, and the “check response end” assertion expresses the need for the response
upon completion of the subexecution. The sub-execution may complete for two
possible reasons: either occurrence of the response or consumption of all of the
available k steps. In the both cases the response has to hold.

4.2 Exact distance

Representation of an exact distance requirement (Figure 5) is very similar to that one
of'a maximal distance, with the “check (response and (steps = k)) end” assertion that
makes the difference. Regardless of whether the loop terminates because of
“response or steps = k”, the both have to hold upon the termination.

4.3 Response stability

Representation of a response stability requirement (Figure 6) says: whenever response
holds under stimulus in a state, it will still hold in the presence of the same stimulus
in the next state.

response_is stable under stimulus
-- response keeps holding under stimulus.
do
if (stimulus and response) then
main
check (stimulus implies response) end
end
end

Fig. 6. Representation of a response stability requirement. If response holds under stimulus
in some state, the response should hold in the next state in the presence of the same stimulus.

5. Applying the translation scheme to the landing gear example

The article exercises the approach on the LGS ASM specification, which is
operational by the definition and thus is a subject for translation into an imperative
program. For this reason the present section starts with explanation of the rules
according to which the authors converted the original specification into an Eiffel
program.

5.1 Translation of ASM specifications

An ASM specification is a collection of rules taking one of the following three forms
[9]: assignment (Section V-Al), do-in-parallel (Section V-A2), and conditional

45

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

(Section V-A3). If we have general rules for translating these operators into Eiffel
then we will be able to translate an arbitrary ASM into an Eiffel program.

An ASM assignment looks as follows:

f(ty, . t7) ==t (1)

The semantics is: update the current content of location A = (f,(as,..,a;)), where a;are
values referenced by ti, with the value referenced by to.

In Eiffel locations are represented with class attributes, so an ASM’s location update
corresponds in Eiffel to an attribute assignment.

An ASM do-in-parallel operation can apply several rules simultaneously in one
step:

Ryfl 11 Ry 2

In order to emulate a parallel assignment in a synchronous setting, one needs to
assign first to fresh variables and then assign their values to the original ones. For
example, an ASM do-in-parallel statement

a,b := max(a — b, b),min(a — b, b) 3)
in Eiffel would look like:

local
a_intermediate, b_intermediate: INTEGER
do
a_intermediate := max (a-b, b)
b_intermediate := min (a-b, b)
a:=a_intermediate
b :=b_intermediate
end

An attempt to update in parallel identical locations in an ASM corresponds
semantically to a crash. The translation scheme not only preserves but strengthens
this semantics: an Eiffel program with two local variables declared with identical
names will not compile.

Conditional: An ASM conditional if t then R1 else R2 carries the same meaning as
in Eiffel, so the translation is straightforward.

46

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

5.2 An error in the ground model

Translation of the original LGS ASM specification into Eiffel is publicly available in
a GitHub repository [10] The error is not handling the situation when the door is
closing and the handle is pushed down, in which case the ground model will not meet
requirement (R11bis). To catch this error with the SVR method one needs first to
introduce it back by commenting out two lines in the “open_door” routine of the Eiffel
translation:

open_door
do
inspect door_status
when closed position then
door_status := opening_state
-- when closing_state then
-- door_status := opening_state
and then submit routine r11_bis to verification with AutoProof; the verification will

fail. We have contacted an author of the article that contains the erroneous ASM
specification, and he admitted the presence of the error.

5.3 Requirements
The two classes include the translations of the baseline requirements plus the response
stability requirements introduced in the present article. We do not discuss all of them
here: requirements (R11bis) and (Rizbis), (Rz21) and (Rz2), (R11rs) and (Rizrs) are
pairwise similar, which is why we prefer to pick one from each pair.
Translation of requirement rl1l_bis (Figure 7) is an application of the
response_holds_within_k_steps pattern (Figure 4), where:
e stimulus equates to:
is normal _mode and (handle status = is_handle down)
e response equates to:
(not (is_normal mode and (handle status = is_handle down))) or
((gear_status =is_gear_extended) and (door_status = is_door_closed))
The idea behind the response is that there may be two reasons for the gear not to
extend and the door not to close:
e An abnormal situation that leads to quitting the normal mode.
e The crew changes their mind and pushes the handle up.

rll bis
--If (is_normal mode and (handle status =is handle down)) hold and
remain,
-- ((gear status = is gear extended) and (door status =

is_door_closed)) will hold within 10 steps.
47

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

local
steps: NATURAL
do
if (is_normal _mode and (handle_status = is_handle _down)) then
from
steps :=0
until

(not (is_normal_mode and (handle_status =is_handle down)))
or ((gear_status = is_gear extended) and

(door_status =is_door_closed)) or (steps = 10)
loop

main

steps :=steps + 1
end

check (not (is_ normal mode and (handle status =
is_handle down))) or

((gear_status =is_gear extended) and (door_status =
is_door_closed)) end

end
end

Fig. 7. Translation of the “r11 bis” requirement.

21

-- If (is_normal_mode and (handle_status = is_handle up)) holds and
remains,

-- (gear_status=1s_gear extending) will hold within 1 step.

local
steps: NATURAL
do
if (is_normal _mode and (handle_status = is_handle up)) then
from
steps :=0
until

(not (is_normal_mode and (handle_status =is_handle up))) or
(gear status =is gear extending) or
(steps = 1)
loop
main
steps :=steps + 1

48

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

end
check (not (is_normal mode and (handle_status =is_handle up)))
or
(gear_status = is_gear extending) end
end
end

Fig. 8. Translation of the “r21” requirement.

rll rs
-- ((gear_status = is_gear extended) and (door status =
is_door_closed)) keeps holding under
-- (is_normal _mode and (handle_status =is_handle_down))
do
if ((is_normal mode and (handle status =is_handle down)) and
((gear_status = is_gear_extended) and (door_status =
is_door_closed))) then
main
check ((is_normal mode and (handle status =is_handle down))
implies
((gear_status = is_gear_extended) and (door_status =
is_door_closed))) end
end
end

Fig. 9. Translation of the “rl1 rs” requirement.

6. Related work

Modeling of real-time computation and related requirements is a well-investigated
matter [12]. Representation of real-time requirements, expressed in general or specific
form, is a challenging task that has been attacked by the use of several formalisms
both in sequential and concurrent settings, and in a broad set of application domains.
The difficulty (or impossibility) to fully represents general real-time requirements
other than in natural language, or making use of excessively complicated formalisms
(unsuitable for software developers), has been recognized.

In [13] the domain of real-time reconfiguration of system is discussed, emphasizing
the necessity of adequate formalisms. The problem of modeling real time in the
context of services orchestration in Business Process, and in presence of abnormal
behavior has been examined in [14] and [15] by means, respectively, of process
algebra and temporal logic. Modeling of protocols also requires real-time aspects to
be represented [16]. Event-B has also been used as a vector for real-time extension
[17] in order to handle embedded systems requirements.

49

In all these studies, the necessity emerged of focusing on specific typology of
requirements using ad-hoc formalisms and techniques, and making use of
abstractions. The notion of “real-time” is often abstracted as number of steps, a metric
commonly used. In this paper we follow the same approach, inheriting both strength
(simplicity of the model and effectiveness for applicative purposes) and limitations
(temporal logic and time automata themselves miss to capture a precise notion of real-
time).

7. Conclusions and future work

Software developers reason in an imperative/operational manner. This claim is
supported both by anecdotal experience and by empirical evidence [18].
Requirements expressed in imperative/operational fashion would therefore results of
easier comprehensions for developers and would simplify the process of negotiation
behind requirements elicitation. In the method described in this paper, requirements
are expressed in a formalism (or language) that seamlessly stay the same along the
whole process, without the need of switching between different instruments or mental
paradigms. At the same time, the linguistic tool used to define them also allows for
automatic verification of correctness.

The meaning of correctness here remains subject to the assumption that requirements
engineers and stakeholders agree on a list of desiderata that is indeed the intended
one. Assuming a non-faulty process of intention transferring (and this assumption is
common to any other approach too), requirements are now more easily manageable
by software engineerings all the way from elicitation to verification.

The result of elicitation process is a set of requirements in natural language. The full
realization of the presented method would imply an automatic (or semi-automatic)
translation from natural language into a structured representation that, although
completely intuitive for software developers, it is possibly not easy to manage for
average stakeholders. The first part of this process, i.e., the translation from natural
language into the current representation (and back) is under development. A tool
automatically translates semi-structured natural language into the Hoare-triple-based
representation [19], allowing also the opposite direction, i.e. back to natural language
[20], so that software engineers would be able to negotiate back requirements with
stakeholders using a format they would comprehend. The role of the requirement
engineers would then consist in concluding the elicitation phase with a set of
requirements in semi-structured natural language, which the tool would be able to
process in an entirely automatic manner.

This paper supports the idea of seamless development describing a method supported
by a formalism that stay the same along the whole process, from requirements to
deployment. Alternative approaches have also been experimented which make use of
formalism-based toolkits, where ad hoc notations are adopted for each development
phase [21].

50

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

References

[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active
functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,
2015.

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts. Springer,
2009.

[3]. I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, FME 2003, pp. 154-169. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” Logics of programs, pp. 5271, 1982.

[S]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the
landing gear system case study,” in International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pp. 3651, Springer, 2014.

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1-18, Springer,
2014.

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255— 299, 1990.

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in 2016
10th International Symposium on Theoretical Aspects of Software Engineering (TASE), pp.
160-167, July 2016.

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77-111, 2000.

[10]. A. Naumchev, “Lgs asm ground model in eiffel”
https://github.com/anaumchev/lgs_ground model, 2017.

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through
semantic collaboration,” in FM 2014: Formal Methods, pp. 514-530, Springer, 2014.

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,”
IRE Transactions on Electronic Computers, vol. EC-11, pp. 753-760, Dec 1962.

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic
reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND 10, (Washington, DC, USA), pp.
173-181, IEEE Computer Society, 2010.

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287—
302, 2005.

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows
with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, Vienna, Austria, 29-31 August, 2014, pp. 29-40, 2014.

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-
calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21-46, 2000.

[17]. A. Tliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting
event-b modelling with real time verification,” in Proceedings of the First International

51

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

Workshop on Formal Methods in Software Engineering: Rigorous and Agile Approaches,
FormSERA 12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zugal,
Declarative versus Imperative Process Modeling Languages: The Issue of
Understandability. Enterprise, Business-Process and Information Systems Modeling,
Springer Berlin Heidelberg, 2009.

[19]. A. Bormotova, “Translation of natural language into hoare triples.”
https://github.com/An-Dole/ Semantic-mapping.
[20]. V. Skukov, “Translation of hoare triples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal
Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,
2013, pp. 3642, 2013.

KoHTpakTHbIN MeTOoA cneuncpurkaumm peakTMBHbIX
TpeboBaHun

'A. Haymues <a.naumchev@innopolis.ru>
M. Mayyapa <m.mazzara@jinnopolis.ru>
1235 Meiiep <Bertrand.Meyer@inf-ethz.ch>
3K.-M. Bpioans <bruel@irit.fi>
3. lanunve <galinier@irit. fr>
3C. Dbepconv <ebersold@irit.fr>
"Vuueepcumem Unnononuc,
420500, Poccuiickas @eodepayus, e. Uunononuc, yn. Yuusepcumemckas, 0. 1.
2Munanckuii mexHuuecKkuil ynusepcumen,
20133, Umanus, 2. Munan, Piazza Leonardo da Vinci, 32.
3 Vuusepcumem Tynysol,
31062, @panyus, e. Tynysza, Route de Narbonne, 118.

AnHoTamus. Bepuduxanys MHOTUX NPHKIAAHBIX CHCTEM — B YaCTHOCTH, BCTPOEHHBIX, -
BKJIIOYAeT B ce0sl MPOLECCHI, HCIOJIHAIOLINECS BO BPEMEHH, UL MOJCIMPOBAHUA KOTOPBIX
OOBIYHO HCHOJNB3yeTcss BpeMeHHas Jyoruka, jguHednas (LTL) wmmm BerBsmasics (CTL).
HauGonee pa3BuThle aBTOMAaTHYECKHE JOKa3aTeNM IPOTPaMM, OJHAKO, OCHOBAaHBI Ha
HEBPEMEHHbIX TEOPHUSIX: HAIIPHMeEp, Ha JIoTHKe Xoapa. Bo3MoxHO 11 Bce e IPUMEHEHHE 9TOH
Pa3BHUTOH TEXHOJIOTUH BepUHKAIMH K OoJIee CIIOKHBIM cucTeMaM? B kadecTBe mrara Ha IyTH
K MOJOXHUTEIIBHOMY OTBETy, MBI pa3paboTanmu cxeMy IiepeBoga noamuHoxkectBa LTL
crieruKauii B 00beKTHO-OPUEHTHPOBAHHbBIC TPOrpaMMBbI ¢ KOHTpakTtamu Ha s3bike Eiffel,
KOTOpBIE SBIAIOTCS €CTECTBEHHBIMM LEJSIMHM Ul JoKasarens nporpamMm AutoProof. Msr
HPUMEHHII 3Ty CXEMY K OITyOJMKOBAHHON BPEMEHHOW MOJENM IIMPOKO HCIHOJIB3YEMOTo
PEATMCTUYHOTO IPUMePa, aBUALIMOHHON CUCTEMbI KOHTPOJIS LIIACCH, SBIISIOIIECHCS CBOETO poJia
STAJOHHOH 3ajadell JUIl CPaBHEHUS NPUMEHHUMOCTH PA3IMYHBIX METOIOB CHEIU(DHUKAIUH.
Bepudukanus nepeseneHHoi crienukanyy ¢ momomnibio AutoProof o6napyxuna ommoKy B
OJHOM U3 BPEMEHHu/X CBOMCTB. YTIIyOJICHHOE WH3ydeHHE MAaHHOW OINMOKM IPUBEIO K
OOHapyXEHHIO OMmMOKH B OITyOJMKOBAaHHOW aOCTpakTHOH MammHe cocTosHHE (ASM),
KOTOpast peajiM3yeT NepeBeACHHYI0 MOJENb; aBTOPHI IyOJIHMKaLi1, B CBOIO O4epe/ib, 3asBIIN

52

Haywmues A., Mamuapa M., Meiiep b., Bptoains XK.-M., Tanusbe ®., 96epcons C. KoHTpakTHBIH MeTOA crietudHKanin
peakTuBHBIX TpeboBauuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

06 ycnemmHol Bepuduxarmu. KoppekTHpoBka HCXOIHON cHenuduKamuy U HEepeBOJ
pesynsraTa B Eiffel ¢ koHTpakTamu ¢ mocienyromeil Bepupukanyeil IpuBeIu K yCHSIITHOMY
pesyabraty. [Ipouecc nepeBona uz LTL B Eiffel Bce emie HaxoanTces B 3a4aTOYHOM COCTOSIHUM
U ONTHMH3HMPOBAaH IS MCIOJIB3YyeMOro MHCTpyMeHTa Bepudukamuu (AutoProof), mosromy
CXeMa IEepeBO/la HE BBINIOUT MPOCTOM M 3JEraHTHOM. Jlake ¢ y4eToM YKa3aHHBIX
OrPaHMYEHUH IOJy4YEHHBIE pE3YJbTaThl JEMOHCTPUPYIOT IOTCHLIMAT TEXHOJOTHH
ABTOMATHYECKOTO JIOKAa3aTeIbCTBA TPAJUIMOHHBIX IPOTPAMM B YacTH €€ MPUMEHUMOCTH K
crietuGUYHBIM IPOOIEeMaM BCTPOCHHBIX CHCTEM.

KiroueBbie ci1oBa: GeclioBHbIC TpeOOBaHMSA; NPOSKTHPOBAHHE MO KOHTPAKTy; autoproof;
iihestb; cucTeMa KOHTPOJIS LIACCH

DOI: 10.15514/ISPRAS-2017-29(4)-3

Jas uutupoBanusa: Haymue A., Mamuapa M., Meiiep b., bproans XK.-M., Namunse @.,
D6epcoip C. KouTpakTHblii MeTos crienuUKaliu peakTUBHBIX TpeboBauuil. Tpyoer UCIT
PAH, tom 29, Beim. 4, 2017 1., ctp. 39-54 (Ha anrnuiickom si3eike). DOIL: 10.15514/ISPRAS-
2017-29(4)-3

Cnucok nutepatypbl

[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active
functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,
2015.

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts. Springer,
2009.

[3]. L. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, FME 2003, pp. 154-169. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” Logics of programs, pp. 52—71, 1982.

[S]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the
landing gear system case study,” in International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pp. 3651, Springer, 2014.

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1-18, Springer,
2014.

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255— 299, 1990.

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in 2016
10th International Symposium on Theoretical Aspects of Software Engineering (TASE), pp.
160-167, July 2016.

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77-111, 2000.

[10]. A. Naumchev, “Lgs asm ground model in eiffel”
https://github.com/anaumchev/lgs_ground model, 2017.

53

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through
semantic collaboration,” in FM 2014: Formal Methods, pp. 514-530, Springer, 2014.

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,”
IRE Transactions on Electronic Computers, vol. EC-11, pp. 753-760, Dec 1962.

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic
reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND 10, (Washington, DC, USA), pp.
173-181, IEEE Computer Society, 2010.

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287—
302, 2005.

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows
with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, Vienna, Austria, 29-31 August, 2014, pp. 29-40, 2014.

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-
calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21-46, 2000.

[17]. A. Tliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting
event-b modelling with real time verification,” in Proceedings of the First International
Workshop on Formal Methods in Software Engineering: Rigorous and Agile Approaches,
FormSERA 12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zugal,
Declarative versus Imperative Process Modeling Languages: The Issue of
Understandability. Enterprise, Business-Process and Information Systems Modeling,
Springer Berlin Heidelberg, 2009.

[19]. A. Bormotova, “Translation of natural language into hoare triples.”
https://github.com/An-Dole/ Semantic-mapping.
[20]. V. Skukov, “Translation of hoare ftriples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal
Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,
2013, pp. 3642, 2013.

54

