DOI: 10.15514/ISPRAS-2019-31(6)-13

Numerical study of effect of the turbulence initial conditions on transition flow over 2D airfoil

Ali Rami, ORCID: 0000-0003-0591-6221 <ramimandouhali@gmail.com>
N.V. Tryaskin, ORCID: 0000-0002-2208-2241 <nikita.tryaskin@smtu.ru>
State Marine Technical University (SMTU),
190121, Russia, Saint-Petersburg, Lotsmanskaya st., 3

Abstract. The performance of the airfoil is strongly dependent on the development of the boundary layer on the surface and therefore an accurate prediction of the laminar to turbulent transition onset is essential. A grid independence study is performed, turbulence variables values have been changed frequently, regularly, and carefully so that they cover the entire range of acceptable values reported by previous researches. Effects of turbulent varying at far stream on turbulent boundary layer structure and on transition stage characteristics at moderate Reynolds number $Re = 10^6$ have been studied over a full range of angles of attack of NACA0012. Numerical results have been post-processed, analyzed and found that far stream turbulence variables have a significant effect on transition characteristic, their effects on skin friction is limited to small extent along wing surface where transition take place, increasing turbulence intensity or eddy viscosity ratio at far boundary shifts transition onset towards leading edge and increase transition length.

Keyword: Turbulence intensity; Eddy viscosity ratio; k- ω SST; Transition; NACA0012

1. Introduction

Flows at moderate and high Reynolds number are characterized by complex turbulent boundary-layer effects, including leading-edge laminar-to-turbulent transition, flow reattachment, trailing-edge separation, and leading-edge separation. Laminar-to-turbulent transition in shear layer of the flows over airfoil is of particular importance, although it has subjected to intensive research over the past decades but it still far from completely understood.

The location where transition starts, and the spatial extension occupied by it are of a great importance in the airfoil performance. Therefore, the accurate understanding of transition process allows us adjusting the flow and controlling its nature so we can delay the turbulent phase where laminar flow characteristics are desirable or to accelerate it where high mixing rates of turbulent flow are of interest.

The difficulty in modelling transition arises from its non-linearity, wide range of scales, and the fact that it can occur through different mechanisms [1]. An overview of different scenarios of laminar-turbulent transition can be found in studies [2, 3, 4].

The transition process is greatly influenced by pressure gradients and separation, Mach number effects, free-stream turbulence, wall roughness, streamline curvature, surface heating or cooling, suction or blowing of fluid from the wall and so on [5].

H.A. Madsen et al. researched effects of leading-edge roughness on Laminar-Turbulent Transition, their analyses show that the critical height of the leading-edge roughness is to be met in order to have a bypass transition to turbulent flow [6]. Mayle [7] ensured the importance of pressure gradient and turbulence intensity on the transition onset on airfoil. Butler et al. [8] studied effects of turbulent intensity on flow separation at low Reynolds number and found that increasing turbulence intensity to high level 10% prevent the separation. Mueller and Pohlman [9], Höffmann [10] and Huang and Lee [11] show that the increasing in turbulent intensity has resulted increase in maximum lift coefficient for the airfoil. Jian-Ping Wang et al researched the effect of the turbulence intensity of the oncoming flow with low Reynolds numbers on the airfoil pressure gradient and found that turbulence intensity has significant impact on lift and drag coefficients [12]. Ning Cao focused on his study on the independent effects of the turbulence intensity and integral length scale on the C_f and C_d, of an asymmetric, high lift airfoil, at different Re and found that increasing Tu leads to delay stall at high angle of attack [13].

However, a literature review shows that there is a little investigation about the effects of eddy viscosity ratio at certain value of turbulent intensity on the transition character over airfoil at moderate Reynold number. Bridging this gap is the main motivation of current study. So, this paper deals with the effects of far stream turbulence variables on the onset and length of laminar-to turbulent transition and its influence on flow character and airfoil performance at moderate Reynold number.

The paper starts with a description of the methodology in section 2, which includes a brief description of used turbulence model k- ω SST and wall functions, the geometrical and operational characteristics of the chosen airfoil, the grid and computational domain, the numerical settings and grid convergence analyze which include a sensitivity analyze of results to grid resolution and in addition to validation with experimental data [14].

Finally results and discussion of far stream turbulence parameter effects on transition onset and length are discussed in section 3, conclusions are presented in section 4.
2. Methodology

2.1 k-ω SST standard turbulence model

The Menter Shear Stress Transport Turbulence Model k-ω SST is a two-equation eddy-viscosity model used for many hydrodynamic and aerodynamic applications, this model combines the well-known low Reynolds turbulence model $k = \omega$ and high Reynolds turbulence model $k = \epsilon$, the former is suitable for simulating flow in the viscous sub-layer, but it suffers from a high sensitivity to the inlet free-stream turbulence properties, while the latter is ideal for predicting flow behavior in regions away from the wall but it performs poorly in adverse pressure gradient situations and cannot be used all the way down to wall.

To eliminate the disadvantages of each individual model and to maintain their strengths a blinder function F_3 is used to switch between $k = \epsilon$ in the free stream and $k = \omega$ near the walls, which ensures that the appropriate model is utilized throughout the flow field. Therefore, k-ω SST model can be used all the way down to the wall without being influenced by free-stream turbulence [15,16].

The two transport equations that form the basis of the model are as follows:

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_i k)}{\partial x_i} = \frac{\partial}{\partial x_j} \left(\nu \frac{\partial k}{\partial x_j} \right)$$
$$\frac{\partial (\rho \omega)}{\partial t} + \frac{\partial (\rho u_i \omega)}{\partial x_i} = \frac{\partial}{\partial x_j} \left(\nu_t \frac{\partial \omega}{\partial x_j} \right) + 2(1 - F_3) \frac{\rho \sigma_w \omega}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial k}{\partial x_i}$$

In these equations, P is the sources term, F_3 is a blending function and $\beta, \beta', \sigma_{\omega}, \sigma_w$ and σ_k are constant.

Viscous effects near walls are characterized by the non-dimensional wall distance $y^* = (y \cdot u^*)/\nu$, where u^* is the friction velocity, y is the distance to the wall, and ν is the kinematic viscosity of the fluid. Using low Reynolds turbulence model as approach to simulate flow near the wall enforces us to place the first cell center in the viscous sublayer, advised to be $y^* \approx 1$, that leads to finest mesh and thus increasing computing time, the case will be the same when using modified high Reynolds turbulence models. Launder and Spalding [17] proposed the wall function which is an empirical equation used to satisfy the physics of the flow in the near wall region so the first cell center now needs to be placed in the log-law region $y^* \geq 30$ to ensure the accuracy of the result, both approaches produce large errors if used outside of their range of validity.

It is difficult to ensure that cells adjacent to the wall will all fall within the desired layer, so in OpenFOAM the existing wall functions have been modified and improved to include the buffer layer [18] and to ensure that they can provide the accurate result so wherever the position of the first cell center [19]. In this study we will employ OpenFOAM Low Reynold wall functions to approximate the viscous quantities in the boundary layer surrounding the airfoil, this type of wall functions has improved to allow the first cell center to be placed in buffer layer, depending on internal switch developed based on the value of $yPlusLam$ coefficient. $yPlusLam$ is determined by an iteration process designed to divide buffer layer into two parties, one uses the liner relation as that in viscous sublayer, and the other uses logarithmic function as that in logarithmic region. So, these wall functions give appropriate values wherever the position of the first cell center, that gives us more flexibility during the mesh optimization stage, facilitate calculations and reduce simulation time, now minimum wall distance y and y^* value could be enlarged, and the case will be properly modeled [19].

We have to indicate that the theory of wall functions used in OpenFOAM is based on the paper proposed by Georgi Kalitzin et al. [20].

2.2 Chosen Airfoil

In this paper we will use NACA 0012 airfoil, a conventional, symmetrical airfoil with maximum thickness 12% located at 30% chord, where C is the airfoil chord length. NACA 0012 belongs to NACA 4-digits airfoil series (NACA MPXX), a series controlled by 4 digits prepared carefully to describe the geometrical properties of an airfoil, maximum camber, position of the maximum camber and maximum airfoil thickness at 30% chord, respectively. These digits are given as percentages of the airfoil chord length C. The camber line of airfoil, in addition to the perpendicular distribution of the thicknesses along its length, is given by mathematical equations, thus facilitate the generation of the geometrical section of any airfoil.

2.3 Computational domain and grid

O-Grid domain prepared to simulate flow over the wing, based on similar studies and to avoid confinement effects and consequently to apply the far-field boundary, the circular domain surrounding the airfoil of unit chord was chosen to be of radius 50C, fig. 1(a).

![Fig. 1 (a) O-Grid computational domain mesh; (b) Internal domain mesh; (c) Leading edge spans; (d) Trailing edge spans](image-url)
extrapolation spatial convergence of CFD simulation was performed on the finest two grids to predict the true value of the drag coefficient at zero-grid spacing based on order of convergence, and found to be 0.01 (see table 1). The grid convergence indexes \(C_{\text{CI}} \) for fine-medium grid and medium-coarse grid were calculated using a safety factor for three grids \(fs = 1.25 \) and found that \(C_{\text{CI_{fs}}} = 0.146 \), \(C_{\text{CI_{2}}} = 0.521 \) and they achieve the relation \(C_{\text{CI_{fs}/(r^2 \cdot C_{\text{CI_{2}}})}} = 1.003 \) which is approximately one, and indicates that we are asymptotically approaching a converged answer, and thus our solution is definitely grid independent (see table 1).

Table 1. Studying the Computational grid convergence for drag coefficient at \(\alpha = 0^\circ, 8^\circ \)

<table>
<thead>
<tr>
<th>Angle of Attack</th>
<th>fine mesh</th>
<th>medium mesh</th>
<th>coarse mesh</th>
<th>Order of Grid Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.010281</td>
<td>0.010250</td>
<td>0.010142</td>
<td>P = 1.82</td>
</tr>
<tr>
<td>8</td>
<td>0.015261</td>
<td>0.015087</td>
<td>0.014469</td>
<td>P = 1.82</td>
</tr>
<tr>
<td>Richardson extrapolation</td>
<td>(C_{\text{CI_{fs}}})</td>
<td>(C_{\text{CI_{2}}})</td>
<td>(C_{\text{CI_{fs}/(r^2 \cdot C_{\text{CI_{2}}})}})</td>
<td>Richardson extrapolation</td>
</tr>
<tr>
<td>0.010293</td>
<td>0.146650</td>
<td>0.520965</td>
<td>0.002991</td>
<td>P = 1.01293</td>
</tr>
<tr>
<td>0.015330</td>
<td>0.564287</td>
<td>0.189595</td>
<td>0.011585</td>
<td>P = 1.015330</td>
</tr>
</tbody>
</table>

Furthermore, the drag coefficient \(C_d \), the most sensitive variable [26], and lift coefficients \((C_l) \) of the airfoil at moderate Reynolds number are compared for the three grids in order to further investigate the grid dependency of the results (see fig. 3). It can clearly be seen that the ability of predicting increases as mesh size increases:

![Fig. 2. Grid convergence study](image)

![Fig. 3. Drag and lift curves for the three grids (coarse, medium, fine.](image)
Based on these results the medium grid was selected for the rest of the calculations, and it is believed that the initial 400 nodes grid was quite enough to capture the flow.

3. Results and discussion

The onset of the transition phase is evidenced by the apparent changes in the behavior of skin-friction coefficient C_f. The minimum local value in the friction curve indicates the start of the transition phase, the emergence of bubbles of turbulence, its growth in the laminar layer, its explosion and subsequent fusion, thus announcing manifestation of the fully developed turbulent flow.

The huge computational possibilities and vast computing resources available at laboratories of SMTU university allowed conducting a digital modeling and simulation of flow around 2-D NACA0012 profile. The simulations were done for a series of far-stream turbulence intensities and eddy viscosity ratios to indicate their effects on the onset and length of transition phase for airfoil located in viscous incompressible fluid, viscosity $\nu = 1.516$ at temperature $293.15K$, at various angle of attack and constant $Re = 10^6$.

3.1 Effects of eddy viscosity ratio on onset and length of transition over the airfoil

Studying the effects of eddy viscosity ratio can be done by examine the behavior of skin friction coefficient curve at different value of μ / μ_t. Generally, μ / μ_t has a local effect on the skin friction coefficient (C_f), which maintains itself along the length of the wing, except for a very limited area of the wing surface along it the transition process take place. Using higher values for μ / μ_t at the far boundary increases the value of skin friction coefficient (C_f) in this area, as well as shifting the onset transition point towards the front edge of the wing.

Fig. 4(a) shows the curves of the skin friction coefficient variation along a section of a two-dimensional airfoil NAC0012 located at angle of attack $\alpha = 0^\circ$ in a non-compressible viscous flow field at turbulence intensity $Tu = 0.1$ and various values of μ / μ_t.

![Skin friction coefficient curves on NACA0012 surface at angle of attack 0 Degree, for various values of far-stream turbulence variables](image)

The curves of fig. 4(a) show that increasing the Eddy viscosity ratio at a certain value of turbulence intensity leads to shift onset transition location towards leading edge of the airfoil. At a low value of far stream turbulence intensity $Tu = 0.1$, increasing μ / μ_t from 0.01 to 10 at moderate values of Reynolds number $Re = 10^5$ leads to shift the transition point of flow over NASA 0012 surface towards leading edge from 0.0558 to 0.04387, which represents a change of 1.19% of chord length. This displacement is accompanied by an increase in the value of skin friction coefficient from $4.681 \cdot 10^{-3}$ to $5.457 \cdot 10^{-3}$, a relative increase of 16.57%, and a decrease in the length of the transition.

![Skin friction coefficient curves on NACA0012 surface at angle of attack 0 Degree, at certain value of eddy viscosity ratio and different values of far-stream turbulence intensity](image)

Analysis of shape curves indicates that increased intensity of turbulence slightly excites the instability over the airfoil surface and therefore increases the rates of disturbance in the shear layer causing upstream shift of transition onset as well as slightly increase in transition length. Despite the values of turbulence intensity Tu vary widely at boundaries, their values next to the wing are convergent and the modeling values of the transition onset are therefore close to each other. This behavior is related to the ability of the grid to solve decay equations at different values of turbulence variables. When high values are used at boundary, the decay rates modeled by grid are dramatically decreased while gradually decreased when low values are used.
3.3 Effects of angle of attack on onset and length of transition over the airfoil.

To study angle of attack effects on the characteristics of the transition phase, the previous simulation was repeated at the same values of far stream turbulence intensity and eddy viscosity ratios but using different values for angle of attack.

Curves of fig. 6, 7 illustrate the variation of the skin friction coefficient along a section of a two-dimensional airfoil NACS0012 located at angle of attack \(\alpha = \theta, \alpha = 10^\circ \), respectively, immersed in a non-compressible viscous flow field at far stream turbulence intensity \(Tu = 0.1 \) (left side), and \(Tu = 6 \) (right side) for various values of \(\mu_t/\mu \).

Fig. 6. Skin friction coefficient curves on NACA0012 surface at angle of attack 8 Degree, for various values of far-stream turbulence variables:

a) \(Tu=0.1 \), b) \(Tu=6 \)

Fig. 7. Skin friction coefficient curves on NACA0012 surface at angle of attack 10 Degree, for various values of far-stream turbulence variables:

a) \(Tu = 0.1 \), b) \(Tu = 6 \)

By comparing the curves of the fig. 4, 6, and 7 at the corresponding values of the turbulence intensity, we observe that skin friction coefficient curves maintain their behavior at the various values of angle of attack, but as angle of attack increases the effects of \(\mu_t/\mu \) on the transition onset point fades. Curves indicate that although the \(\mu_t/\mu \) is increased from 0.01 to 100, the transition start at approximately the same point, which in turn shifts towards the leading edge of the wing as angle of attack increases.

During numerical simulation process, it was observed that the simultaneous use of small values for \(Tu \) with large values for \(\mu_t/\mu \) causes convergence problems, which explain absence of some skin friction coefficients curves at \(Tu = 0.1 \) from results of different angle of attack.

Reviewing previous figures indicates that increasing angle of attack requires increase in \(Tu \) values to overcome convergence problems which occur at low values of \(Tu \) at the same angle.

Finally, we should point out that the super-fining of the grid cause losing its sensitivity to changes in the disturbance variables at far boundaries, so that the turbulent model k-w SST cannot predict the transition point. Fig. 8 shows simulated skin friction coefficient on super fine mesh at different angle of attack and various values of far stream turbulence variables.

Fig. 8. Skin friction coefficient curves on NACA0012 surface simulated on super-fining grid at different angle of attack, for various values of far-stream turbulence variables:

a) \(\alpha = 0^\circ, Tu = 0.1 \), b) \(\alpha = 0^\circ, Tu = 6 \), c) \(\alpha = 8^\circ, Tu = 0.1 \), d) \(\alpha = 8^\circ, Tu = 6 \)

4. Conclusions

RANS Simulations were carried out on a NACA0012 airfoil using the software OpenFoam and turbulent model k-ω SST in order to study effects of turbulence variables at far stream on transition flow characteristics over the airfoil at moderate Reynolds number of \(\Re = 10^6 \). Analyses and numerical investigation leads to the following conclusions.

- Far stream turbulence variables have significant effects on transition flow character over airfoil at moderate Reynolds number.
- Effect of turbulence intensity and eddy viscosity ratio at far stream on the skin friction coefficient is negligible, except for a limited area where the transition occurs.
- Using high values for \(Tu \) gives a greater ability to control the desired position of the transition phase on the wing surface, which is done by changing the \(\mu_t/\mu \) on a wide range from 0.01 to 100 without convergence problems.
- Using small values for \(Tu \) causes convergence problems especially if used with large values of \(\mu_t/\mu \) which in turn limits the controlling ability.
- Increasing \(Tu \) shifts the transition onset a little towards the leading edge and has a negligible effect on transition length and skin friction coefficient at transition phase.
- Increasing \(\mu_t/\mu \) shifts the transition onset towards the leading edge, as well as increases skin friction coefficient at transition phase, increases transition length.
- Increasing angle of attack reduces sensitivity to changes in far stream turbulence variables.
Increasing angle of attack requires simultaneous increase in turbulence intensity at far stream, so solver reaches a stable solution without convergence problems over a wide range of μ_τ/μ values.

Over-fining of the computational domain causes grid to lose its sensitivity to changes in disturbance values at far boundaries.

References / Список литературы