Tpyowt UCIT PAH, mom 35, évin.3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol.351, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-1

Discovering Process Models from Event Logs of
Multi-Agent Systems Using Event Relations

A.A. Sherstyugina, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru>
R.A. Nesterov, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru>

HSE University,
11 Pokrovsky boulevard, Moscow, 101000, Russia

Abstract. The structure of a process model directly discovered from an event log of a multi-agent system often
does not reflect the behavior of individual agents and their interactions. We suggest analyzing the relations
between events in an event log to localize actions executed by different agents and involved in their
asynchronous interaction. Then, a process model of a multi-agent system is composed from individual agent
models between which we add channels to model the asynchronous message exchange. We consider agent
interaction within the acyclic and cyclic behavior of different agents. We develop an algorithm that supports
the analysis of event relations between different interacting agents and study its correctness. Experimental
results demonstrate the overall improvement in the quality of process models discovered by the proposed
approach in comparison to monolithic models discovered directly from event logs of multiagent systems.

Keywords: Multi-agent systems; event logs; process discovery; Petri nets; event relations; asynchronous
interaction.

For citation: Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent
Systems Using Event Relations. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. DOIL:
10.15514/ISPRAS-2023-35(3)-1

Acknowledgments: This work is supported by the Basic Research Program at the HSE University, Russia.

CuHTe3 Mogenen NpoLeccoB Mo XypHarnam coobITumn
MYJIbTUAreHTHbIX CUCTEM C MOMOLL IO
OTHOLUEHUIN MeXAay COObITUAMM

A.A. Ulepcmioeuna, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru>
P.A. Hecmepog, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru>

Hayuonanohulil uccredosamenvckuil ynusepcumem « Bolcuiasi wkona 9KOHOMUKUY,
Poccus, 101000, Mocksa, [lokposckuii 6ynveap, 11

Abstract. CrtpykTypa MoOJend @polecca, CHHTE3UPOBAHHOIH HANPAMYI0 [0 JKypHAIy COOBITHI
MyJIbTHATEHTHOH CHCTEMBI 4acTO He JaeT HPEACTaBICHHS O MOBEJCHHU OTACIBHBIX arcHTOB, a TaKXkKe O
crocobe ux B3auMozeHcTBHs. [l T0Kanu3aIMy IeHCTBHI, KOTOPHIE BBITOIHSIOTCS Pa3IMYHbIMK areHTaMu U
KOTOPBIC BOBJICUYCHBI B UX AaCHHXPOHHOC B3aMMO£lel7[CTBMe MBI BBIACIISIEM U aHAJIU3UPYEM OTHOLUCHUS MEKIY
COOBITUSMH B XKypHaie. B pe3ynpraTe Moiens My IbTHAT€HTHON CHCTEMBI IIPEJCTABILIET CO00H KOMIIO3HIINIO
Mojiefieil OBEIeH s OTAENbHBIX areHTOB, MEXIY KOTOPBIMU JI00ABIAIOTCSA KaHAIbl aCHHXPOHHOIO OOMEHa
coobmenusaMu. B cratbe paccMaTpuBaeTcs Kak alUKINYECKOe, TaK U IIMKIHIECKOEe B3aUMOIEHCTBHE areHTOB.
Hamu npeuioskeH 1 0OOCHOBAH aITOPUTM BBIICICHUS U aHAIN3a OTHOLICHUH MEXTy COOBITHSAMU B XKypHAe
COOBITUH MYJIBTHATCHTHOH CHCTEMBI. Pe3ynbTaThl SKCIEpHMEHTAIbHONW OLEHKH Pa3pabOTaHHOrO alropHTMa

11

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

TIOATBEPKAAOT 061].[66 YiIy4qlnI€eHue Ka4€CTBECHHBIX OLEHOK Moueneﬁ IIPOLECCOB, CUHTE3UPOBAHHBIX IIO
KypHajiam cOOBITHI MYJBTHAr€HTHBIX CHCTEM C IIOMOIIBIO OTHOIICHUH MEXIy COOBITHSAMH B CpaBHEHHUHU C
MOHOJIMTHBIMH MOJCIIAMH, KOTOPBIE CUHTE3UPYIOTCS HAIPSAMYTO.

KarodeBblie ciioBa: MyJbTHAar€HTHbIE CHCTEMBI; XKypHAlIbl COOBITHI; CHHTE3 MOJENEH IpOLECcCOB; CETH
Ietpu; oTHOLIEHHS MEXAY COOBITHAMU; ACHHXPOHHOE B3aUMOJICHCTBHUE.

Jns uurupoBanus: lepcriornna A.A., Hectepos P.A. CunTe3 Moieneit poLeccoB Mo KypHanaM COOBITHI
MYJIBTHAr€HTHBIX CHCTEM C IOMOIIBIO OTHOIEHHH Mexay coObrtusimu. Tpynst UCIT PAH, tom 35, Beim. 3,
2023 r., ctp. 11-32 (ma anrmmiickom s3eike). DOI: 10.15514/ISPRAS-2023-35(3)-1

Baaropapuoctu: Pabora momnepxana IIporpammoii (yHIaMeHTaNbHBIX HcclieoBaHWi HarmoHaabHOTO
HCCIIE0BATENBCKOTO YHUBEpCUTeTa «Bhiciias mkomna skonomukny (HUY BIID), Poccust.

1. Introduction

The behavior of an information system is frequently recorded in event logs. They can register, for
instance, user activities, transaction executions, or message exchanges. An event log consists of
finite sequences (traces) of events ordered by the occurrence time. Process mining uses event logs
to discover models reflecting the actual state of processes in an information system. Process models
discovered from event logs capture considerable changes that can be introduced to an information
system during its operation, while models manually created at the initial life-cycle stages do not take
these changes into account [1].

A record in a trace of an event log usually includes not only the identifier of an action, but also other
attributes, which can specify the resources necessary for executing the recorded action. These
attributes can also designate who executes an action. For example, Table 1 shows a trace of an event
log, where an action record has the «Agent» attribute, and actions are executed by two agents: Peter
or Alex. We say that an event log where actions are attributed with the information on agents records
the behavior of a multi-agent system.

Process models can be discovered in a variety of notations, including different classes of Petri nets,
transition systems, and BPMN (Business Process Model and Notation). In our paper, we focus on
modeling the control-flow of processes, i.e., the causal dependencies among events in a log. Thus,
we will apply Petri nets [2] — the formalism extensively used to model and analyze the properties
of process behavior.

Table 1. A trace in an event log of a multi-agent system

Timestamp Action Agent
30-12-2022:14.45 prepare msg Peter
05-01-2023:09.34 send msg Peter
07-01-2023:12.12 receive msg Alex
12-01-2023:13.25 send ack Alex
12-01-2023:14.55 receive ack Peter
12-01-2023:14.55 local check Alex

Petri nets are also a convenient tool to model the interaction between different components in a
multi-agent system. Fig. 1 shows two Petri nets N; and N, representing two agents with the
sequential behavior. They exchange messages through two distinguished channel nodes a and b.
Recent papers in the field of process mining also demonstrate the shift in a focus to a discovery of
process models with an understandable structure reflecting the complex synchronizations between
objects [3], the hierarchy of activities [4, 5], or the interaction-oriented viewpoints of the architecture
of a multi-agent system [6].

12

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o JypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
mesxy cobermusamu. Tpyosr UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

B A

-| receive msg

b e

X

el
receive ackl- | local check

I

F

L]
X X

M, |

=

Fig. 1. A multi-agent system with two asynchronously interacting agents

The paper [6] proposed a compositional approach to discovering an architecture-aware process
model from an event log of a multi-agent system. The structure of an architecture-aware process
model explicitly reflects agent behavior and their interactions similar to Fig. /, where two agents
exchange message through channels a and b. A model is constructed by a composition of individual
agent models controlled by a manually selected interface pattern model. An interface pattern
provides a high-level specification of agent interactions. However, in the case of the poor selection
of an interface model, one has to reconfigure it and perform an additional check of a reconfigured
model.

Here, we propose to ease this restriction on making the preliminary choice of an interface pattern.
We suggest to identify asynchronous agent interactions using causal relations between events
extracted directly from an event log of a multi-agent system. For instance, in an event log obtained
by simulating a process model shown in Fig. 1 the occurrence of “send msg” action will always be
recorded before the occurrence of “receive msg” action. Extracting such causality relations will help
us to localize events in a log corresponding to the occurrence of actions executed by different agents
and involved in their asynchronous communication. Correspondingly, we will determine transitions
in individual agent models to be connected via an asynchronous channel.

Note that the automated discovery of process models from event logs is supported by a wide range
of algorithms [7]. They usually deal with typical problem of event data representation, including,
for instance, noise (missing or duplicated records) and incompleteness, i.e., a finite event cannot
cover all possible process executions. The paper [6] also stressed that an event log of a multi-agent
system requires the additional inspection of agent behavior, since the direct discovery from a multi-
agent system event log produces process models the structure of which does not explicitly reflect
agent behavior as sub-models and agent interactions as distinguished nodes. This happens because
the concurrent execution of relatively independent agents leads to a wide range of possible traces
recorded in an event log of a multi-agent system.

The quality of discovered process models is the main subject in conformance checking [8], which
proposes a collection of different dimensions to evaluate the correspondence between an event log
and a process model. Fitness and precision are two widely-used quality metrics that can characterize
a discovered process model. Fitness is an estimation of the ratio of the traces executable by the
model to the total number of traces in an event log. A model with the perfect fitness can execute
every trace in an event log. For example, the model shown in Fig. 1 can execute the trace in Table 1,
if we consider N; as the behavior of Peter, and N, as the behavior of Alex. Precision evaluates the
ratio of the behavior recorded in an event log and the behavior allowed by a process model. A process
model with the perfect precision can only execute traces in an initial event log. The perfect precision

13

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

limits the use of a discovered process model, since any event log of an information system represents
only a finite “snapshot” of all possible process executions.

An architecture-aware process model discovered from an event log of a multi-agent system using
the compositional approach of [6] is guaranteed to possess the perfect fitness. The approach to the
analysis of agent interactions using causal event relations in a log, proposed in our study, will also
ensure the perfect fitness of the process model of a multi-agent system obtained by connecting
individual agent models via asynchronous channels. The main results presented in this paper are:

1) An approach to the analysis of causality relations between events in an event log of a multi-
agent system for the identification of specific events involved in the asynchronous
communication between different agents.

2) Demonstration of the approach correctness and its experimental evaluation.

The remainder of this paper is organized as follows. In the next section, we collect the formal
background of our approach to the analysis of event relations in an event log, including generalized
workflow nets (GWF-nets) — a class of Petri nets used to model the behavior of agents and multi-
agent systems. Section 3 considers the localization of events in an event log corresponding the
asynchronous agent interactions within the acyclic agent behavior. Section 4 explores the case of
localizing asynchronous interactions among agents with cycles. Section 5 reports the outcomes from
the experimental evaluation. In Section 6, we review the related research, and Section 7 concludes
the paper.

2. Background

In this section, we aim to provide the basic definitions concerning several general notions, event
logs, and generalized workflow nets. We refer to these definitions when describing our approach to
the analysis of causal event relations involving different agents.

S* denotes the set of all finite non-empty sequences over a finite set S, and $* = S* U {e}, where ¢
is the empty sequence. Let 0 € S* and S’ be a subset of S. Then g denotes the projection of o on
S'. In other words, a4 is the subsequence of ¢ obtained by removing elements not belonging to S”.
For example, let S = {a, b, c,d},0 = abadabcdcb € S*, and S’ = {b, c}. Projecting ¢ on S’ gives
olgr = bbcb. If s € S occurs in a sequence ¢ € S*, then we write s € 0.

N denotes the set of non-negative integers. A function m: S — N defines a multiset m over a non-
empty set S. We write s € m iff m(s) > 0. The set of all finite multisets over S is denoted by B(S).
Let my,m, € B(S). Then my € m, iff my(s) < my(s); m' =m; Um, if m'(s) = my(s) +
m,(s); m" =my \ m, iff m"(s) = max(m,(s) — m,(s),0) forall s € S.

2.1 Event Logs

An event log is the main input to a process discovery algorithm. It contains a multiset of traces —
ordered event sequences.

Definition 1 (Event log). Let A denote the set of actions. A frace o is a finite non-empty sequence
over A, i.e., 0 € A*. An event log L is a multiset of traces over A, i.e., L € B(A).

When we consider an event log of a multi-agent system with two asynchronously interacting agents,
the set A can be partitioned into two disjoint subsets, i.e., A = A; U A,,s.t. Ay N A, = @, where
A, (A,) is the set of actions executed only by the first (second) agent.

To discover an individual model of a multi-agent system, we need to project all traces in L onto the
set of actions executed by the corresponding agent. The projection of an event log over A = A, U
A, on A, is denoted by L4, . Constructing L 4, requires projecting every trace 0 € L on L4, i.e.,
taking a|.4,. We take into account only non-empty projections o|.4, and pay additional attention to
coinciding projections.

14

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o ypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
Mesky cobprtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

For example, a trace shown in Table 1 can be projected onto the set of action executed only by Peter
or by Alex.
Let us consider basic causality relations between events recorded in a log L over A, which are
determined by the order of corresponding records in the traces of L. Thus, two events a,,a, € A
are:
1) in the precedence relation (a, precedes a,), denoted a; < a,, iff Vo € L: if a;,a, € g,
then o = a’'a,;0"a,0"’, where 0',0",0"" € (A \ {a,,a,})";
2) in the following relation (a, follows a,), denoted a; > a,, iff Vo € L: if a;,a, € o, then
o =o0'a,0"a,0", where ',0",06"" € (A \ {as,a,})*;
3) inthe parallel relation (a, is in parallel with a,), denoted a; >< a,, if there exists a trace
oc€L, st. od=0'ay0"a,0"’, and a tracew €L, st. w=w'aw"a,w"’, where
O-,,O-”' O.IN'W/'WII’ W”, e (‘A \ {al,az})*.

It follows that the precedence and the following relations are transitive. For example, a; < a, and
a, < az together leads to traces of the form o =...q, ...a; ...as .., which implies a; < as. If
required by the context, we can also use the <; relation sign to explicitly show to which event log
this relation corresponds.

2.2 Generalized Workflow Nets

Workflow nets (WF-nets) [9] are among basic process models discovered from event logs. A WF-
net is a special class of a Petri net with the distinguished initial and final places. The execution of a
trace in an event log directly corresponds to the execution of a WF-net from its initial to its final
place. We will use generalized workflow nets (GWF-nets), as in [6], to model the behavior of agents
and multi-agent systems. Here, we define GWF-nets and their behavior.

Definition 2 (Net). A netis a triple N = (P, T, F), where P and T are two disjoint sets of places and
transitions, and F € (P X T) U (T X P) is the flow relation. For any node x € PU T:

1) ex={y€ePUT|(y, x) € F}is the preset of x.

2) xe={y€PUT|(y x) € F}is the postset of x.

3) exe=-exUx eis the neighborhood of x.

In our study, we consider nets without self-loops, i.e., Vx EPUT:ex Nxe= @ and isolated
transitions, i.e., Vt € T:|et| = 1 and |t ¢| > 1.

The e-notation is also extended to subsets of nodes. Let N = (P,T,F) be anet,andY S PUT.
TheneY = Uyey*y,Y e= Uyeyy cand e Y e = ¢ Y U Y o. N(Y) denotes the subnet of N generated
byY,ie, N¥)=(PnY,TnY,Fn(Y xY)).

Let N = (P,T,F) be anet, and t,t, € T. Transitions ty, t, are in conflict iff e t; N e t, = @. N is
conflict-free if no transitions are in conflict.

A marking (state) m inanet N = (P, T, F) is a multiset over P, i.e., m: P = N. Marking is safe iff
Vp € P:m(p) < 1, i.e., a safe marking is a set of places. Marking m of place p € P is depicted by
putting m(p) black dots inside p.

Definition 3 (Net system). A net system is a quadruple N = (P, T, F,m,), where (P, T, F) is a net,
and mgy: P = N is the initial marking.

A marking m in a net N = (P, T, F) enables transition t € T, denoted m|[t), iff e t € m. Enabled
transitions may fire. Firing t at m evolves N to anew markingm’ = (m\e t) U t , denoted m[t)m'.
A sequence w € T is a firing sequence in a net system N = (P,T,F,my) if w = t;t, ...t, and
mg[t)my[t,) ... my_q[tn)m,. Then we write my[w)m,,. The set of all firing sequences in N is
denoted by FS(N).

15

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

A marking m in N = (P,T,F,mg) is reachable if 3w € FS(N): my[w)m. Any marking can be
reached from itself by firing the empty sequence mg[e)m. The set of all markings reachable from
m is denoted by [m). N is safe iff all reachable markings in N are safe.

A state machine is a connected net (P,T,F), whereVt € T:|et| = |te] = 1. A subnet of N =
(P,T,F) generated by Y C P and e Ye, i.e., N(Y U oY o), is a sequential component of N if it is a
state machine and has a single token in the initial marking. N is covered by sequential components
if every place belongs to at least one sequential component. In this case, N is state machine
decomposable (SMD).

State machine decomposability is a basic feature bridging structural and behavioral properties of
nets, also considered in [9] as an important feature of workflow nets. It is easy to see that SMD net
systems are safe since their initial markings are safe. We further work with SMD net systems, unless
otherwise stated explicitly. Thus, we omit SMD in their descriptions.

In a GWF-net, we impose additional restrictions on its initial marking (no arcs incoming to
corresponding places) and distinguish its final marking (places without outgoing arcs). Compared
to a classical WF-net, initial and final marking in a GWF-net can be sets of places rather than
singletons.

Definition 4 (GWF-net). A generalized workflow net is a net system N = (P, T, F,my) equipped
with the final marking m; € P such that:
1) emy=0.
2) mpe=0.
3) Vx€PUT3Is €myIf €myp:(s,x),(x,f) € FRT, where FRT is the reflexive transitive
closure of F.

According to the third requirement in Definition 4, any node in a GWF-net lies on a path from a
place in its initial marking to a place in its final marking. For instance, the Petri net shown earlier in
Fig. 1 is a GWF-net, while the behavior of agents N; and N, can be considered as classical WF-nets
with the single initial and final places.

3. Localizing Acyclic Agent Interactions

Here we discuss our approach to finding pairs of actions in an event log representing sending and
receiving operations executed by different agents. Given an event log of a multi-agent system, we
construct a matrix representation of event relations. Then we show how to identify the candidate
pairs of events that may represent the asynchronous communication of different agents and connect
corresponding transitions in the individual agent models.

3.1 Matrix Representation of Event Relations

Matrix representation of relations among events recorded in an event log facilitate the pair-wise

analysis of events. For what follows, we consider the basic case of a multi-agent system with the

sequential agent behavior, s.t., actions executed by a specific agent are recorded in an event log only

in the precedence or in the following relation. We also show how our reasoning can be extended to

agents with parallel and alternative behavioral constructs.

Let L be an event log over A = Ay U Ay, s.t. Ay N A, = @. Correspondingly, A, and A, are two

disjoint sets of actions executed by two asynchronously interacting agents. Assume |A;| = m and

|A| = n.

We construct matrix R' of size m x n, which stores relations between the pairs of events

representing the occurrence of actions executed by different agents. Given a} € A; and aj2 € A,

withi=1,2,...,mandj =1,2,...,n, every element r; ; in R is defined by the following cases:
H ny="<" iffal <, a?;

16

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o ypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
Mesky cobprtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

2) 1y =">"iffaj >, a};

3) n; ="><"iffa; ><; af.
Thus, event relations extracted from an event log L fully determines the values of the elements in
the corresponding matrix RE.

Figure 2 shows the example of a matrix representation for event relations constructed from an event
log a multi-agent system with asynchronously interacting agents, where the first agents executes
actions from the set A, = {ay, a;, a,}, and the second agent executes actions from the set A, =
{bg, by, by, b3}. For the convenience of the representation, we use names of actions instead of the
indices of rows and columns. This matrix says that, for example, in all traces of the initial event log
L, actions b, and a, are executed concurrently (independently), while action a, always precedes
action b;.

In addition, recall that agent behavior is considered to be conflict-free and sequential. Then we can
easily order actions executed by the same agent according to the event relations, i.e., using the
precedence relation. For instance, in Fig. 2, we have that a; < a; < a, and by < b; < b, < bs.
This ordering of actions is done before constructing a matrix of event relations. It will help us
simplify the further processing and identification of events representing the occurrence of sending-
receiving operations between two agents.

by by b, by
ao >< < < <
a; >< < < <
a, > >< >< ><

Fig. 2. A matrix of event relations between two asynchronously interacting agents

The intuition behind the asynchronous message exchange is rather straightforward. After putting a
message to a channel, an agent can freely continue its job, while the other agent expecting to receive
a message cannot continue to operate until the message is delivered.

This reasoning can also be shifted to our matrix representation of event relations. In a matrix of
event relations constructed out of an event log of a multi-agent system with two sequential
asynchronously interacting agents, we will be able to locate a “rectangle” formed by the adjacent
rows and columns filled by the same event relation " < " or " > ". This is justified by the fact that
in all traces of an initial event log several events corresponding to the actions executed by the agent
receiving a message are recorded strictly after several events corresponding to the actions executed
by the agent who sends a message. Rectangular sections in an event relation matrix filled by the
same precedence or following relation are called regions.

Definition 5. Let L be an event log over A = A; UA,, st. Ay NA, =0, |A| =m, |A,| =n.
Let RL be an event relation matrix constructed as described above. A rectangular section in R%
formed by k adjacent rows i,i + 1,...,i + k — 1 and by £ adjacent columns j,j + 1,...,j+¢ —1
is a p-region (f-region) of Rt ifand only if foralli’ = i,i + 1,...,i+ k—landj' =j,j+ 1,...,j +
¢—1wehavethatry jp="<"(ry;=">").

The region in an event relation matrix R starting from row a, column ¢ and finishing at row b and
at column d is briefly denoted by R*(a — b, c — d).

Note that we do not consider a region which is included in another one. We are looking for maximal
regions in an event relation matrix. For instance, in the event relation matrix shown in Fig. 2, region
RY(a, — ay, by — by), since it cannot be extended with other adjacent rows and columns, while
RY(a, — a4, b; — by) is not maximal, since it is a part of the bigger region R (a, — a;, b; — bs) that
is indeed maximal.

17

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

Further, while analyzing regions in an event relation matrix, we always consider maximal regions
that cannot be extended with more adjacent rows and columns.

Let us take a closer look at the p-region RL(a, — a,, b; — b3) in the event relation matrix shown in
Fig. 2. The occurrences of actions a, and a; were recorded before the occurrences of actions by, b,
and b; in an event log L. Taking into account the sequential agent behavior, i.e., ay < a; < a, and
by, < b; < b, < bz, we can easily simplify three event relations ay < by, ag < b, and ay < bz to
the single relation a, < b;, which automatically ensures the remaining two relations. By analogy,
three relations a; < by, a; < b, and a; < b; are simplified to a; < b;. Finally, two relations a;, <
b, and a; < b; with ay < a, give us the single event relation a; < b;.

Thus, the p-region R:(ay — ay, by — b3) in the event relation matrix from Fig. 2 can be fully
described by the single event relation al < bl — the lower left corner of the corresponding
rectangular area in the event relation matrix.

Event relation that fully describes a region in an event relation matrix is called the minimum of a
region, i.e., other event relations within this region coincides with the minimum. It is easy to see
that, if the minimum of a p-region is its lower left corner, then the minimum of an f-region is its
upper right corner, as illustrated in Fig. 3, where the minimum is highlighted in red.

The minimum event relation in a region is the pair of events which can represent the occurrence of
actions agents use for the asynchronous communication.

bj bj+l—1
a; < <
< <
Aitk—1 < <
b] e b]+[_1
a; > >
> >
Aitk—1 > >

Fig. 3. Localizing minimum in a region of an event relation matrix

For example, the event relation matrix RY shown in Fig. 2 has the p-region R (a, — ay, by — b3)
with the minimum relation a; < b; and the f-region R:(a, — a,, by — by) with the minimum
relation a, > b,. The sequential behavior of corresponding agents can be easily represented via a
Petri net with consequent transitions (see N; and N, in Fig. 4).

According to the minimal event relation of region in the event relation matrix R* from Fig.2, we
introduce two channel places between transitions a,, b, (green place) and transitions by, a, (red
place). Arcs connecting these places with transitions in Fig. 4 follow the direction of the
corresponding minimum event relation.

In the following paragraph, we propose an algorithm, which identifies regions in the event relation
matrix and finds their corresponding minimal event relations. We prove the algorithm correctness
from the point of view of preserving the perfect fitness. We also show that there can be redundant
minimum event relations representing different overlapping regions.

18

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o JypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
mesxy cobermusamu. Tpyosr UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

e '-"-\-\
l\?/"'
{ \\'. v
'\! o by

{

L

/_'._ ",
ay / A
¥ , P
.-/ ™

\d
\‘ I
vt 1]

|—E‘L7 '
v “ \\--.-/
VR '
| Y
J be ‘
[éz :’/ L\I
| __/
7N
[:
Ny 7%
| I N
.\5_// 2

Fig. 4. Introducing channel places according to the matrix from Fig. 2

3.2 Algorithm for Finding Minimal Event Relations in Regions of an Event
Relation Matrix
We start with an event log L over A = A, U A, of a multi-agent system with two asynchronously
interacting agents. Let |A;| = m and |A,| = n. To simplify the processing of traces in L, we will
construct a square event relation matrix RS of size (m + n) X (m + n) storing event relations
between all possible pairs of events in A. The indices of an element rif)j in RE will directly
correspond the indices of actions a; and a; in A. Afterwards, choosing necessary rows and columns
in a square RS representing the behavior of different agents, we will be able to easily form a required
event relation matrix RL, as described in the previous paragraph.
Here, instead of directly using relation signs, we will assign numbers: —1 for < (precedence), 1 for
> (following), and 0 for >< (parallel). Initially, R} is filled by the ordering of indices, where i,j =
1,2,....,m + n:(a)ifi < j,thenr; = —1;(b)ifi > j, thenr; = 1. We do not care about the
values in R§ at its main diagonal (for %), since we do not consider the reflexive event relations.
Subsequently, we update R} according to the actual relations between event pairs in 1. Algorithm 1
shows how we process traces in L to extract corresponding event relations. Given a trace ¢ in an
event log L, we consider every pair of two events preceding each other in ¢ and update ri?j to 0 only
if it was 1 before, taking into account that actions executed by different agents are also sorted by the
preceding relation. This intuitively means that we have the pair of events recorded in both following
and precedence relation in a log representing the sequentialization of parallel execution.

19

Algorithm 1: Populating an event relation matrix

Input: L — an event log over A = {a1. a2, ... a0} RE -
an initial square even relation matrix
L a0 i p
Output: R, where r; ; = —1if a; <p a;:

0 ‘g 0 ip -
ri; =0ifa; ><pajiri;=1ifa; > a;

foreach o € L do

foreach a;.a; € A, 5s.t. 0 = d'a;c”a;0" do
if f'l;'._; = —1lorr!; =0 then
| continue
end
if 7 ; = 1 then
| =0
end
end

end

For instance, Fig. 5 shows the square event relation matrix R§, built according to Algorithm 1,
corresponding to the earlier discussed R* (see Fig. 2). The main diagonal in this Rj is filled with
asterisk signs, since we ignore reflexive relations.

We filled two areas in this square matrix with different colors to demonstrate two possible ways of
choosing rows and columns for further analysis of event relations corresponding to the occurrence
of actions executed by different agents. It is also easy to refine the notion of a region w.r.t. the
numerical representation of event relations.

apg | a; | ay | by | by | by | by
a | +|-1|-1}10|—-1|-1|-1
a | 1 * | =110 |—-1|-1]-1
a, | 1| 1 x| 110 0 0
by |O[0 |—-1|+|-1|-1|-1
by [1| 1 0 | 1| = |-1]|-1
b, | 1| 1 0 1|1 * | =1
by | 1 [1 0 |1 1 *

Fig. 5. A square matrix of event relations constructed by Algorithm 1

The p-region is the rectangular area of the numerical event relation matrix filled completely with
—1, while the f-region should be filled only with 1. Here, we also consider maximal regionsI only,
which fully correspond to the representation discussed in the previous paragraph.

Let us consider another example of an event relation matrix R, shown in Fig. 6, constructed from
an event log L over A = A, U A,, where A; = {xg, X1, X, x3}and A, = {¥o, V1, Y2}

In this event matrix, there are two p-regions R:(xq — x;,¥y — ¥,) with the minimum event relation
x; < yo and R:(x, — x5,y — y;) with the minimum event relation x; < y,. However, since
xXo < x; < x, < x3,there is enough to keep x3 < y,, which will automatically satisfy x; < y,
because x; occurs after x;. This agrees with the transitivity of the precedence relation. The
redundancy of these event relations can be easily shown in the corresponding agent models (see
Fig. 7). We do not need to add a place between transitions x; and y, having a place between
transitions x, and yj.

20

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o JypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
mesxy cobermusamu. Tpyosr UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Transition x3; will fire only after transition x;. Thus, adding the direct channel place between
transitions x; and y; will not introduce new event relations different from those already present in
the matrix from Fig. 6, unless this channel is not necessary according to the practical requirements.

Yo | V1 | V2
X | =1 —-1|-1
x| -1]-1]-1
x, | —1| -1
x3 | —1]| -1

Fig. 6. An event relation matrix with two overlapping p-regions

The same transitivity principle can also be applied to the case of two overlapping f-regions. The
example of an event relation matrix with two overlapping f-regions is shown in Fig. 8. The minimum
event relation x, > y; will cover all event relations in both f-regions.

N oY
! ¥
P
v ()
S
I AY
|]
[v]
¥
Y i
Xs \
LSl
.. . v
./ hY y‘.
S ¥
X
¥ .'/ '\‘
X | /
|I N
/-'-..
Y

Fig. 7. Redundant channel according to the event matrix shown in Fig. 6

Note that the localization of the minimum in a region of an event relation matrix R* actually boils
down to finding the cell r; ;, s.t.
e ifr; =—1, where 134, ; ¥ —1and 1;;_; # —1, then 7; ; is the minimum of a p-region in
R with the corresponding event relation a; < aj;
e ifr,; = 1, wherer;_;; # 1 and 1; ;.1 # 1, then 7;; is the minimum of an f-region in RL
with the corresponding event relation a; > a;.
Thus, the main scheme for the compositional discovery of a process model from an event log L over

A = A; U A, of a multi-agent system using minimal event relations in the event relation matrix
R™ includes the following steps:

21

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

1) population of the square event relation matrix R5 (Algorithm 1) and selection of columns
and rows (for RY) with the actions corresponding to different agents;

2) identification of minimum event relations in p-regions and f-regions in R%;

3) discovery of individual agent process models N, and N, from projected event logs L.4, and
L 4,, respectively;

4) introduction of channel places between transitions in N; and N, corresponding to the events
associated by the minimal event relations constructed at step 2.

Yo | V1 | V2 | V3
Xo | O 0 1 1
x| 0 0 1 1
x, | 1 1 1 1
x; | 1 1 1 1

Fig. 8. An event relation matrix with two overlapping f-regions

Individual agent models can be discovered from projected event logs using any existing process
discovery algorithm. We recommend to use Inductive miner [10], since it can guarantee the perfect
fitness of a discovered model. The soundness of the compositional discovery procedure presented
above is formalized in the following Theorem 1, where we prove that a process model of a multi-
agent system inherits the perfect fitness of agent models discovered from projected event logs. In
other words, a process model obtained by adding channel places between transitions in the individual
agent models with respect to the minimal event relations can execute all traces in the event log L of
a multi-agent system.

Theorem 1. Let L be an event log of a multi-agent system over A = A; UA,. Let E S
(A; X Ay) U (A, X A;) be the set of event pairs, which correspond to the minimum event
relations extracted from the event relation matrix RL. If N; is a GWF-net discovered from the
projection L, such that it perfectly fits L4, with i = 1,2, then N obtained from N; and N, by
introducing channel places between transition pairs corresponding to event pairs in E perfectly fits
L as well.

Proof. The proof is done by contradiction. Assume N = (P, T, F,my, m;) does not perfectly fits
L. Consider a pair (a; ,a;) € E, which corresponds to the minimal event relation a; < a;.Leto €
L be a trace of the event log L, which contains a; and g; that N cannot execute. Since a; < a;, 0 =
o'a;0"a;jo’". Transitions t; , t; € T corresponding to events a; and a; are connected in N, such that
there is a place ¢ € P, where (¢;,¢), (¢, t;) € F. If N cannot execute g, then transition ¢; should be
able to fire before t;, which will result in ¢ = ¢'a;0"”a;0c”". This contradicts the correct
configuration of the trace ¢ = ¢'a;0"'a;j0""". Thus, the initial assumption that N does not perfectly
L is wrong. Hence, N obtained by adding corresponding channels between transitions in N_1 and
N, perfectly fits L.

Here, we considered the analysis of acyclic interactions between agents with sequential and conflict-
free behavior. However, we can also generalize our approach to agents with conflicting (alternative)
and parallel branches.

It is necessary to extend the proposed collection of event relations with the conflicting relation. Two
actions a; and a, are in conflict (denoted by a, #a, and 2 for the square matrix R) if for every trace
in an event log a; and a, never occur together. Conflicting and parallel actions can be involved in
the asynchronous interaction among agents.

22

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o JypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
mesxy cobermusamu. Tpyosr UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Application of our approach requires separate investigation of sequential parts in agent behavior
recorded in a log for the proper construction of regions in the corresponding matrix with ordered
actions. This is by analogy with the identification of sequential components in GWF-nets (recall the
state machine decomposability discussed in Section 2).

For example, Fig. 9 shows the acyclic interaction between N; and N,, where N; has the conflict
between transitions x5 and xs. In an event log, actions x3 and x5 will never occur in the same trace.
Using RS we can identify maximal sequential parts in the behavior of Ny, i.e., X, < x5 and x, < Xs,
and construct two inter-agent matrices to localize minimal event relations in corresponding regions.
Two minimal event relations y, < x3 and y, < x5 with the common event y, are ensured with a
single channel place a connecting transitions w.r.t. the relation direction.

¥
Xz Ha Y2

<b<>;
el

O ~

Fig. 9. Acyclic interaction with choice in the agent behavior

(@)

Using a similar reasoning, we can analyze asynchronous interactions involving different parallel
branches in the behavior of agents. In this case, the minimal relations with the common events are
modeled by individual channel places, since, for parallel actions, the occurrence of one does not
exclude the occurrence of the others.

In the following section, we consider asynchronous interactions among agents, s.t. actions used for
the message exchange are involved in a cycle. The direct analysis of causality relation is not enough
for cyclic behavior, since events within a cycle can be recorded in an event log in any order.

4. Localizing Cyclic Agent Interactions

In this section, we consider the problem of identifying the pairs of events in an event log of a multi-
agent system involved intro the cyclic interaction between different agents. Cyclic interaction
implies that the actions corresponding to the asynchronous message exchange are executed within a
cycle in the agent behavior. We cannot directly use the minimal causality relations proposed in the
previous section, since actions within cycles in different agents will be recorded in an event log in
any order.

4.1 Bounded Asynchronous Channels

The cyclic interaction is directly connected with the problem of the boundedness in Petri net theory.
Consider an example of cyclic interaction shown in Fig. 10. The cycle in N; sends messages to the
cycle in N, via the single channel a.

23

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

T T
) s]

™ @ ™ |

| N2
Fig. 10. An unbounded asynchronous channel

The problem with this channel place a is that N; can put messages to place a infinitely many times,
which will lead to the possibility of the unbounded number of messages in a. As a result, the
complete system will have infinitely many different reachable states.

To avoid the problem of the unboundedness, we can introduce an additional place into the model of
a multi-agent system with two interacting agents. This place will act as a “limiter” of the number of
messages an asynchronous channel can store.

For example, if we add place b, as shown in Fig. 11, the maximum number of messages that can be
put to place a by N; will not exceed 1. Such places are called complement in Petri nets, since they
mirror the direction of arcs connected with the channel place.

Fig. 11. An asynchronous channel with the bound

In fact, the number of tokens in the complement place we add to bound an asynchronous channel
correspond to the maximum number of messages this asynchronous channel can store. In the
following paragraph, we show our approach to the analysis of cyclic interactions between agents in
a multi-agent system with respect to the maximum number of messages a candidate asynchronous
channel place can store.

4.2. Algorithm for Localizing Cyclic Asynchronous Interactions and Channel
Bounds

In the case of the cyclic asynchronous interactions, we cannot directly refer to the minimum event
relations, since all involved actions can potentially be recorded in any order in an event log. For
example, by simulating the net from Fig. 11, we can obtain t, < t, as well as t, < t,. Instead, we
are going to consider the number of occurrences of events in an event log to devise the maximum
number of messages an asynchronous channel can handle.

For what follows, let L be an event log of a multi-agent system with two asynchronously interacting
agents over A = A; U A,. We isolate only the cyclic behavior of agents in these sets A, and A,,
since the acyclic part can be analyzed before using the algorithm described in Section 3. To avoid

24

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o ypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
Mesky cobprtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

the ambiguity, we assume additionally that actions A, represent the behavior of an agent sending
messages, while the actions A, — the behavior of an agent receiving messages.

The main idea of our approach is to analyze pairs of actions in A; X A, to count the maximum
number of messages. If in a trace of L the occurrence of an event a; € A, is recorded, then the
bound in the number of messages decreases by 1. If in a trace of L the occurrence of an event a, €
A, is recorded, then the bound in the number of messages increases by 1.

We assume that an asynchronous channels stores k > 0 messages initially. Algorithm 2 shows how
to analyze the pairs of events in A, X A, according to their behavior with respect to increasing and
decreasing k. This algorithm produces the range, i.e., the minimum and maximum number of
messages an asynchronous channel between a concrete pair of events can process.

Consider the example of using Algorithm 2 for the event log of a multi-agent system L (see Table
2)over A = Ay UA,, where Ay = {ty,ts, te} and A, = {t;,t,, t3}.

Table 2. An event log of a multi-agent system with four traces

Trace 1 | tytstotatstytatetatstetatstytatotstatatsitatatststototstatstatatstotatststytats
titelalslolalslolalatstststy

Trace2 | tytstitytstytotstatytstatotatststototatototststolats

Trace3 | tytstitytstitatststatitstotatitstotatstototatststotatststotatststs

Traced | tytitstetatitstotatstitatstytotatitatattytat,

The result of computing the minimum and maximum number of messages for different event pairs
in Trace 1 in this event log is presented in Table 3.

For instance, we consider the pair of events (t4,t;) of transitions between which we aim to add a
bounded asynchronous channel place. We check the minimum and maximum number of messages
for all traces in the event log from Table 2, as shown in Table 4.

Table 3. Applying Algorithm 2 to Trace 1 in the log from Table 2

Event pair Minimum Maximum
(ti,ts) k-3 k+2
(t1,ts) k—4 k+1
(t1,te) k—4 k+2
(t2,ty) k-2 k+3
(t3, ts) k-3 k+3
(ty, te) k—2 k+3
(t3,ty) k-3 k+2
(ts, ts) k-3 k+2
(ts, t) k-3 k+2

To cover the complete event log from Table 2, we need to construct the range for the channel
between events t, and t; uniting the individual ranges for all traces. Thus, according to Table 4, the
range of the number of messages that can be handled by the asynchronous channel between
transitions t, and t; is [k — 3; k + 3]. The length of this range is k + 3 — (k — 3) = 6.
Therefore, the maximum number of messages that can be stored in the channel between t, and ¢t; is
bounded by 6.

Note also that, since the left border of this range k — 3, initially the channel place between t, and
t, should have 3 tokens in it, because the number of tokens in places of a Petri net cannot go below
0. This is also caused by the fact that in Trace 2 of the event log from Table 2 the agent receiving
messages operates before the one who sends messages.

25

Algorithm 2: Analyzing cyclic interactions in a trace
Input: o € L — a trace in an event log over A = A; U A,
where ;U A, =@
Output: Minimum min(p) and maximum max(p) number
of messages for every p = (a1,a2) € A1 x Az a
channel between a; and a2 may process

foreach a; € A, do
foreach az € A do
maxK « k, minK « k, current + k
foreach ¢; € 0 = e1e2...¢, do
if ¢; = a, then
| current < k —1
end
if ¢, = a> then
| current +— k +1
end
maxK < MAX(current, maxK)
minK < MIN(current, minK)

end
end
min(ay, az) + minK, maz(a;,az) + maxK

end

We have everything to construct the model of a multi-agent system with two agents exchanging
messages through actions t4 and t1 within cyclic sequential behavior regarding the event log from
Table 2. Fig. 12 shows the corresponding process model for this multi-agent system, where N; is
the agent sending messages with transitions t,, ts, ts, and N, — receiving messages with transitions
ty, ty, t3.

Table 4. The number of messages in the channel connecting t, and t,

Minimum Maximum
Trace 1 k-3 k+2
Trace 2 k k+2
Trace 3 k—2 k+3
Trace 4 k—2 k+3

We note that the similar analysis can be done for any pair of transitions representing the behavior of
sending and receiving agents, s.t. one can add an asynchronous channel between them in different
ways, unless there is an additional information on actions provided. For instance, one can choose
those transitions with the channel the capacity of which does not exceed 1 (for safe Petri nets). In
addition, as in the case of the acyclic interaction, it is possible to analyze the cyclic behavior of
agents with parallel and alternative behavioral constructs inside cycles by checking interactions
between separate sequential components.

Moreover, the same property on preserving the perfect fitness of the individual agent models (see
Theorem 1) will also hold for the cyclic interaction, since we add channel places between transitions
in the strict accordance with an initial event log.

26

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o JypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
mesxy cobermusamu. Tpyosr UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Fig. 12. A multi-agent system with two interacting agents with cyclic behavior

5. Experimental Evaluation

This section reports the key outcomes obtained from the series of experiments conducted to evaluate
the proposed approach to the identification of the pairs of events involved into the acyclic and cyclic
interactions among different agents in a multi-agent system.

5.1 Layout of Experiments

We compared process models discovered by our approach and directly from an event log of a multi-
agent system. We also considered a specific case of a process model with “disconnected” agents,
i.e., we do not add asynchronous channels between them.

Within the experimental evaluation, we used the synthetic event logs of multi-agent systems
recording different ways of agent asynchronous interactions provided in [11]. They were also used
to test the compositional approach to discovering architecture-aware process model of multi-agent
systems [6]. This dataset was constructed with respect to various widespread service interaction
patterns described in [12].

Thus, process models of multi-agent systems obtained by our approach to introducing channels were
compared with the following other models:

1) reference models, also provided in [11], which represent the ideal model of a multi-agent
system with the minimum number of asynchronous channels;

2) disconnected agent models, where individual agent models discovered from projected
event logs are put together without adding any asynchronous channels;

3) monolithic models discovered from directly event logs.

We characterized these models according to the following two quality dimensions:

1) precision evaluating the extra amount of behavior allowed by a process models regarding
the behavior recorded in an event log (see the gray area in Fig. 13);

2) the number of asynchronous channels connecting transitions in the models of different
agents.

Process model N

Eventlog L

Fig. 13. The behavior of a process model and traces in an event log

27

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

The perfect fitness of discovered process models is guaranteed by our approach and by the paper
[6]. A model with the disconnected agent behavior also ensures the perfect fitness, since the
concurrent execution of fully independent agents can also cover all possible ways of their
asynchronous interactions. Therefore, we did not need to measure the fitness of considered process
models. As for the precision, we used the approach from [13] as the one, which provides the balanced
estimation of this quality dimension. The experimental evaluation was supported by the ProM
software [14].

5.2 Experiment Results and Discussion

Table 5 reports the results on comparing the quality of process models discovered from an event log
of a multi-agent system using our approach with the quality of directly discovered models
(monolithic) and models with the disconnected agent behavior. The dataset [11] used in our
experiments contains seven different event logs of multi-agent system corresponding to different
ways of acyclic (IP-1, ..., IP-6) and cyclic (IP-7) patterns of asynchronous interactions. We also did
not evaluate the number of channels in monolithic process models of multi-agent systems, since in
the structure of such a model one cannot unambiguously identify the behavior of individual agents
and asynchronous channel places.

Table 5. Experimental results: the number of asynchronous channels and precision evaluation

. Reference Disconnected Monolithic Our approach
Interaction
Channels | Precision Precision Precision Channels | Precision

1P-1 1 0.7156 0.6949 0.5825 14 0.8109

1P-2 2 0.4014 0.3719 0.3880 33 0.5337

1P-3 2 0.7545 0.7097 0.8984 26 0.8861
Acyclic

IP-4 2 0.7589 0.6752 0.6684 10 0.8420

1P-5 4 0.3902 0.3503 0.1342 39 0.5724

1P-6 4 0.5636 0.5256 0.6849 34 0.7034
Cyclic 1P-7 3 0.8165 0.5945 0.1327 5 0.6782

According to the experimental results provided in Table 5, we may conclude the following. Firstly,
our approach detects considerably more “points” of the asynchronous interactions between different
agents compared to the ideal reference model. A finite sequential record of the concurrent execution
of relatively independent agents cannot cover all possible scenarios. Thus, there are more candidate
relations among event pairs that can be considered for adding asynchronous channel places between
the corresponding transitions. We can further analyze all found minimum event relations from the
point of view on their frequencies w.r.t. an initial event log to exclude some of them. Secondly,
process models obtained by our approach exhibits the increase in the precision estimations, since
introduction of other asynchronous channels decreases the amount of extra behavior allowed by a
model and not recorded in a log. Thirdly, we generally outperform the quality of the monolithic
process model the structure of do not correspond to the architecture of a multi-agent system
regarding the individual agent behavior and their interactions.

We believe that increasing the number of traces in an event log will bring the quality of process
models obtained by adding channels using our approach closer to the evaluations of reference
models, since an event log will exhibit more different execution scenarios. As one of the possible
directions of future research, we will consider the analysis of connections between the precision of
agent models and of system models obtained by our approach based on event relation.

6. Related Work

As we mentioned in Introduction, different algorithms were proposed for the computer-aided
discovery of process models from event logs. The most popular ones include Inductive miner [10],

28

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o ypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
Mesky cobprtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

Fuzzy miner [15], Region Theory-based miner [16], and Genetic miner [17]. These algorithms can
guarantee that discovered process models will exhibit certain properties. For example, Inductive
miner can guarantee perfect fitness and soundness of discovered workflow nets. In the recent study
[7], the authors gave an extensive review and comparison of process discovery algorithms. Note that
these algorithms are aimed to tackle different internal limitations of event data representation rather
than to analyze interactions among different information system components.

The quality of discovered process models takes an important part in choosing an algorithm for
discovering process models from event logs. Conformance checking [7] provides several
dimensions that allow one to evaluate the correspondence between a model and an event log (fitness,
precision, generalization), and the structure of a discovered model (simplicity). Researchers stress
that there is a lack of universally applicable properties and requirements that can constitute the
formal basis for computing conformance checking dimensions [7, 18]. Thus, our study also
considers the formal analysis of preserving the perfect fitness of agent models discovered from
filtered logs in a multi-agent system models with introduced asynchronous channels recovered using
event relations.

The problem of discovering process models with a clear structure is studied from different
perspectives. Inductive miner produces well-structured process models that are recursively
constructed from “building blocks” representing standard behavioral constructs: sequential, cyclic,
parallel, and alternative execution of actions. A series of papers [19, 20, 21] proposed different
approaches to improving the structure of discovered models by the additional localization of the
environment of events in a log and by composing fragments of regular and frequent behavior with
the rare “exceptional” scenarios. Discovery of hierarchical process models, where a high-level event
represents a sub-process, was studied in [4]. The identification of low-level and high-level events in
an event log is a natural way to improve the structural representation of a process model. The paper
[3] proposed a novel approach to discover object-centric Petri nets from event logs. Interactions of
objects is represented through complex synchronizations which allow one to model consumption
and production of objects of different types. Compositional discovery of behaviorally correct and
“architecture-aware” process models from event logs of multi-agent systems was studied in [6].
Using interface patterns and structural property-preserving mapping helped to achieve the clear
structure of a model reflecting independent behavior of agents and their communication.

Our study continues [6] in a way that we are trying to analyze and identify “points” of asynchronous
interactions — actions involved in the asynchronous message passing between agents — directly
from event logs. Based on the causality relations among events in a log, we can find, for example,
pairs of actions that are always executed in a fixed order. Such actions are then considered to be the
candidates to represent send-receive operations within the asynchronous interaction. Then we may
relax the requirement on the manual selection of interface patterns, as originally proposed.

Patterns are typically used in the software development as the collection of best practices and
recurring development scenarios [22]. Frequently used control-flow constructs in business process
modeling — workflow patterns — were systematically studied in [23]. In [12, 24], the authors
generalized workflow patterns for modeling widespread correct service interactions in complex and
large-scale systems. Within the context of process discovery, several papers also proposed different
approaches for the analysis of behavioral patterns in event logs, including, among the others, [25,
26], but these patterns were not considered from the point of view of interactions among different
information system components.

7. Conclusion

In this paper, we considered the problem of discovering a process model in terms of a generalized
workflow net from an event log of a multi-agent system with the understandable structure reflecting
the architecture of a system. A model of a multi-agent system is obtained from a composition of
individual agent models through the introduction of asynchronous channels. To identify transitions
in agent models to be connected via a channel place, we analyze causal relations between events

29

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

recorded in an event log. Within the asynchronous agent interactions, several actions of one agents
are executed before certain actions of the other. This idea helped us to localize the so-called
minimum event relations corresponding to the occurrence of actions executed by different agents.
The pairs of events representing these minimum relations can be seen as “points” of the
asynchronous communication between agents. Transitions corresponding to these events can be
connected with an asynchronous channel place. We also showed that certain minimum event
relations can cover other minimum relations between events in a log.

The pair-wise analysis of relations between events recorded in an event log was based on matrices
with rows and columns representing events. Matrix representation of event logs was used in process
mining in different contexts (cf. the footprint matrix in the basic a-algorithm [27] and the analysis
of unchanged sections in BPMN models [28]).

We separately considered the cases of the acyclic and cyclic asynchronous interactions, since, within
the latter one, events can be recorded in any possible order. To localize events in the cyclic
communication, we analyzed the number of event occurrences regarding the maximum number of
messages that a potential asynchronous channel can handle. This allows us to achieve the
boundedness, i.e., the finite number of reachable states, in a complete process model of a multi-
agent system.

The correctness of the proposed approach to adding asynchronous channels between behavioral
models of individual agents is justified by the fact that we preserve the perfect fitness, i.e., the ability
to execute all traces in the event log of a multi-agent system, of agent model in a complete system
model. We conducted a series of experiments to evaluate our approach. The experimental results
demonstrate the overall improvement in process models discovered by adding asynchronous
channels in comparison to models directly discovered from event logs of multi-agent systems.

As for the future research, we plan to continue it in the following directions. Firstly, we would like
to consider more complex ways of the asynchronous communications, including, for instance,
message broadcasting. Secondly, we also intend to make a deeper analysis of the preservation of
behavioral properties, including deadlock-freeness, in a process model of a multi-agent system
obtained from individual agent models connected by asynchronous channel places. For example, we
need to avoid the introduction of channels leading to the “circular wait”, as shown in Fig. 14, where
N; waits for N,, while N, waits for N; at the same time. Finally, we plan to conduct more
experiments using real-life event logs.

Fig. 14. Asynchronous interaction may result in a deadlock

30

Ilepcrroruna A.A., Hecrepos P.A. Cunre3s Mosieneii mporeccos 1o ypHanam COOBITHI MyJIbTHar€HTHBIX CHCTEM C MOMOIIBIO OTHOIICHH
Mesky cobprtusamu. Tpyost UCIT PAH, 2023, Tom 35 Beim. 3, c. 11-32.

References

[1] W. van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg, 2016. DOI:
10.1007/978-3-662-49851-4.

[2] W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Springer,
Heidelberg, 2013. DOI: 10.1007/978-3-642-33278-4.

[3] W. van der Aalst and A. Berti. Discovering Object-Centric Petri Nets. Fundamenta Informaticae, vol.
175, pp. 1-40, 2020. DOTI: 10.3233/F1-2020-1946.

[4] A. Begicheva and 1. Lomazova. Discovering High-Level Process Models from Event Logs. Modeling
and Analysis of Information Systems, vol. 24, no. 2, pp. 125-140,2017. DOI: 10.18255/1818-1015-2017-
2-125-140.

[S] C.Li S. van Zelst, and W. van der Aalst. An Activity Instance Based Hierarchical Framework for Event
Abstraction. In 2021 3rd International Conference on Process Mining (ICPM), 2021, pp. 160—-167. DOI:
10.1109/ICPM53251.2021.9576868.

[6] R. Nesterov, L. Bernardinello, I. Lomazova, and L. Pomello. Discovering architecture-aware and sound
process models of multi-agent systems: a compositional approach. Software & Systems Modeling, vol.
22, pp. 351-375, 2023. DOIL: 10.1007/s10270-022-01008-x.

[71 A. Augusto, R. Conforti, M. Dumas, M. Rosa, F. Maggi, A. Marrella, M. Mecella, and A. Soo. Automated
Discovery of Process Models from Event Logs: Review and Benchmark. IEEE Transactions on
Knowledge and Data Engineering, vol. 31, no. 4, pp. 686-705 2019. DOI
10.1109/TKDE.2018.2841877.

[8] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance Checking: Relating Processes and
Models. Springer, Cham, 2018. DOI: 10.1007/978-3-319-99414-7.

[91 W. van der Aalst. Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based
Techniques. In Business Process Management: Models, Techniques, and Empirical Studies. Lecture
Notes in Computer Science, vol. 1806. Springer, Heidelberg, 2000, pp. 161-183. DOI: 10.1007/3-540-
45594-9 11.

[10] S.Leemans, D. Fahland, and W. van der Aalst. Discovering Block-Structured Process Models from Event
Logs — A Constructive Approach. In Application and Theory of Petri Nets and Concurrency (PETRI
NETS 2013). Lecture Notes in Computer Science, vol. 7927. Springer, Heidelberg, 2013, pp. 311-329.
DOI: 10.1007/978-3-642-38697-8 17.

[11] R. Nesterov, “Compositional discovery of architecture-aware and sound process models of multi-agent
systems: experimental: data experimental data. (version 1) [data set].” [Online]. Available:
https://doi.org/10.5281/zenodo.5830863.

[12] A.Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns. In Business Process Management
(BPM 2005). Lecture Notes in Computer Science, vol. 3649. Springer, Heidelberg, 2005, pp. 302-318.
DOI: 10.1007/11538394_20.

[13] J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Conformance. In Business Process
Management (BPM 2010). Lecture Notes in Computer Science, vol. 6336. Springer Heidelberg, 2010,
pp. 211-226. DOI: 10.1007/978-3-642-15618-2_16.

[14] “ProM Tools,” [Online]. Available: https://www.promtools.org/doku.php.

[15] C. Gunther and W. van der Aalst. Fuzzy Mining — Adaptive Process Simplification Based on Multi-
Perspective Metrics. In Business Process Management (BPM 2007). Lecture Notes in Computer Science,
vol. 4714. Springer, Heidelberg, 2007, pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.

[16] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of Languages. In
Business Process Management (BPM 2007). Lecture Notes in Computer Science, vol. 4714. Springer,
Heidelberg, 2007, pp. 375-383. DOI: 10.1007/978-3-540-75183-0_27.

[17] W. van der Aalst, A. de Medeiros, and A. Weijters. Genetic Process Mining. In Applications and Theory
of Petri Nets (ICATPN 2005). Lecture Notes in Computer Science, vol. 3536. Springer, Heidelberg, 2005,
pp. 48-69. DOI: 10.1007/11494744 5.

[18] W. van der Aalst. Relating Process Models and Event Logs — 21 Conformance Propositions. In
Proceedings of the International Workshop ATAED-2018. CEUR Workshop Proceedings, vol. 2115.
CEURWS.org, 2018, pp. 56-74.

[19] A. Kalenkova, 1. Lomazova, and W. van der Aalst. Process model discovery: A method based on
transition system decomposition. In Application and Theory of Petri Nets and Concurrency (PETRI

31

Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32.

NETS 2014). Lecture Notes in Computer Science, vol. 8489. Springer, Cham, 2014, pp. 71-90. DOIL:
10.1007/978-3-319-07734-5_5.

[20] A.Kalenkova and I. Lomazova. Discovery Of Cancellation Regions Within Process Mining Techniques.
Fundamenta Informaticae, vol. 133, pp. 197-209, 2014. DOI: 10.3233/FI-2014-1071.

[21] W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek. Process Discovery Using Localized Events.
In Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science, vol. 9115.
Springer, Cham, 2015, pp. 287-308. DOI: 10.1007/978-3-319-19488-2_15.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994.

[23] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns. Distributed and
Parallel Databases, vol. 14, pp. 5-51, 2003. DOI: 10.1023/A:1022883727209.

[24] D. Campagna, C. Kavka, and L. Onesti. BPMN 2.0 And The Service Interaction Patterns: Can We
Support Them All? In Software Technologies (ICSOFT 2014). Communications in Computer and
Information Science, vol. 555. Springer, Cham, 2015, pp. 3-20. DOI: 10.1007/978-3-319-25579-8 1.

[25] S. Suriadi, R. Andrews, A. ter Hofstede, and M. Wynn. Event logs imperfection patterns for process
mining: towards a systematic approach to cleaning event logs. Information Systems, vol. 34, pp. 132—
150, 2017. DOI: 10.1016/j.is.2016.07.011.

[26] M. Acheli, D. Grigori, and M. Weidlich. Discovering and Analyzing Contextual Behavioral Patterns from
Event Logs. IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5708-5721,
2022. DOI: 10.1109/TKDE.2021.3077653.

[27] W.vander Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering process models from event
logs. IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, 2004. DOLI:
10.1109/TKDE.2004.47.

[28] K. Artamonov and I. Lomazova. What Has Remained Unchanged in Your Business Process Model? In
2019 IEEE 2l1st Conference on Business Informatics (CBI), 2019, pp. 551-558. DOI:
10.1109/CBI.2019.00070.

UHopmayust 06 aemopax / Information about authors

Amnacracus Anapeena [IIEPCTIOTMHA — crynenTka 6akanaBpuara (akyibTeTa KOMIBIOTEPHBIX
nayk HWY Beicmas Ilkona Oxonomuku (BIID), craxep-uccienoBaTeiab HaydHO-y4eOHOU
J1TabopaTopuM TPOLIECCHO-OPUEHTUPOBaHHBIX HH(opManmoHHbIX cuctem ([IOMC) HUY BIID.
OO6nacTe HayYHBIX MHTEPECOB: MOJACIMPOBaHUE U (DOPMAJIBbHBINA aHAIN3 MOBEACHUS MPOIECCOB B
MHPOPMAIMOHHBIX CHUCTEMax ¢ moMoulbio ceredl [letpm m apyrux Qopmanu3zmMoB, OOBEKTHO-
OpPUEHTHUPOBAHHOE MTPOrPAMMHUPOBAHHE M APXUTEKTypa HHPOPMAIIHOHHBIX CUCTEM.

Anastasiya SHERSTYUGINA is a bachelor student at the faculty of computer science in HSE
University and a research assistant at the Laboratory for Process-Aware Information Systems (PAIS
Lab), HSE University. Her research interests mainly include modeling and analysis of process
behavior in information systems using Petri nets and other related formalisms, object-oriented
programming and architecture of information systems.

Poman Anexcannposnd HECTEPOB — crapmmii npenogaBarteis (pakyapTeTa KOMIBIOTEPHBIX HAYK
HUY BIID, miagmuil Hay4yHslil COTPYIHUK HayuHO-y4eOHoU naboparopuu [IOMC HY BIHID.
Hmeet cTeneHb kaHAUIATa KOMIBIOTEPHBIX Hayk ((usuxo-maremarnueckue Hayku) HY BIID
(2022 r.). O6nacTh Hay4YHBIX UHTEPECOB: TEOpUs HapaienusMa, cetd IleTpu, Teopus KaTeropuii,
GdopMabHBIE METOABI MOJENHPOBAHMS M BEpUUKAIMH CIOXKHO OPTaHM30BAHHBIX
NHMOPMAIIMOHHBIX CHCTEM.

Roman NESTEROV is a senior lecturer at the faculty of computer science in HSE University and a
junior researcher at the PAIS Lab, HSE University. He holds a PhD degree in Computer Science
awarded by HSE University in 2022. His research interests include concurrency and category theory,
Petri nets, formal methods for modeling and verifying complex information systems.

32

