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Abstract. Структура модели процесса, синтезированной напрямую по журналу событий 
мультиагентной системы часто не дает представления о поведении отдельных агентов, а также о 
способе их взаимодействия. Для локализации действий, которые выполняются различными агентами и 
которые вовлечены в их асинхронное взаимодействие мы выделяем и анализируем отношения между 
событиями в журнале. В результате модель мультиагентной системы представляет собой композицию 
моделей поведения отдельных агентов, между которыми добавляются каналы асинхронного обмена 
сообщениями. В статье рассматривается как ациклическое, так и циклическое взаимодействие агентов. 
Нами предложен и обоснован алгоритм выделения и анализа отношений между событиями в журнале 
событий мультиагентной системы. Результаты экспериментальной оценки разработанного алгоритма 
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подтверждают общее улучшение качественных оценок моделей процессов, синтезированных по 
журналам событий мультиагентных систем с помощью отношений между событиями в сравнении с 
монолитными моделями, которые синтезируются напрямую. 

Ключевые слова: Мультиагентные системы; журналы событий; синтез моделей процессов; сети 
Петри; отношения между событиями; асинхронное взаимодействие. 
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1. Introduction 
The behavior of an information system is frequently recorded in event logs. They can register, for 
instance, user activities, transaction executions, or message exchanges. An event log consists of 
finite sequences (traces) of events ordered by the occurrence time. Process mining uses event logs 
to discover models reflecting the actual state of processes in an information system. Process models 
discovered from event logs capture considerable changes that can be introduced to an information 
system during its operation, while models manually created at the initial life-cycle stages do not take 
these changes into account [1].  
A record in a trace of an event log usually includes not only the identifier of an action, but also other 
attributes, which can specify the resources necessary for executing the recorded action. These 
attributes can also designate who executes an action. For example, Table 1 shows a trace of an event 
log, where an action record has the «Agent» attribute, and actions are executed by two agents: Peter 
or Alex. We say that an event log where actions are attributed with the information on agents records 
the behavior of a multi-agent system.  
Process models can be discovered in a variety of notations, including different classes of Petri nets, 
transition systems, and BPMN (Business Process Model and Notation). In our paper, we focus on 
modeling the control-flow of processes, i.e., the causal dependencies among events in a log. Thus, 
we will apply Petri nets [2] — the formalism extensively used to model and analyze the properties 
of process behavior. 
Table 1. A trace in an event log of a multi-agent system 

Timestamp Action Agent 
30-12-2022:14.45 prepare msg Peter 
05-01-2023:09.34 send msg Peter 
07-01-2023:12.12 receive msg Alex 
12-01-2023:13.25 send ack Alex 
12-01-2023:14.55 receive ack Peter 
12-01-2023:14.55 local check Alex 

Petri nets are also a convenient tool to model the interaction between different components in a 
multi-agent system. Fig. 1 shows two Petri nets 𝑁  and 𝑁  representing two agents with the 
sequential behavior. They exchange messages through two distinguished channel nodes a and b. 
Recent papers in the field of process mining also demonstrate the shift in a focus to a discovery of 
process models with an understandable structure reflecting the complex synchronizations between 
objects [3], the hierarchy of activities [4, 5], or the interaction-oriented viewpoints of the architecture 
of a multi-agent system [6]. 
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Fig. 1. A multi-agent system with two asynchronously interacting agents 

The paper [6] proposed a compositional approach to discovering an architecture-aware process 
model from an event log of a multi-agent system. The structure of an architecture-aware process 
model explicitly reflects agent behavior and their interactions similar to Fig. 1, where two agents 
exchange message through channels a and b. A model is constructed by a composition of individual 
agent models controlled by a manually selected interface pattern model. An interface pattern 
provides a high-level specification of agent interactions. However, in the case of the poor selection 
of an interface model, one has to reconfigure it and perform an additional check of a reconfigured 
model.  
Here, we propose to ease this restriction on making the preliminary choice of an interface pattern. 
We suggest to identify asynchronous agent interactions using causal relations between events 
extracted directly from an event log of a multi-agent system. For instance, in an event log obtained 
by simulating a process model shown in Fig. 1 the occurrence of “send msg” action will always be 
recorded before the occurrence of “receive msg” action. Extracting such causality relations will help 
us to localize events in a log corresponding to the occurrence of actions executed by different agents 
and involved in their asynchronous communication. Correspondingly, we will determine transitions 
in individual agent models to be connected via an asynchronous channel. 
Note that the automated discovery of process models from event logs is supported by a wide range 
of algorithms [7]. They usually deal with typical problem of event data representation, including, 
for instance, noise (missing or duplicated records) and incompleteness, i.e., a finite event cannot 
cover all possible process executions. The paper [6] also stressed that an event log of a multi-agent 
system requires the additional inspection of agent behavior, since the direct discovery from a multi-
agent system event log produces process models the structure of which does not explicitly reflect 
agent behavior as sub-models and agent interactions as distinguished nodes. This happens because 
the concurrent execution of relatively independent agents leads to a wide range of possible traces 
recorded in an event log of a multi-agent system.  
The quality of discovered process models is the main subject in conformance checking [8], which 
proposes a collection of different dimensions to evaluate the correspondence between an event log 
and a process model. Fitness and precision are two widely-used quality metrics that can characterize 
a discovered process model. Fitness is an estimation of the ratio of the traces executable by the 
model to the total number of traces in an event log. A model with the perfect fitness can execute 
every trace in an event log. For example, the model shown in Fig. 1 can execute the trace in Table 1, 
if we consider 𝑁  as the behavior of Peter, and 𝑁  as the behavior of Alex. Precision evaluates the 
ratio of the behavior recorded in an event log and the behavior allowed by a process model. A process 
model with the perfect precision can only execute traces in an initial event log. The perfect precision 
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limits the use of a discovered process model, since any event log of an information system represents 
only a finite “snapshot” of all possible process executions.  
An architecture-aware process model discovered from an event log of a multi-agent system using 
the compositional approach of [6] is guaranteed to possess the perfect fitness. The approach to the 
analysis of agent interactions using causal event relations in a log, proposed in our study, will also 
ensure the perfect fitness of the process model of a multi-agent system obtained by connecting 
individual agent models via asynchronous channels. The main results presented in this paper are: 

1) An approach to the analysis of causality relations between events in an event log of a multi-
agent system for the identification of specific events involved in the asynchronous 
communication between different agents. 

2) Demonstration of the approach correctness and its experimental evaluation.  

The remainder of this paper is organized as follows. In the next section, we collect the formal 
background of our approach to the analysis of event relations in an event log, including generalized 
workflow nets (GWF-nets) — a class of Petri nets used to model the behavior of agents and multi-
agent systems. Section 3 considers the localization of events in an event log corresponding the 
asynchronous agent interactions within the acyclic agent behavior. Section 4 explores the case of 
localizing asynchronous interactions among agents with cycles. Section 5 reports the outcomes from 
the experimental evaluation. In Section 6, we review the related research, and Section 7 concludes 
the paper. 

2. Background 
In this section, we aim to provide the basic definitions concerning several general notions, event 
logs, and generalized workflow nets. We refer to these definitions when describing our approach to 
the analysis of causal event relations involving different agents. 𝑆  denotes the set of all finite non-empty sequences over a finite set 𝑆, and 𝑆∗ = 𝑆 ∪ {𝜀}, where 𝜀 
is the empty sequence. Let 𝜎 ∈ 𝑆∗ and 𝑆  be a subset of 𝑆. Then 𝜎|  denotes the projection of 𝜎 on 𝑆 . In other words, 𝜎|  is the subsequence of 𝜎 obtained by removing elements not belonging to 𝑆 . 
For example, let 𝑆 = {𝑎, 𝑏, 𝑐,𝑑},𝜎 = 𝑎𝑏𝑎𝑑𝑎𝑏𝑐𝑑𝑐𝑏 ∈ 𝑆∗, and 𝑆 = {𝑏, 𝑐}. Projecting 𝜎 on 𝑆  gives 𝜎| = 𝑏𝑏𝑐𝑏. If 𝑠 ∈ 𝑆 occurs in a sequence 𝜎 ∈ 𝑆∗, then we write 𝑠 ∈ 𝜎. ℕ denotes the set of non-negative integers. A function 𝑚: 𝑆 → ℕ defines a multiset 𝑚 over a non-
empty set 𝑆. We write 𝑠 ∈ 𝑚 iff 𝑚 𝑠 > 0. The set of all finite multisets over 𝑆 is denoted by ℬ(𝑆). 
Let 𝑚 ,𝑚 ∈ ℬ(𝑆). Then 𝑚 ⊆ 𝑚  iff 𝑚 (𝑠) ≤ 𝑚 (𝑠); 𝑚 = 𝑚 ∪𝑚  if 𝑚 (𝑠) = 𝑚 (𝑠) +𝑚 (𝑠); 𝑚 = 𝑚 ∖𝑚  iff 𝑚 (𝑠) = max(𝑚 (𝑠) −𝑚 (𝑠), 0) for all 𝑠 ∈ 𝑆. 

2.1 Event Logs 
An event log is the main input to a process discovery algorithm. It contains a multiset of traces — 
ordered event sequences. 

Definition 1 (Event log). Let 𝒜 denote the set of actions. A trace 𝜎 is a finite non-empty sequence 
over 𝒜, i.e., 𝜎 ∈ 𝒜 . An event log 𝐿 is a multiset of traces over 𝒜, i.e., 𝐿 ∈ ℬ(𝒜). 

When we consider an event log of a multi-agent system with two asynchronously interacting agents, 
the set 𝒜 can be partitioned into two disjoint subsets, i.e., 𝒜 =  𝒜 ∪𝒜 , s.t. 𝒜 ∩𝒜 =  ∅, where 𝒜  (𝒜 ) is the set of actions executed only by the first (second) agent. 
To discover an individual model of a multi-agent system, we need to project all traces in 𝐿 onto the 
set of actions executed by the corresponding agent. The projection of an event log over 𝒜 =  𝒜 ∪𝒜  on 𝒜  is denoted by 𝐿𝒜 . Constructing 𝐿𝒜  requires projecting every trace 𝜎 ∈ 𝐿 on 𝐿𝒜 , i.e., 
taking 𝜎|𝒜 . We take into account only non-empty projections 𝜎|𝒜  and pay additional attention to 
coinciding projections. 
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For example, a trace shown in Table 1 can be projected onto the set of action executed only by Peter 
or by Alex. 
Let us consider basic causality relations between events recorded in a log 𝐿 over 𝒜, which are 
determined by the order of corresponding records in the traces of 𝐿. Thus, two events 𝑎 ,𝑎 ∈ 𝒜 
are: 

1) in the precedence relation (𝑎  precedes 𝑎 ), denoted 𝑎 < 𝑎 , iff ∀𝜎 ∈ 𝐿: if 𝑎 ,𝑎 ∈ 𝜎, 
then 𝜎 = 𝜎′𝑎 𝜎′′𝑎 𝜎′′′, where 𝜎 ,𝜎 ,𝜎 ∈ (𝒜 ∖ {𝑎 ,𝑎 })∗; 

2) in the following relation (𝑎  follows 𝑎 ), denoted 𝑎 > 𝑎 , iff ∀𝜎 ∈ 𝐿: if 𝑎 ,𝑎 ∈ 𝜎, then 𝜎 = 𝜎′𝑎 𝜎′′𝑎 𝜎′′′, where 𝜎 ,𝜎 ,𝜎 ∈ (𝒜 ∖ {𝑎 ,𝑎 })∗; 
3) in the parallel relation (𝑎  is in parallel with 𝑎 ), denoted 𝑎 >< 𝑎 , if there exists a trace 𝜎 ∈ 𝐿, s.t. 𝜎 = 𝜎′𝑎 𝜎′′𝑎 𝜎′′′, and a trace 𝑤 ∈ 𝐿, s.t. 𝑤 = 𝑤′𝑎 𝑤′′𝑎 𝑤′′′, where 𝜎 ,𝜎 ,𝜎 ,𝑤 ,𝑤 ,𝑤′′′ ∈ (𝒜 ∖ {𝑎 ,𝑎 })∗. 

It follows that the precedence and the following relations are transitive. For example, 𝑎 < 𝑎  and 𝑎 < 𝑎  together leads to traces of the form 𝜎 =. . . 𝑎 …𝑎 …𝑎 …, which implies 𝑎 < 𝑎 . If 
required by the context, we can also use the <  relation sign to explicitly show to which event log 
this relation corresponds. 

2.2 Generalized Workflow Nets 
Workflow nets (WF-nets) [9] are among basic process models discovered from event logs. A WF-
net is a special class of a Petri net with the distinguished initial and final places. The execution of a 
trace in an event log directly corresponds to the execution of a WF-net from its initial to its final 
place. We will use generalized workflow nets (GWF-nets), as in [6], to model the behavior of agents 
and multi-agent systems. Here, we define GWF-nets and their behavior. 

Definition 2 (Net). A net is a triple 𝑁 = (𝑃,𝑇,𝐹), where 𝑃 and 𝑇 are two disjoint sets of places and 
transitions, and 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the flow relation. For any node 𝑥 ∈ 𝑃 ∪ 𝑇: 

1) • 𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ F} is the preset of 𝑥. 
2) 𝑥 • = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ F} is the postset of 𝑥.  
3) • 𝑥 • = • 𝑥 ∪ 𝑥 • is the neighborhood of 𝑥.  

In our study, we consider nets without self-loops, i.e., ∀𝑥 ∈ 𝑃 ∪ 𝑇:• 𝑥 ∩ 𝑥 • =  ∅ and isolated 
transitions, i.e., ∀𝑡 ∈ 𝑇: |• 𝑡| ≥ 1 and |𝑡 •| ≥ 1. 
The •-notation is also extended to subsets of nodes. Let 𝑁 = (𝑃,𝑇,𝐹) be a net, and 𝑌 ⊆ 𝑃 ∪ 𝑇. 
Then • 𝑌 = ⋃ • 𝑦∈ , 𝑌 •= ⋃ 𝑦 •∈  and • 𝑌 • = • 𝑌 ∪ 𝑌 •. 𝑁(𝑌) denotes the subnet of 𝑁 generated 
by 𝑌, i.e., 𝑁(𝑌) = 𝑃 ∩ 𝑌,𝑇 ∩ 𝑌,𝐹 ∩ (𝑌 × 𝑌) . 
Let 𝑁 = (𝑃,𝑇,𝐹) be a net, and 𝑡 , 𝑡 ∈ 𝑇. Transitions 𝑡 , 𝑡  are in conflict iff • 𝑡 ∩ • 𝑡 ≠ ∅. 𝑁 is 
conflict-free if no transitions are in conflict. 
A marking (state) 𝑚 in a net 𝑁 = (𝑃,𝑇,𝐹) is a multiset over 𝑃, i.e., 𝑚:𝑃 →  ℕ. Marking is safe iff ∀𝑝 ∈ 𝑃:𝑚(𝑝) ≤ 1, i.e., a safe marking is a set of places. Marking 𝑚 of place 𝑝 ∈ 𝑃 is depicted by 
putting 𝑚(𝑝) black dots inside 𝑝. 

Definition 3 (Net system). A net system is a quadruple 𝑁 = (𝑃,𝑇,𝐹,𝑚 ), where (𝑃,𝑇,𝐹) is a net, 
and 𝑚 :𝑃 →  ℕ is the initial marking. 

A marking m in a net 𝑁 = (𝑃,𝑇,𝐹) enables transition 𝑡 ∈ 𝑇, denoted 𝑚[𝑡⟩, iff • 𝑡 ∈ 𝑚. Enabled 
transitions may fire. Firing 𝑡 at 𝑚 evolves 𝑁 to a new marking 𝑚 = (𝑚\• 𝑡) ∪ 𝑡 •, denoted 𝑚[𝑡⟩𝑚′.  
A sequence 𝑤 ∈ 𝑇∗ is a firing sequence in a net system 𝑁 = (𝑃,𝑇,𝐹,𝑚 ) if 𝑤 = 𝑡 𝑡 … 𝑡  and 𝑚 [𝑡 ⟩𝑚 [𝑡 ⟩…𝑚 [𝑡 ⟩𝑚 . Then we write 𝑚 [𝑤⟩𝑚 . The set of all firing sequences in 𝑁 is 
denoted by 𝐹𝑆(𝑁).  
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A marking 𝑚 in 𝑁 = (𝑃,𝑇,𝐹,𝑚 ) is reachable if ∃𝑤 ∈ 𝐹𝑆(𝑁):𝑚 [𝑤⟩𝑚. Any marking can be 
reached from itself by firing the empty sequence 𝑚 [𝜀⟩𝑚. The set of all markings reachable from 𝑚 is denoted by [𝑚⟩. 𝑁 is safe iff all reachable markings in 𝑁 are safe. 
A state machine is a connected net (𝑃,𝑇,𝐹), where∀𝑡 ∈ 𝑇: |• t | = |t •| = 1. A subnet of 𝑁 =(𝑃,𝑇,𝐹) generated by 𝑌 ⊆ 𝑃 and • Y •, i.e., 𝑁(𝑌 ∪ • Y •), is a sequential component of 𝑁 if it is a 
state machine and has a single token in the initial marking. 𝑁 is covered by sequential components 
if every place belongs to at least one sequential component. In this case, N is state machine 
decomposable (SMD).  
State machine decomposability is a basic feature bridging structural and behavioral properties of 
nets, also considered in [9] as an important feature of workflow nets. It is easy to see that SMD net 
systems are safe since their initial markings are safe. We further work with SMD net systems, unless 
otherwise stated explicitly. Thus, we omit SMD in their descriptions.  
In a GWF-net, we impose additional restrictions on its initial marking (no arcs incoming to 
corresponding places) and distinguish its final marking (places without outgoing arcs). Compared 
to a classical WF-net, initial and final marking in a GWF-net can be sets of places rather than 
singletons. 

Definition 4 (GWF-net). A generalized workflow net is a net system 𝑁 = (𝑃,𝑇,𝐹,𝑚 ) equipped 
with the final marking 𝑚 ⊆ 𝑃 such that: 

1) • 𝑚 = ∅. 
2) 𝑚 • = ∅. 
3) ∀𝑥 ∈ 𝑃 ∪ 𝑇 ∃𝑠 ∈ 𝑚  ∃𝑓 ∈ 𝑚 : (𝑠, 𝑥), (𝑥,𝑓) ∈ 𝐹 , where 𝐹  is the reflexive transitive 

closure of 𝐹. 

According to the third requirement in Definition 4, any node in a GWF-net lies on a path from a 
place in its initial marking to a place in its final marking. For instance, the Petri net shown earlier in 
Fig. 1 is a GWF-net, while the behavior of agents 𝑁  and 𝑁  can be considered as classical WF-nets 
with the single initial and final places. 

3. Localizing Acyclic Agent Interactions 
Here we discuss our approach to finding pairs of actions in an event log representing sending and 
receiving operations executed by different agents. Given an event log of a multi-agent system, we 
construct a matrix representation of event relations. Then we show how to identify the candidate 
pairs of events that may represent the asynchronous communication of different agents and connect 
corresponding transitions in the individual agent models. 

3.1 Matrix Representation of Event Relations 
Matrix representation of relations among events recorded in an event log facilitate the pair-wise 
analysis of events. For what follows, we consider the basic case of a multi-agent system with the 
sequential agent behavior, s.t., actions executed by a specific agent are recorded in an event log only 
in the precedence or in the following relation. We also show how our reasoning can be extended to 
agents with parallel and alternative behavioral constructs. 
Let 𝐿 be an event log over 𝒜 = 𝒜 ∪𝒜 , s.t. 𝒜 ∩𝒜 = ∅. Correspondingly, 𝒜  and 𝒜  are two 
disjoint sets of actions executed by two asynchronously interacting agents. Assume |𝒜 | = 𝑚 and |𝒜 | = 𝑛. 
We construct matrix 𝑅  of size 𝑚 × 𝑛, which stores relations between the pairs of events 
representing the occurrence of actions executed by different agents. Given 𝑎 ∈ 𝒜  and 𝑎 ∈ 𝒜  
with 𝑖 = 1, 2, . . . ,𝑚 and 𝑗 = 1, 2, . . . ,𝑛, every element 𝑟 ,  in 𝑅  is defined by the following cases: 

1) 𝑟 ,  = " < " iff 𝑎 < 𝑎 ; 
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2) 𝑟 ,  = " > " iff 𝑎 > 𝑎 ; 
3) 𝑟 ,  = " >< " iff 𝑎 >< 𝑎 . 

Thus, event relations extracted from an event log 𝐿 fully determines the values of the elements in 
the corresponding matrix 𝑅 .  

Figure 2 shows the example of a matrix representation for event relations constructed from an event 
log a multi-agent system with asynchronously interacting agents, where the first agents executes 
actions from the set 𝒜 = {𝑎 ,𝑎 ,𝑎 }, and the second agent executes actions from the set 𝒜 ={𝑏 ,𝑏 , 𝑏 ,𝑏 }. For the convenience of the representation, we use names of actions instead of the 
indices of rows and columns. This matrix says that, for example, in all traces of the initial event log 𝐿, actions 𝑏  and 𝑎  are executed concurrently (independently), while action 𝑎  always precedes 
action 𝑏 . 
In addition, recall that agent behavior is considered to be conflict-free and sequential. Then we can 
easily order actions executed by the same agent according to the event relations, i.e., using the 
precedence relation. For instance, in Fig. 2, we have that 𝑎 < 𝑎 < 𝑎  and 𝑏 < 𝑏 < 𝑏 < 𝑏 . 
This ordering of actions is done before constructing a matrix of event relations. It will help us 
simplify the further processing and identification of events representing the occurrence of sending-
receiving operations between two agents. 

 𝑏  𝑏  𝑏  𝑏  𝑎  >< < < < 𝑎  >< < < < 𝑎  > >< >< >< 

Fig. 2. A matrix of event relations between two asynchronously interacting agents 

The intuition behind the asynchronous message exchange is rather straightforward. After putting a 
message to a channel, an agent can freely continue its job, while the other agent expecting to receive 
a message cannot continue to operate until the message is delivered.  
This reasoning can also be shifted to our matrix representation of event relations. In a matrix of 
event relations constructed out of an event log of a multi-agent system with two sequential 
asynchronously interacting agents, we will be able to locate a “rectangle” formed by the adjacent 
rows and columns filled by the same event relation " < " or " > ". This is justified by the fact that 
in all traces of an initial event log several events corresponding to the actions executed by the agent 
receiving a message are recorded strictly after several events corresponding to the actions executed 
by the agent who sends a message. Rectangular sections in an event relation matrix filled by the 
same precedence or following relation are called regions. 

Definition 5. Let 𝐿 be an event log over 𝒜 = 𝒜 ∪𝒜 , s.t. 𝒜 ∩𝒜 = ∅, |𝒜 | = 𝑚, |𝒜 | = 𝑛. 
Let 𝑅  be an event relation matrix constructed as described above. A rectangular section in 𝑅  
formed by 𝑘 adjacent rows 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘 − 1 and by ℓ adjacent columns 𝑗, 𝑗 + 1, . . . , 𝑗 + ℓ − 1 
is a p-region (f-region) of 𝑅  if and only if for all 𝑖 = 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘 − 1 and 𝑗 = 𝑗, 𝑗 + 1, . . . , 𝑗 +ℓ − 1 we have that 𝑟 , = " < " (𝑟 , = " > "). 

The region in an event relation matrix 𝑅  starting from row 𝑎, column 𝑐 and finishing at row 𝑏 and 
at column 𝑑 is briefly denoted by 𝑅 (𝑎 − 𝑏, 𝑐 − 𝑑).  
Note that we do not consider a region which is included in another one. We are looking for maximal 
regions in an event relation matrix. For instance, in the event relation matrix shown in Fig. 2, region 𝑅 (𝑎 − 𝑎 ,𝑏 − 𝑏 ), since it cannot be extended with other adjacent rows and columns, while 𝑅 (𝑎 − 𝑎 , 𝑏 − 𝑏 ) is not maximal, since it is a part of the bigger region 𝑅 (𝑎 − 𝑎 , 𝑏 − 𝑏 ) that 
is indeed maximal.  
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Further, while analyzing regions in an event relation matrix, we always consider maximal regions 
that cannot be extended with more adjacent rows and columns. 
Let us take a closer look at the p-region 𝑅 (𝑎 − 𝑎 ,𝑏 − 𝑏 ) in the event relation matrix shown in 
Fig. 2. The occurrences of actions 𝑎  and 𝑎  were recorded before the occurrences of actions 𝑏 , 𝑏  
and 𝑏  in an event log 𝐿. Taking into account the sequential agent behavior, i.e., 𝑎 < 𝑎 < 𝑎  and 𝑏 < 𝑏 < 𝑏 < 𝑏 , we can easily simplify three event relations 𝑎 < 𝑏 , 𝑎 < 𝑏  and 𝑎 < 𝑏  to 
the single relation 𝑎 < 𝑏 , which automatically ensures the remaining two relations. By analogy, 
three relations 𝑎 < 𝑏 , 𝑎 < 𝑏  and 𝑎 < 𝑏  are simplified to 𝑎 < 𝑏 . Finally, two relations 𝑎 <𝑏  and 𝑎 < 𝑏  with 𝑎 < 𝑎  give us the single event relation 𝑎 < 𝑏 .  
Thus, the p-region 𝑅 (𝑎 − 𝑎 , 𝑏 − 𝑏 ) in the event relation matrix from Fig. 2 can be fully 
described by the single event relation a1 < b1 — the lower left corner of the corresponding 
rectangular area in the event relation matrix.  
Event relation that fully describes a region in an event relation matrix is called the minimum of a 
region, i.e., other event relations within this region coincides with the minimum. It is easy to see 
that, if the minimum of a p-region is its lower left corner, then the minimum of an f-region is its 
upper right corner, as illustrated in Fig. 3, where the minimum is highlighted in red.  
The minimum event relation in a region is the pair of events which can represent the occurrence of 
actions agents use for the asynchronous communication. 

 … 𝑏  … 𝑏 ℓ  …     𝑎   < … < …  < … < 𝑎   < … < …     
 

 … 𝑏  … 𝑏 ℓ  …     𝑎   > … > …  > … > 𝑎   > … > …     

Fig. 3. Localizing minimum in a region of an event relation matrix 

For example, the event relation matrix 𝑅  shown in Fig. 2 has the p-region 𝑅 (𝑎 − 𝑎 , 𝑏 − 𝑏 ) 
with the minimum relation 𝑎 <  𝑏  and the f-region 𝑅 (𝑎 −  𝑎 ,𝑏  −  𝑏 ) with the minimum 
relation 𝑎  >  𝑏 . The sequential behavior of corresponding agents can be easily represented via a 
Petri net with consequent transitions (see 𝑁  and 𝑁  in Fig. 4).  
According to the minimal event relation of region in the event relation matrix 𝑅  from Fig.2, we 
introduce two channel places between transitions 𝑎 , 𝑏  (green place) and transitions 𝑏 , 𝑎  (red 
place). Arcs connecting these places with transitions in Fig. 4 follow the direction of the 
corresponding minimum event relation. 
In the following paragraph, we propose an algorithm, which identifies regions in the event relation 
matrix and finds their corresponding minimal event relations. We prove the algorithm correctness 
from the point of view of preserving the perfect fitness. We also show that there can be redundant 
minimum event relations representing different overlapping regions. 
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Fig. 4. Introducing channel places according to the matrix from Fig. 2 

3.2 Algorithm for Finding Minimal Event Relations in Regions of an Event 
Relation Matrix 
We start with an event log 𝐿 over 𝒜 = 𝒜 ∪𝒜  of a multi-agent system with two asynchronously 
interacting agents. Let |𝒜 | = 𝑚 and |𝒜 | = 𝑛. To simplify the processing of traces in 𝐿, we will 
construct a square event relation matrix 𝑅  of size (𝑚 +  𝑛)  × (𝑚 +  𝑛) storing event relations 
between all possible pairs of events in 𝒜. The indices of an element 𝑟 ,  in 𝑅  will directly 
correspond the indices of actions 𝑎  and 𝑎  in 𝒜. Afterwards, choosing necessary rows and columns 
in a square 𝑅  representing the behavior of different agents, we will be able to easily form a required 
event relation matrix 𝑅 , as described in the previous paragraph.  
Here, instead of directly using relation signs, we will assign numbers: −1 for < (precedence), 1 for > (following), and 0 for >< (parallel). Initially, 𝑅  is filled by the ordering of indices, where 𝑖, 𝑗 = 1, 2, . . . ,𝑚 +  𝑛: (a) if 𝑖 <  𝑗, then 𝑟 , = −1; (b) if 𝑖 >  𝑗, then 𝑟 ,  =  1. We do not care about the 
values in 𝑅  at its main diagonal (for 𝑟 , ), since we do not consider the reflexive event relations. 
Subsequently, we update 𝑅  according to the actual relations between event pairs in L. Algorithm 1 
shows how we process traces in 𝐿 to extract corresponding event relations. Given a trace 𝜎 in an 
event log 𝐿, we consider every pair of two events preceding each other in 𝜎 and update 𝑟 ,  to 0 only 
if it was 1 before, taking into account that actions executed by different agents are also sorted by the 
preceding relation. This intuitively means that we have the pair of events recorded in both following 
and precedence relation in a log representing the sequentialization of parallel execution. 
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For instance, Fig. 5 shows the square event relation matrix 𝑅 , built according to Algorithm 1, 
corresponding to the earlier discussed 𝑅  (see Fig. 2). The main diagonal in this 𝑅  is filled with 
asterisk signs, since we ignore reflexive relations.  
We filled two areas in this square matrix with different colors to demonstrate two possible ways of 
choosing rows and columns for further analysis of event relations corresponding to the occurrence 
of actions executed by different agents. It is also easy to refine the notion of a region w.r.t. the 
numerical representation of event relations. 

 𝑎  𝑎  𝑎  𝑏  𝑏  𝑏  𝑏  𝑎  ∗ −1 −1 0 −1 −1 −1 𝑎  1 ∗ −1 0 −1 −1 −1 𝑎  1 1 ∗ 1 0 0 0 𝑏  0 0 −1 ∗ −1 −1 −1 𝑏  1 1 0 1 ∗ −1 −1 𝑏  1 1 0 1 1 ∗ −1 𝑏  1 1 0 1 1 1 ∗ 

Fig. 5. A square matrix of event relations constructed by Algorithm 1 

The p-region is the rectangular area of the numerical event relation matrix filled completely with −1, while the f-region should be filled only with 1. Here, we also consider maximal regionы only, 
which fully correspond to the representation discussed in the previous paragraph. 
Let us consider another example of an event relation matrix 𝑅 , shown in Fig. 6, constructed from 
an event log 𝐿 over 𝒜 = 𝒜 ∪𝒜 , where 𝒜  =  {𝑥 ,𝑥 , 𝑥 , 𝑥 } and 𝒜  =  {𝑦 ,𝑦 ,𝑦 }.  
In this event matrix, there are two p-regions 𝑅 (𝑥  − 𝑥 ,𝑦  −  𝑦 ) with the minimum event relation 𝑥  <  𝑦  and 𝑅 (𝑥 − 𝑥 ,𝑦 − 𝑦 ) with the minimum event relation 𝑥  <  𝑦 . However, since 𝑥  <  𝑥 <  𝑥  <  𝑥 , there is enough to keep 𝑥  <  𝑦 , which will automatically satisfy 𝑥  <  𝑦  
because 𝑥  occurs after 𝑥 . This agrees with the transitivity of the precedence relation. The 
redundancy of these event relations can be easily shown in the corresponding agent models (see 
Fig. 7). We do not need to add a place between transitions 𝑥  and 𝑦  having a place between 
transitions 𝑥  and 𝑦 .  



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 
между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

21 

Transition 𝑥  will fire only after transition 𝑥 . Thus, adding the direct channel place between 
transitions 𝑥  and 𝑦  will not introduce new event relations different from those already present in 
the matrix from Fig. 6, unless this channel is not necessary according to the practical requirements. 

 𝑦  𝑦  𝑦  𝑥  −1 −1 −1 𝑥  −1 −1 −1 𝑥  −1 −1 0 𝑥  −1 −1 0 

Fig. 6. An event relation matrix with two overlapping p-regions 

The same transitivity principle can also be applied to the case of two overlapping f-regions. The 
example of an event relation matrix with two overlapping f-regions is shown in Fig. 8. The minimum 
event relation 𝑥 > 𝑦  will cover all event relations in both f-regions. 

 
Fig. 7. Redundant channel according to the event matrix shown in Fig. 6 

Note that the localization of the minimum in a region of an event relation matrix 𝑅  actually boils 
down to finding the cell 𝑟 , , s.t.: 

• if 𝑟 , = −1, where 𝑟 , ≠ −1 and 𝑟 , ≠ −1, then 𝑟 ,  is the minimum of a p-region in 𝑅  with the corresponding event relation 𝑎 < 𝑎 ; 
• if 𝑟 , =  1, where 𝑟 , ≠ 1 and 𝑟 , ≠ 1, then 𝑟 ,  is the minimum of an f-region in RL 

with the corresponding event relation 𝑎 > 𝑎 . 

Thus, the main scheme for the compositional discovery of a process model from an event log 𝐿 over 𝒜 = 𝒜 ∪𝒜  of a multi-agent system using minimal event relations in the event relation matrix 𝑅  includes the following steps:  
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1) population of the square event relation matrix 𝑅  (Algorithm 1) and selection of columns 
and rows (for 𝑅 ) with the actions corresponding to different agents;  

2) identification of minimum event relations in p-regions and f-regions in 𝑅 ;  
3) discovery of individual agent process models 𝑁  and 𝑁  from projected event logs 𝐿𝒜  and 𝐿𝒜 , respectively;  
4) introduction of channel places between transitions in 𝑁  and 𝑁  corresponding to the events 

associated by the minimal event relations constructed at step 2.  𝑦  𝑦  𝑦  𝑦  𝑥  0 0 1 1 𝑥  0 0 1 1 𝑥  1 1 1 1 𝑥  1 1 1 1 

Fig. 8. An event relation matrix with two overlapping f-regions 

Individual agent models can be discovered from projected event logs using any existing process 
discovery algorithm. We recommend to use Inductive miner [10], since it can guarantee the perfect 
fitness of a discovered model. The soundness of the compositional discovery procedure presented 
above is formalized in the following Theorem 1, where we prove that a process model of a multi-
agent system inherits the perfect fitness of agent models discovered from projected event logs. In 
other words, a process model obtained by adding channel places between transitions in the individual 
agent models with respect to the minimal event relations can execute all traces in the event log 𝐿 of 
a multi-agent system. 

Theorem 1. Let 𝐿 be an event log of a multi-agent system over 𝒜 = 𝒜 ∪𝒜 . Let 𝐸 ⊆ (𝒜  ×  𝒜 )  ∪  (𝒜  ×  𝒜 ) be the set of event pairs, which correspond to the minimum event 
relations extracted from the event relation matrix 𝑅 . If 𝑁  is a GWF-net discovered from the 
projection 𝐿𝒜 , such that it perfectly fits 𝐿𝒜  with 𝑖 =  1, 2, then 𝑁 obtained from 𝑁  and 𝑁  by 
introducing channel places between transition pairs corresponding to event pairs in 𝐸 perfectly fits 𝐿 as well. 

Proof. The proof is done by contradiction. Assume 𝑁 =  (𝑃,𝑇,𝐹,𝑚 ,𝑚  ) does not perfectly fits 𝐿. Consider a pair (𝑎  , 𝑎 )  ∈  𝐸, which corresponds to the minimal event relation 𝑎  <  𝑎 . Let 𝜎 ∈ 𝐿 be a trace of the event log 𝐿, which contains 𝑎  and 𝑎  that 𝑁 cannot execute. Since 𝑎 < 𝑎 , 𝜎 = 𝜎 𝑎 𝜎 𝑎 𝜎′′′. Transitions 𝑡  , 𝑡 ∈ 𝑇 corresponding to events 𝑎  and 𝑎  are connected in 𝑁, such that 
there is a place 𝑐 ∈ 𝑃, where (𝑡  , 𝑐), (𝑐, 𝑡 ) ∈ 𝐹. If 𝑁 cannot execute 𝜎, then transition 𝑡  should be 
able to fire before 𝑡 , which will result in 𝜎 =  𝜎 𝑎 𝜎 𝑎 𝜎′′′. This contradicts the correct 
configuration of the trace 𝜎 =  𝜎 𝑎 𝜎 𝑎 𝜎′′′. Thus, the initial assumption that 𝑁 does not perfectly 𝐿 is wrong. Hence, 𝑁 obtained by adding corresponding channels between transitions in 𝑁_1 and 𝑁  perfectly fits 𝐿.  

Here, we considered the analysis of acyclic interactions between agents with sequential and conflict-
free behavior. However, we can also generalize our approach to agents with conflicting (alternative) 
and parallel branches.  
It is necessary to extend the proposed collection of event relations with the conflicting relation. Two 
actions 𝑎  and 𝑎  are in conflict (denoted by 𝑎 #𝑎  and 2 for the square matrix 𝑅 ) if for every trace 
in an event log 𝑎  and 𝑎  never occur together. Conflicting and parallel actions can be involved in 
the asynchronous interaction among agents.  
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Application of our approach requires separate investigation of sequential parts in agent behavior 
recorded in a log for the proper construction of regions in the corresponding matrix with ordered 
actions. This is by analogy with the identification of sequential components in GWF-nets (recall the 
state machine decomposability discussed in Section 2).  
For example, Fig. 9 shows the acyclic interaction between 𝑁  and 𝑁 , where 𝑁  has the conflict 
between transitions 𝑥  and 𝑥 . In an event log, actions 𝑥  and 𝑥  will never occur in the same trace. 
Using 𝑅  we can identify maximal sequential parts in the behavior of 𝑁 , i.e., 𝑥 < 𝑥  and 𝑥 < 𝑥 , 
and construct two inter-agent matrices to localize minimal event relations in corresponding regions. 
Two minimal event relations 𝑦 < 𝑥  and 𝑦 < 𝑥  with the common event 𝑦  are ensured with a 
single channel place a connecting transitions w.r.t. the relation direction. 

 

Fig. 9. Acyclic interaction with choice in the agent behavior 

Using a similar reasoning, we can analyze asynchronous interactions involving different parallel 
branches in the behavior of agents. In this case, the minimal relations with the common events are 
modeled by individual channel places, since, for parallel actions, the occurrence of one does not 
exclude the occurrence of the others. 
In the following section, we consider asynchronous interactions among agents, s.t. actions used for 
the message exchange are involved in a cycle. The direct analysis of causality relation is not enough 
for cyclic behavior, since events within a cycle can be recorded in an event log in any order. 

4. Localizing Cyclic Agent Interactions 
In this section, we consider the problem of identifying the pairs of events in an event log of a multi-
agent system involved intro the cyclic interaction between different agents. Cyclic interaction 
implies that the actions corresponding to the asynchronous message exchange are executed within a 
cycle in the agent behavior. We cannot directly use the minimal causality relations proposed in the 
previous section, since actions within cycles in different agents will be recorded in an event log in 
any order. 

4.1 Bounded Asynchronous Channels 
The cyclic interaction is directly connected with the problem of the boundedness in Petri net theory. 
Consider an example of cyclic interaction shown in Fig. 10. The cycle in 𝑁  sends messages to the 
cycle in 𝑁  via the single channel 𝑎. 
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Fig. 10. An unbounded asynchronous channel 

The problem with this channel place a is that 𝑁  can put messages to place a infinitely many times, 
which will lead to the possibility of the unbounded number of messages in a. As a result, the 
complete system will have infinitely many different reachable states.  
To avoid the problem of the unboundedness, we can introduce an additional place into the model of 
a multi-agent system with two interacting agents. This place will act as a “limiter” of the number of 
messages an asynchronous channel can store.  
For example, if we add place 𝑏, as shown in Fig. 11, the maximum number of messages that can be 
put to place a by 𝑁  will not exceed 1. Such places are called complement in Petri nets, since they 
mirror the direction of arcs connected with the channel place. 

 
Fig. 11. An asynchronous channel with the bound 

In fact, the number of tokens in the complement place we add to bound an asynchronous channel 
correspond to the maximum number of messages this asynchronous channel can store. In the 
following paragraph, we show our approach to the analysis of cyclic interactions between agents in 
a multi-agent system with respect to the maximum number of messages a candidate asynchronous 
channel place can store. 

4.2. Algorithm for Localizing Cyclic Asynchronous Interactions and Channel 
Bounds 
In the case of the cyclic asynchronous interactions, we cannot directly refer to the minimum event 
relations, since all involved actions can potentially be recorded in any order in an event log. For 
example, by simulating the net from Fig. 11, we can obtain 𝑡 < 𝑡  as well as 𝑡 < 𝑡 . Instead, we 
are going to consider the number of occurrences of events in an event log to devise the maximum 
number of messages an asynchronous channel can handle.  
For what follows, let 𝐿 be an event log of a multi-agent system with two asynchronously interacting 
agents over 𝒜 = 𝒜 ∪𝒜 . We isolate only the cyclic behavior of agents in these sets 𝒜  and 𝒜 , 
since the acyclic part can be analyzed before using the algorithm described in Section 3. To avoid 
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the ambiguity, we assume additionally that actions 𝒜  represent the behavior of an agent sending 
messages, while the actions 𝒜  — the behavior of an agent receiving messages.  
The main idea of our approach is to analyze pairs of actions in 𝒜 × 𝒜  to count the maximum 
number of messages. If in a trace of 𝐿 the occurrence of an event 𝑎 ∈ 𝒜  is recorded, then the 
bound in the number of messages decreases by 1. If in a trace of 𝐿 the occurrence of an event 𝑎  ∈ 𝒜  is recorded, then the bound in the number of messages increases by 1.  
We assume that an asynchronous channels stores 𝑘 ≥  0 messages initially. Algorithm 2 shows how 
to analyze the pairs of events in 𝒜 × 𝒜  according to their behavior with respect to increasing and 
decreasing 𝑘. This algorithm produces the range, i.e., the minimum and maximum number of 
messages an asynchronous channel between a concrete pair of events can process.  
Consider the example of using Algorithm 2 for the event log of a multi-agent system L (see Table 
2) over 𝒜 = 𝒜 ∪𝒜 , where 𝒜  =  {𝑡 , 𝑡 , 𝑡 } and 𝐴  =  {𝑡 , 𝑡 , 𝑡 }. 
Table 2. An event log of a multi-agent system with four traces 

Trace 1 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  
Trace 2 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  
Trace 3 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  
Trace 4 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡  

The result of computing the minimum and maximum number of messages for different event pairs 
in Trace 1 in this event log is presented in Table 3.  
For instance, we consider the pair of events (𝑡 , 𝑡 ) of transitions between which we aim to add a 
bounded asynchronous channel place. We check the minimum and maximum number of messages 
for all traces in the event log from Table 2, as shown in Table 4. 
Table 3. Applying Algorithm 2 to Trace 1 in the log from Table 2 

Event pair Minimum Maximum (𝑡 , 𝑡 ) 𝑘 − 3 𝑘 + 2 (𝑡 , 𝑡 ) 𝑘 − 4 𝑘 + 1 (𝑡 , 𝑡 ) 𝑘 − 4 𝑘 + 2 (𝑡 , 𝑡 ) 𝑘 − 2 𝑘 + 3 (𝑡 , 𝑡 ) 𝑘 − 3 𝑘 + 3 (𝑡 , 𝑡 ) 𝑘 − 2 𝑘 + 3 (𝑡 , 𝑡 ) 𝑘 − 3 𝑘 + 2 (𝑡 , 𝑡 ) 𝑘 − 3 𝑘 + 2 (𝑡 , 𝑡 ) 𝑘 − 3 𝑘 + 2 

To cover the complete event log from Table 2, we need to construct the range for the channel 
between events 𝑡  and 𝑡  uniting the individual ranges for all traces. Thus, according to Table 4, the 
range of the number of messages that can be handled by the asynchronous channel between 
transitions 𝑡  and 𝑡  is [𝑘 −  3;  𝑘 +  3]. The length of this range is 𝑘 +  3 −  (𝑘 −  3)  =  6. 
Therefore, the maximum number of messages that can be stored in the channel between 𝑡  and 𝑡  is 
bounded by 6. 
Note also that, since the left border of this range 𝑘 −  3, initially the channel place between 𝑡  and 𝑡  should have 3 tokens in it, because the number of tokens in places of a Petri net cannot go below 0. This is also caused by the fact that in Trace 2 of the event log from Table 2 the agent receiving 
messages operates before the one who sends messages. 
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We have everything to construct the model of a multi-agent system with two agents exchanging 
messages through actions t4 and t1 within cyclic sequential behavior regarding the event log from 
Table 2. Fig. 12 shows the corresponding process model for this multi-agent system, where 𝑁  is 
the agent sending messages with transitions 𝑡 , 𝑡 , 𝑡 , and 𝑁  — receiving messages with transitions 𝑡 , 𝑡 , 𝑡 . 
Table 4. The number of messages in the channel connecting 𝑡  and 𝑡  

 Minimum Maximum 
Trace 1 𝑘 − 3 𝑘 + 2 
Trace 2 𝑘 𝑘 + 2 
Trace 3 𝑘 − 2 𝑘 + 3 
Trace 4 𝑘 − 2 𝑘 + 3 

We note that the similar analysis can be done for any pair of transitions representing the behavior of 
sending and receiving agents, s.t. one can add an asynchronous channel between them in different 
ways, unless there is an additional information on actions provided. For instance, one can choose 
those transitions with the channel the capacity of which does not exceed 1 (for safe Petri nets). In 
addition, as in the case of the acyclic interaction, it is possible to analyze the cyclic behavior of 
agents with parallel and alternative behavioral constructs inside cycles by checking interactions 
between separate sequential components. 

Moreover, the same property on preserving the perfect fitness of the individual agent models (see 
Theorem 1) will also hold for the cyclic interaction, since we add channel places between transitions 
in the strict accordance with an initial event log. 
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Fig. 12. A multi-agent system with two interacting agents with cyclic behavior 

5. Experimental Evaluation 
This section reports the key outcomes obtained from the series of experiments conducted to evaluate 
the proposed approach to the identification of the pairs of events involved into the acyclic and cyclic 
interactions among different agents in a multi-agent system. 

5.1 Layout of Experiments 
We compared process models discovered by our approach and directly from an event log of a multi-
agent system. We also considered a specific case of a process model with “disconnected” agents, 
i.e., we do not add asynchronous channels between them. 
Within the experimental evaluation, we used the synthetic event logs of multi-agent systems 
recording different ways of agent asynchronous interactions provided in [11]. They were also used 
to test the compositional approach to discovering architecture-aware process model of multi-agent 
systems [6]. This dataset was constructed with respect to various widespread service interaction 
patterns described in [12]. 
Thus, process models of multi-agent systems obtained by our approach to introducing channels were 
compared with the following other models:  

1) reference models, also provided in [11], which represent the ideal model of a multi-agent 
system with the minimum number of asynchronous channels;  

2) disconnected agent models, where individual agent models discovered from projected 
event logs are put together without adding any asynchronous channels;  

3) monolithic models discovered from directly event logs. 

We characterized these models according to the following two quality dimensions:  

1) precision evaluating the extra amount of behavior allowed by a process models regarding 
the behavior recorded in an event log (see the gray area in Fig. 13);  

2) the number of asynchronous channels connecting transitions in the models of different 
agents. 

 
Fig. 13. The behavior of a process model and traces in an event log 
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The perfect fitness of discovered process models is guaranteed by our approach and by the paper 
[6]. A model with the disconnected agent behavior also ensures the perfect fitness, since the 
concurrent execution of fully independent agents can also cover all possible ways of their 
asynchronous interactions. Therefore, we did not need to measure the fitness of considered process 
models. As for the precision, we used the approach from [13] as the one, which provides the balanced 
estimation of this quality dimension. The experimental evaluation was supported by the ProM 
software [14]. 

5.2 Experiment Results and Discussion 
Table 5 reports the results on comparing the quality of process models discovered from an event log 
of a multi-agent system using our approach with the quality of directly discovered models 
(monolithic) and models with the disconnected agent behavior. The dataset [11] used in our 
experiments contains seven different event logs of multi-agent system corresponding to different 
ways of acyclic (IP-1, ..., IP-6) and cyclic (IP-7) patterns of asynchronous interactions. We also did 
not evaluate the number of channels in monolithic process models of multi-agent systems, since in 
the structure of such a model one cannot unambiguously identify the behavior of individual agents 
and asynchronous channel places. 
Table 5. Experimental results: the number of asynchronous channels and precision evaluation 

Interaction 
Reference  Disconnected Monolithic Our approach 

Channels Precision Precision Precision Channels Precision 

Acyclic 

IP-1 1 0.7156 0.6949 0.5825 14 0.8109 
IP-2 2 0.4014 0.3719 0.3880 33 0.5337 
IP-3 2 0.7545 0.7097 0.8984 26 0.8861 
IP-4 2 0.7589 0.6752 0.6684 10 0.8420 
IP-5 4 0.3902 0.3503 0.1342 39 0.5724 
IP-6 4 0.5636 0.5256 0.6849 34 0.7034 

Cyclic  IP-7 3 0.8165 0.5945 0.1327 5 0.6782 

According to the experimental results provided in Table 5, we may conclude the following. Firstly, 
our approach detects considerably more “points” of the asynchronous interactions between different 
agents compared to the ideal reference model. A finite sequential record of the concurrent execution 
of relatively independent agents cannot cover all possible scenarios. Thus, there are more candidate 
relations among event pairs that can be considered for adding asynchronous channel places between 
the corresponding transitions. We can further analyze all found minimum event relations from the 
point of view on their frequencies w.r.t. an initial event log to exclude some of them. Secondly, 
process models obtained by our approach exhibits the increase in the precision estimations, since 
introduction of other asynchronous channels decreases the amount of extra behavior allowed by a 
model and not recorded in a log. Thirdly, we generally outperform the quality of the monolithic 
process model the structure of do not correspond to the architecture of a multi-agent system 
regarding the individual agent behavior and their interactions.  
We believe that increasing the number of traces in an event log will bring the quality of process 
models obtained by adding channels using our approach closer to the evaluations of reference 
models, since an event log will exhibit more different execution scenarios. As one of the possible 
directions of future research, we will consider the analysis of connections between the precision of 
agent models and of system models obtained by our approach based on event relation. 

6. Related Work 
As we mentioned in Introduction, different algorithms were proposed for the computer-aided 
discovery of process models from event logs. The most popular ones include Inductive miner [10], 
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Fuzzy miner [15], Region Theory-based miner [16], and Genetic miner [17]. These algorithms can 
guarantee that discovered process models will exhibit certain properties. For example, Inductive 
miner can guarantee perfect fitness and soundness of discovered workflow nets. In the recent study 
[7], the authors gave an extensive review and comparison of process discovery algorithms. Note that 
these algorithms are aimed to tackle different internal limitations of event data representation rather 
than to analyze interactions among different information system components.  
The quality of discovered process models takes an important part in choosing an algorithm for 
discovering process models from event logs. Conformance checking [7] provides several 
dimensions that allow one to evaluate the correspondence between a model and an event log (fitness, 
precision, generalization), and the structure of a discovered model (simplicity). Researchers stress 
that there is a lack of universally applicable properties and requirements that can constitute the 
formal basis for computing conformance checking dimensions [7, 18]. Thus, our study also 
considers the formal analysis of preserving the perfect fitness of agent models discovered from 
filtered logs in a multi-agent system models with introduced asynchronous channels recovered using 
event relations.  
The problem of discovering process models with a clear structure is studied from different 
perspectives. Inductive miner produces well-structured process models that are recursively 
constructed from “building blocks” representing standard behavioral constructs: sequential, cyclic, 
parallel, and alternative execution of actions. A series of papers [19, 20, 21] proposed different 
approaches to improving the structure of discovered models by the additional localization of the 
environment of events in a log and by composing fragments of regular and frequent behavior with 
the rare “exceptional” scenarios. Discovery of hierarchical process models, where a high-level event 
represents a sub-process, was studied in [4]. The identification of low-level and high-level events in 
an event log is a natural way to improve the structural representation of a process model. The paper 
[3] proposed a novel approach to discover object-centric Petri nets from event logs. Interactions of 
objects is represented through complex synchronizations which allow one to model consumption 
and production of objects of different types. Compositional discovery of behaviorally correct and 
“architecture-aware” process models from event logs of multi-agent systems was studied in [6]. 
Using interface patterns and structural property-preserving mapping helped to achieve the clear 
structure of a model reflecting independent behavior of agents and their communication. 
Our study continues [6] in a way that we are trying to analyze and identify “points” of asynchronous 
interactions — actions involved in the asynchronous message passing between agents — directly 
from event logs. Based on the causality relations among events in a log, we can find, for example, 
pairs of actions that are always executed in a fixed order. Such actions are then considered to be the 
candidates to represent send-receive operations within the asynchronous interaction. Then we may 
relax the requirement on the manual selection of interface patterns, as originally proposed.  
Patterns are typically used in the software development as the collection of best practices and 
recurring development scenarios [22]. Frequently used control-flow constructs in business process 
modeling — workflow patterns — were systematically studied in [23]. In [12, 24], the authors 
generalized workflow patterns for modeling widespread correct service interactions in complex and 
large-scale systems. Within the context of process discovery, several papers also proposed different 
approaches for the analysis of behavioral patterns in event logs, including, among the others, [25, 
26], but these patterns were not considered from the point of view of interactions among different 
information system components. 

7. Conclusion 
In this paper, we considered the problem of discovering a process model in terms of a generalized 
workflow net from an event log of a multi-agent system with the understandable structure reflecting 
the architecture of a system. A model of a multi-agent system is obtained from a composition of 
individual agent models through the introduction of asynchronous channels. To identify transitions 
in agent models to be connected via a channel place, we analyze causal relations between events 
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recorded in an event log. Within the asynchronous agent interactions, several actions of one agents 
are executed before certain actions of the other. This idea helped us to localize the so-called 
minimum event relations corresponding to the occurrence of actions executed by different agents. 
The pairs of events representing these minimum relations can be seen as “points” of the 
asynchronous communication between agents. Transitions corresponding to these events can be 
connected with an asynchronous channel place. We also showed that certain minimum event 
relations can cover other minimum relations between events in a log.  
The pair-wise analysis of relations between events recorded in an event log was based on matrices 
with rows and columns representing events. Matrix representation of event logs was used in process 
mining in different contexts (cf. the footprint matrix in the basic 𝛼-algorithm [27] and the analysis 
of unchanged sections in BPMN models [28]).  
We separately considered the cases of the acyclic and cyclic asynchronous interactions, since, within 
the latter one, events can be recorded in any possible order. To localize events in the cyclic 
communication, we analyzed the number of event occurrences regarding the maximum number of 
messages that a potential asynchronous channel can handle. This allows us to achieve the 
boundedness, i.e., the finite number of reachable states, in a complete process model of a multi-
agent system.  
The correctness of the proposed approach to adding asynchronous channels between behavioral 
models of individual agents is justified by the fact that we preserve the perfect fitness, i.e., the ability 
to execute all traces in the event log of a multi-agent system, of agent model in a complete system 
model. We conducted a series of experiments to evaluate our approach. The experimental results 
demonstrate the overall improvement in process models discovered by adding asynchronous 
channels in comparison to models directly discovered from event logs of multi-agent systems.  
As for the future research, we plan to continue it in the following directions. Firstly, we would like 
to consider more complex ways of the asynchronous communications, including, for instance, 
message broadcasting. Secondly, we also intend to make a deeper analysis of the preservation of 
behavioral properties, including deadlock-freeness, in a process model of a multi-agent system 
obtained from individual agent models connected by asynchronous channel places. For example, we 
need to avoid the introduction of channels leading to the “circular wait”, as shown in Fig. 14, where 𝑁  waits for 𝑁 , while 𝑁  waits for 𝑁  at the same time. Finally, we plan to conduct more 
experiments using real-life event logs. 

 
Fig. 14. Asynchronous interaction may result in a deadlock 
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