
Труды ИСП РАН, том 36, вып. 2, 2024 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024

33

DOI: 10.15514/ISPRAS-2024-36(2)-3

Exploring the Taxonomy of Commits in Cyber-
Physical Systems for Enhanced Error Fixes

Investigation

N.A. Starovoytov, ORCID: 0009-0007-0242-0198 <nikstarall@gmail.com>
S.M. Staroletov, ORCID: 0000-0001-5183-9736 <serg_soft@mail.ru>

Polzunov Altai State Technical University,
46, prospect Lenina, Barnaul, Altai region, 656038, Russia.

Abstract. Cyber-physical systems are a symbiosis of multi-level control systems that take into account the
physical aspects of the functioning of target objects. Errors in such systems can be associated both with incorrect
organization of the code and operation of the hardware, as well as with an incorrect understanding of physical
laws and their numerical approximation. Continuing our previous work, we apply technologies for analyzing
commits in git repositories of some well-known cyber-physical systems, followed by classification of messages
from developers. As a result, we discuss the identified strong keywords and generalized fix messages that can
reveal the main classes of bugs in these projects. The results of the work can be used in training and consulting
on errors and vulnerabilities in complex systems.

Keywords: clustering; fixing commits; errors classification; cyber-physical systems.

For citation: Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical
Systems for Enhanced Error Fixes Investigation. Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp.
33-46. DOI: 10.15514/ISPRAS-2024-36(2)-3.

Классификация коммитов в репозиториях киберфизических
систем для исследования исправлений ошибок в них

Н.А. Старовойтов, ORCID: 0009-0007-0242-0198 <nikstarall@gmail.com>
С.М. Старолетов, ORCID: 0000-0001-5183-9736 <serg_soft@mail.ru>

АлтГТУ им. И.И. Ползунова,
Россия, 656038, Алтайский край, г. Барнаул, пр. Ленина, 46.

Аннотация. Киберфизические системы представляют собой симбиоз многоуровневых систем
управления и учитывают физические аспекты функционирования целевых объектов. Ошибки в таких
системах могут быть связаны как с неправильной организацией кода и работой аппаратных средств, так
и с неверным пониманием физических законов и их численной аппроксимацией. Продолжая
предыдущую работу, мы применяем технологии автоматизированного анализа коммитов в git-
репозиториях некоторых известных киберфизических систем с последующей классификацией
собранных сообщений о фиксации изменений, написанных разработчиками таких систем. В работе мы
обсуждаем выявленные сильные ключевые слова и обобщенные сообщения об исправлениях, которые
способны показать основные классы ошибок в этих проектах. Результаты исследования могут быть
использованы при обучении и консультировании по ошибкам и уязвимостям в сложных системах.

Ключевые слова: кластеризация; исправляющие коммиты; классификация ошибок; киберфизические
системы.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

34

Для цитирования: Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях
киберфизических систем для исследования исправлений ошибок в них. Труды ИСП РАН, том 36, вып.
2, 2024 г., стр. 33-46 (на английском языке). DOI: 10.15514/ISPRAS–2024–36(2)–3.

1. Introduction
Modern software development environments are crucial for improving the efficiency and quality of
software development processes. One such valuable tool is the git version control system [1], which
is widely used among developers and provides a detailed change history in its repositories. Each
change to the code is documented with a message written in natural language by the developer,
making it easier to track the evolution of the software.
This work seeks to leverage data analysis methods to identify common types of errors in the source
code of software used in cyber-physical systems. By analyzing the messages in git repositories,
automated methods can be used to detect patterns of errors fixes for the code. This approach can
help developers identify recurring issues and take preventive measures to improve software quality.
By conducting such analysis, software development teams can streamline their processes, reduce the
occurrence of errors, and enhance the overall quality of the software being developed. By
understanding the common types of errors and their main causes, developers can implement targeted
solutions to address these issues and prevent them from occurring in future projects to ensure that
software for cyber-physical systems is robust and reliable.
The rest of the paper has the following structure.
In Section 2, we discuss the background on commits to version control systems and cyber-physical
systems. Section 3 is about the related works on errors detection in cyber-physical systems. Section
4 is devoted to the implementation plan and solving corresponding issues. In Section 5, we discuss
the results we got by running our software to analyze some known repositories of cyber-physical
systems. In Conclusion, we point out the generalization of found errors types.
The present paper is an extension of the report presented at SYRCoSE Software Engineering
Colloquium 2024 in Stavropol.

2. Background

2.1 The git version control system
A version control system is a system that helps manage software development. It tracks changes,
provides multiple version control of files, and allows multiple developers to collaborate [2].
The git version control system was created by Linus Torvalds to manage the development of the
Linux kernel. Projects in the git system are called repositories.
A git repository contains a collection of files and folders associated with a project, along with a
history of changes to each file. A file history is a list of changes at a specific moment called commits.
They can be organized into multiple development lines called branches. Because git is a distributed
version control system, anyone with a copy of the repository can access the entire project's codebase
and its history. Thus, by analyzing the repository one can track the progress of project development.
Each commit contains the following tracking information [3]: (1) a snapshot of the current state of
the files in the repository at the time the changes were committed, a commit stores all the changes
that have been made to the files at the time of the commit; (2) author of the commit; (3) the date the
commit was created; (4) a commit message written by the developer in natural language that
describes the essence of the changes made in this commit; (5) hash sum; and (6) parent commits.

2.2 Commit classification
The three most common reasons for making changes to the code by introducing a commit, are [4-
5]:

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

35

1) Adding new functionality: this refers to the process of introducing new features to the
software application. It could involve creating new modules, implementing new algorithms,
or integrating third-party libraries.

2) Improving code quality: this reason includes making changes to the code to enhance its
maintainability, readability, and efficiency. It could involve refactoring code to follow
coding standards, optimizing algorithms or improving documentation.

3) Fixing bugs: they involve identifying and resolving issues in the code that affect the
functionality of the software application.

While bug fixes and adding new functionality are closely related reasons for code changes, it is
essential to accurately classify commits in a version control system to distinguish between the two
categories. To address this, some research focused on identifying key features that differentiate bug
fixes from adding new functionality in commits. By analyzing the patterns, code changes, and
contextual information associated with each type of commit, a commit classifier was made [6]. In
our work we use almost the same ideas.

2.3 Cyber-physical systems and errors in it
Edward Lee's works on modeling cyber-physical systems [7, 8] provide in-depth exploration of the
fundamental concepts underlying these complex systems. Lee points out the importance of a precise
definition of cyber-physical systems, highlighting their evolution from the earlier cybernetic systems
studied in control theory. One key aspect that sets modern cyber-physical systems apart is their
reliance on diverse sensor data, which necessitates a distributed approach to operation. These
systems not only interact with their environment but also have direct impacts on human lives,
underscoring the need for accurate modeling to ensure their safe and effective functioning.
Raj Rajkumar emphasizes the interconnected nature of cyber-physical systems [9], notes how these
systems combine physical processes with communication networks and computing capabilities.
Helen Gill expands the definition of cyber-physical systems to include human factors, taking into
account the role of human operators in these systems [10]. Janos Sztipanovits highlighting the
interdisciplinary nature of cyber-physical systems, pointing how these systems bring together
expertise from various fields such as computer science, engineering, and mathematics [11].
Errors in cyber-physical systems can be categorized into various types [12] such as design errors,
implementation errors, communication errors, timing errors, and environmental errors. These errors
can result in safety, system failures, performance, and security vulnerabilities.
Addressing errors in cyber-physical systems presents numerous challenges [13] due to the intricate
nature of system interactions, real-time constraints, resource limitations, and the necessity for
interdisciplinary expertise. To enhance error detection and mitigation strategies, researchers are
investigating advancements in formal methods, model-based design, runtime monitoring, anomaly
detection, and machine learning techniques [14].

2.4 Examples of cyber-physical systems to analyze
In this subsection, we describe some notable projects from our past experience and from the list of
projects on the topic "cyber-physical systems" on GitHub, which we chose to analyze error fixes in
their repositories.
The Ardupilot project [15] can be considered as a cyber-physical system. Ardupilot is an open-
source autopilot software suite that enables autonomous control of drones, unmanned aerial vehicles
(UAVs), and other robotic systems. It integrates physical components (such as sensors, actuators,
and communication modules, see the example of architectural modeling in [16] with computational
elements (software algorithms, control logic) to enable real-time monitoring, control, and navigation
of the vehicle.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

36

The Scada-LTS project [17] can also be understood as a cyber-physical system. SCADA
(Supervisory Control and Data Acquisition) systems are used to monitor and control industrial
processes, infrastructure systems, and other complex systems that involve the interaction between
physical components and digital control systems. The Scada-LTS project is an open-source SCADA
software system provides monitoring, control, monitoring, and data acquisition capabilities for
various industrial applications.
The Modelica project [18-19] is related to the cyber-physical system topic. Modelica is an open-
source, object-oriented modeling language used to model complex cyber-physical systems that
involve the interaction between physical components and digital control systems. In a cyber-physical
system context, Modelica can be used to create models that represent the behavior of physical
components such as mechanical systems, electrical systems, thermal systems, and more. These
physical component models can then be integrated with control algorithms and other software
components to create a comprehensive model of the entire system.
The KeYmaeraX project [20-21] relates to the promising topic of proving the correctness of cyber-
physical systems. KeYmaeraX is a theorem prover for hybrid systems, which are systems that
exhibit both continuous dynamics (physical processes) and discrete dynamics (digital control
algorithms). Cyber-physical systems often fall into the category of hybrid systems. KeYmaeraX
supports the verification of safety-critical properties, such as collision avoidance, stability
guarantees, reachability analysis, and dynamic logic specifications [22-24], which are essential for
ensuring the reliable operation of cyber-physical systems.

3. Related work
To search for errors and vulnerabilities in cyber-physical systems, both static and dynamic methods
are applicable. Since software for cyber-physical systems is a set of executable programs (possibly
running on different nodes), general methods of analysis, testing and verification specific to
distributed software are applicable to it. For such systems, monitoring is preferable, when the system
is running and its current state can be obtained and compared with the expected one. The work [25]
describes a review of this kind of monitoring for given requirements in the form of specifications.
Specific signal analysis methods are applicable for different classes of such systems [26]. For real-
time systems, this kind of monitoring can check parameters such as input rate, scheduling delay, and
processing time [27]. For systems dependent on network interactions, methods for analyzing
network vulnerabilities [28] are applicable.
It has long been discussed that static code analysis techniques are applicable to such systems [29].
Although for special domains, special approaches must be used to generate benchmarks [30].
As of theoretical research, first of all, methods for constructing behavioral models of such systems
and testing them [31] as well as logical calculus systems for modeling vulnerabilities [32] are known.
Such models are decoupled from real code, which entails the use of abstraction and a potential loss
of adequacy, but they can potentially test situations that are difficult to reproduce.
Empirical work by Tan et al. [33] focuses on conducting a comprehensive analysis of bugs in open-
source software, with a specific emphasis on the Linux kernel. In the case of Linux, bugs are
categorized based on their respective subsystems, such as core, driver, network, FS, arch, or other.
The study utilizes BugZilla's message text for various open-source components, employing
vectorization techniques for automatic bug classification. In a similar vein, Xiao et al. [34] proceed
with a detailed examination of 5741 Linux kernel bug reports. Their analysis delves into bug
descriptions, comments, and attached files from the Linux kernel bug tracker, BugZilla. The bugs
are further classified as fast-reproducible (Bohrbug), difficult-to-reproduce (Mandelbug), or
context-dependent. Additionally, the researchers define specific categories to which bugs can be
attributed, such as memory errors or unfreed resources, based on their contextual dependencies. In
the present work, we are going to do such kind of analysis. By focusing on cyber-physical systems
rather than Linux kernels, we can uncover specific issues and vulnerabilities that are relevant to this

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

37

particular domain. Utilizing git repositories as the source for messages provides a wealth of data that
can offer insight into the development and maintenance of these systems. By differentiating between
fixing commit messages, we can pinpoint common errors and identify patterns that may indicate
underlying issues within the codebase.

Fig. 1. Architecture of our solution

4. On the implementation

4.1 The structure of the solution
The internal flow and main modules of our solution are presented in Fig. 1. The ideas to implement
the approach are presented in our previous paper [35]. To repeat, this is getting the text of commits,
identifying commits that commit, representing its text in vector form using a “bag of words”,
working with increasing the role of significant words, and further clustering such vectors into
generalizing centroids with the ability to restore close messages from commits for each of the found
centroids. Les us just describe the logical modules.
The Intermediate storage is a module necessary to be able to interrupt the progress of the program
and replace other modules without completely losing the result of the work; it can be presented in
the form of a small database management system.
The Commits loader loads commit information from the git system. This module is necessary
because calculating file changes can be a costly operation, and preloading information allows it to
be done only once.
The Transformation to classifier vectors module obtains commits in a vector representation. For
conversion, both data from the commit information in natural language and in a programming
language are used. Priority in classification is given to control flow graph representation of the
commit diff. The vector data is used only for classification and is not used further in commit
clustering.
The Commit classifier module determines whether a certain commit is a bug fix.
The Selection module makes a selection from the general pool of commits that will be needed for a
specific study. For example, the comment belongs to a specific domain and time period.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

38

The Tokenization module converts a commit message to a list of keywords. This process involves
removing technical information, converting words to a basic form, and removing unimportant
words.
The Transformation to clusterization vectors module converts a list of keywords to numeric
vectors, and also generates a dictionary for the reverse arrangement of vectors.
The Clustering module defines a certain cluster for a specific commit or assigns it to an outlier
(does not assign it to any of the clusters). It works with the Distance calculation module which
calculates the matrix of distances between all vectors.
The Representation module collects data from different modules, organizes them and presents them
in a user-friendly format.

4.2 Covered issues
In this section, we discuss solving the difficulties that followed attempts to directly apply Linux
kernel repository analysis approaches [35] to new cyber-physical system repositories.
During the analysis, it was noticed that the selected repositories of cyber-physical systems lack in
commit messages a detailed description of the actions taken by developers. Therefore, we have to
rely solely on headlines as the source of data for our analysis. Incomplete and uninformative commit
messages make it difficult to understand development history and effectively track down the causes
of problems. Unfortunately, in the repositories studied, such commits predominate, which
complicates the analysis.
A significant problem also arises from the high IDF values observed in dictionaries. This reflects a
lack of token diversity that prevents key aspects from being isolated in the codebase. As a
consequence, inflated values lead to a number of problems that must be overcome to achieve good
storage analysis.
As a solution to the problems, LSA transformations had to be introduced. LSA is a machine learning
technique used to identify semantic patterns in large text data sets, making it an effective tool for
analyzing changes in domain-specific code repositories.
It was also decided to change the clustering algorithm. DBSCAN offers significant improvements
to the commit analysis process. It detects clusters of different densities and shapes, making it easier
to adapt to different projects.
Analyzing each repository with a small number of commits is a unique task in selecting clustering
parameters (Table 1), and requires careful manual tuning. Manual selection is critical to achieving
optimal results. For example, increasing the “LSA units” parameter can help in cases where the
number of clusters is not enough or too many.
Table 1. Empirically selected parameters for clustering and LSA transformation

 Scada Modelica KeYmaeraX ardupilot
Min cluster size 5 5 10 15
Eps 0.23 0.23 0.38 0.45
LSA units 100 100 200 300

In cyber-physical systems repositories, the general lack of a sufficiently large number of commits is
a major obstacle because it limits the amount of data available for analysis. This limitation makes it
difficult to effectively identify patterns. Low commit rates may be due to factors such as small
development teams, infrequent updates, or rigorous testing and review processes before committing
changes. Overcoming these challenges requires taking a closer look at available data and exploring
alternative analytical approaches to extract meaningful information from a limited data set.
Differences in commit message conventions create serious problems for the classifier (deciding
whether a fix or a new feature has been committed) when applied across different repositories. As a
result, classifiers trained in one repository may struggle to perform effectively in others, resulting in

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

39

reduced relevance in identifying patches and clustered data. In this set, a classifier trained on the
Linux kernel repository was used, so it was much easier for it to find training data.

Fig.2. The number of commits (top) vs the number of fixes (bottom) in the selected repositories

The accompanying Fig.2 illustrates an interesting observation: the number of identified fixes does
not depend on the total number of commits. This highlights the difficulty of generalizing classifiers
and the importance of considering storage-specific nuances to improve classification accuracy.
To mitigate the impact of problems associated with abstract commit descriptions and low commit
frequency, several strategies are proposed. These include analyzing relationships between
comments, tracking code changes over time, identifying patterns based on sequences of commits,
etc. Additionally, using meta-information such as commit author, timestamp, and associated files
can enhance the analysis capabilities. Combining data from different sources gives us a more
complete understanding of storage dynamics and helps to make more informed decisions.
Every repository, be it Scada, Modelica, KeYmaera X or Ardupilot, has issues that affect the
efficient identification of commit clusters (Table 2). These problems include weak commit
descriptions, low numbers of commits, difficulties in classifying fixes, and low relevance within the
context of the repository's domain. For example, automatic analysis of the Modelica repository is
almost impossible with the proposed methods, since each of the proposed problems is present in it.
Interestingly, repositories with fewer inherent problems require more stringent parameter
specifications to achieve optimal results for them.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

40

Table 2. Main issues for clustering in selected repositories

 Scada Modelica KeYmaeraX ardupilot
Weak description + + + +
Low commits count + +
Wrong classification of fixing commits + +
Low relevance + + +

5. Results of analysis of repositories with some known projects of cyber-
physical systems

In this section, we show the results of the analysis of the git repositories of the specified projects by
our software. First, we demonstrate the generalized vectors found, with the words there arranged in
descending order of weight using tf-idf. Next, for each vector, we show examples of the most
relevant messages from commits that match this vector.

5.1 The Ardupilot project
Vector #1: ['apvehicle', 'compiler', 'float', 'override', 'keyword', 'old', 'airspeed', 'double', 'gc',
'initialisation', 'serial', 'avoid', 'wrapper', 'older', 'return']

AP_PID: compiler warnings: apply is_zero(float)

APMrover2: compiler warnings: apply is_zero(float) or is_equal(float)

Plane: compiler warnings: apply is_zero(float) or is_equal(float)

AP_Compass: compiler warnings: apply is_zero(float) or is_equal(float)

AntennaTracker: compiler warnings: apply is_zero(float) or is_equal(float)
This vector represents a fix for the compiler warning when working with floating-point values.
Vector #2: ['hwdef', 'binding', 'copter', 'register', 'match', 'changes', 'update', 'sub', 'optional', 'recent',
'upstream', 'manual', 'i2c', 'avoid', 'lua']

AP_HAL_ChibiOS: hwdef add support for Networking

hwdef: add hwdef for SDMODELH7V1

AP_HAL_ChibiOS: update truenav hwdef

AP_HAL_ChibiOS: hwdef for Flywoo F405 Pro

AP_HAL: move defaulting of HAL_DSHOT_ALARM into hwdef

This vector represents an improvement to the hardware definition for hardware abstraction
components.
Vector #3: ['hil', 'initial', 'wrapper', 'implementation', 'roll', 'tailsitter', 'pitch', 'eliminate', 'transition',
'ap', 'attitude', 'call', 'vtol', 'timing', 'creation']

ACM: fixed HIL build again

ArduPlane: remove HIL support

AP_Compass: remove HIL support

Blimp: remove HIL support

GCS_MAVLink: remove HIL support

This vector deals with support for the Hardware-in-the-loop simulator, which was gradually
removed from the project.
Vector #4: ['define', 'separate', 'send', 'patch', 'stability', 'simple', 'hold', 'alt', 'ability', 'able', 'absolute',
'abstraction', 'ac', 'accel', 'acceleration']

AP_RCProtocol: add separate define for AP_RCPROTOCOL_PPMSUM_ENABLED

AP_RCProtocol: add separate define for AP_RCPROTOCOL_ST24_ENABLED

AP_RCProtocol: add separate define for AP_RCPROTOCOL_DSM_ENABLED

AP_RCProtocol: add separate define for AP_RCPROTOCOL_SUMD_ENABLED

AP_RCProtocol: add separate define for AP_RCPROTOCOL_IBUS_ENABLED

This vector deals with define macros in code.

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

41

Vector #5: ['fence', 'without', 'register', 'attitude', 'pointer', 'must', 'collective', 'avoid', 'quad',
'horizontal', 'next', 'tradheli', 'heli', 'term', 'structure']

AC_Fence: add polygon fence check to check_destination_within_fence

AC_Avoid: add support for stopping at polygon fence

AC_Fence: add support for polygon fences

AP_OSD: Add fence indicator panel

Rover: add fence support

This vector deals with fixes for obstacle avoidance functions.
Vector #6: ['location', 'adjust', 'vector3f', 'require', 'accepts', 'send', 'home', 'packet', 'specify',
'original', 'unify', 'circle', 'mount', 'support', 'usage']

autotest: fixed buildlogs location for *.BIN

AP_Math: move line_path_proportion to Location

ArduPlane: use past_interval_finish_line and line_path_proportion from Location

Tweaks to fix Loiter

Changed save location to int32

added some filtering and smoothing

APMrover2: use past_interval_finish_line and line_path_proportion from Location

This vector deals with fixes for location objects.
Vector #7: ['scheduler', 'enum', 'old', 'ability', 'able', 'absolute', 'abstraction', 'ac', 'accel', 'acceleration',
'accelerometer', 'accept', 'accepts', 'access', 'accessor']

Rover: windvane update called from scheduler at 20hz

AP_NavEKF: Scheduler Improvements

Plane: remove update_events scheduler shim

AP_HAL_AVR: Scheduler extensions implemented

Copter: remove shims used in scheduler

This vector deals with fixes for the scheduler.
Vector #8: ['macro', 'rewrite', 'frontend', 'flag', 'ability', 'able', 'absolute', 'abstraction', 'ac', 'accel',
'acceleration', 'accelerometer', 'accept', 'accepts', 'access']

all: use CLASS_NO_COPY() macro

Copter: Obey RANGEFINDER_ENABLED, AUTOTUNE_ENABLED and AC_TERRAIN build macros

AP_HAL_SMACCM: fix to goofed PPM_MAX_CHANNELS macro

HAL_ChibiOS: use EXPECT_DELAY() macro

AP_InertialSensor: use EXPECT_DELAY() macro

This vector deals with various code fixes in macros (specific to C/C++ projects).
Vector #9: ['script', 'reset', 'last', 'install', 'readme', 'folder', 'dronecan', 'style', 'multiple', 'optflow',
'byte', 'iofirmware', 'lua', 'jsbsim', 'enumeration']

AP_HAL_ChibiOS: fix script for HerePro

AP_HAL_F4Light: fixed some support scripts

AP_Scripting: add arming check for failed scripts

HAL_ChibiOS: moved to generated loader script

AP_Scripting: add checksum of running and loaded scripts with arming check

This vector deals with fixes for built-in scripts.
Vector #10: ['quadplane', 'adjust', 'ability', 'able', 'absolute', 'abstraction', 'ac', 'accel', 'acceleration',
'accelerometer', 'accept', 'accepts', 'access', 'accessor', 'accessors']

Plane: Quadplane: use uint16_t for output_motor_mask

Plane: added QTUN logging for quadplane

AC_WPNav: converted to use AP_AHRS_View

Plane: Quadplane remove THR_MIN_PWM and THR_MAX_PWM

Plane: allow for NAV_LOITER_UNLIM and NAV_LOITER_TIME in quadplane

This vector deals with fixes for working with QuadPlane, which is a combined fixed wing and
MultiCopter aircraft.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

42

5.2 The Scada-LTS project
Vector #1 ['settimeout', 'state', 'commonjs', 'pointpropertiesapi', 'eventtextrenderer', 'translate',
'interface', 'messagesms', 'localization', 'validate', 'copy', 'plcalarmsdao', 'messages', 'adapter',
'miscdwrdolongpoll']

#2111 Fixed using setTimeout in common.js - added multi thread tests:
MiscDwrDoLongPollAlarmsMultiThreadTest, MiscDwrDoLongPollMultiThreadTest;
corrected MiscDwr.doLongPoll, without copy state

#2111 Fixed using setTimeout in common.js - use setInterval

#2111 Fixed using setTimeout in common.js 3 - setTimeout functionality ported to
java

#2111 Fixed using setTimeout in common.js - validate uiPerformance, added 'Very
high' option (1000ms)

#2111 Fixed using setTimeout in common.js - corrected refresh points with
statistics, for request that run longer than the Interval Time

This vector is a fix for the timer function - executing code by timeout in JS.

Vector #2: ['patch', 'vue', 'views', 'tests', 'ability', 'able', 'abstract', 'abstractbeforeafterworkitem',
'accept', 'access', 'accetable', 'acknowledge', 'acl', 'action', 'active']

patch removed newline

patch MangoTextContent.java

Refactor Vue Unit Tests #1533

#1641 ADD [NotFinished] VirtualDataPoint Vue

#1894 Views caching - corrected

This vector represents patches for views (that is, representing the states of objects on the screen).

Vector #3: ['correction', 'commit', 'display', 'partial', 'isalive2', 'viewdao', 'clean', 'eventdetectorapi',
'not', 'eventlist', 'component', 'number', 'ability', 'able', 'abstract']

Correction of commit number display. #1502

#2051 Visual corrections (component shrink)

EventDetectorAPI corrections #1532

#2051 Add corrections to the IsAlive2

SLTS-40 Add correction to ViewDAO

This vector represents various corrections associated with the display of information and events in
the system.

Vector #4: ['slts13', 'testdao', 'annotation', 'cleanup', 'scriptdao', 'direct', 'rewrite', 'navigation', 'link',
'controller', 'ability', 'able', 'abstract', 'abstractbeforeafterworkitem', 'accept']

SLTS-13 Added FlexProjectRowMapper and remove @SuppressWarning annotation

SLTS-13 move expectedException to TestDAO

SLTS-13 Rewrite ScriptDAO

SLTS-13 controller's clean-up

SLTS-132 Implemented direct link navigation.

This vector represents fixes for DAO (data access object).

Vector #5: ['log4j', 'pointdetails', 'slts34', 'logger', 'ability', 'able', 'abstract', 'abstract before after
workitem', 'accept', 'access', 'accetable', 'acknowledge', 'acl', 'action', 'active']

#1982 - log4j update

#1982 - log4j update

SLTS-97 Add logger for log4j. Correct PointValueService.

WORKSAVE New PointDetails ideas

SLTS-34 Add DataSourceServiceTest

This vector represents logging fixes using log4j (log for Java).

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

43

5.3 The Modelica project
Vector #1: ['proper', 'word', 'format', 'use', 'number', 'leakage', 'accordingly', 'individual', 'usersguide',
'magnetic', 'electrical', 'work', 'ha', 'implementation', '09']

Use proper number formats

Proper word

Use proper number formats

Proper word

SymmetricPolyphaseWinding: moved individual leakage from magnetic to electrical
implementation: it works!

UsersGuide has to be adapted accordingly.

This vector represents fixes for formatting messages with the correct number format.
Vector #2: ['unify', 'time', 'ccr', 'event', 'enhancement', 'cleanup', 'drive', 'controller', 'some',
'powerconverters', 'partial', 'interface']

refs #1627: Fix detection of (scaled) time events

refs #1627: Fix detection of scaled time events

CCR: corrected error in setState_ps

This vector represents fixes for working with time events.
Vector #3: ['electricaldigital', 'correction', 'elementary', 'grid', 'fit', 'mechanicsmultibody', 'layout',
'better', 'info', 'svn', 'revision', 'function']

#799 solved for Electrical.Digital

errors fixed in Electrical.Digital

errors fixed in Electrical.Digital

corrections according to #994 in Electrical.Spice3.Internal.Fet

Correction of info of function Matrices.realSchur

This vector represents bug fixes in the Electrical.Digital component (this library contains packages
to model digital electronic systems based on combinational and sequential logic).
Vector #4: ['due', 'picture', 'complexblocks', 'modification', 'docu', 'referenceair', 'referencemoistair',
'mass', 'energy', 'balance', 'some', 'static']

Comments added due to #1475

modifications due to ComplexBlocks

due to #407 bugs 2, 3, 4, 5, 7 fixed (docu, pictures)

Some changes due to renaming of ReferenceMoistAir and ReferenceAir.

medium.preferredMediumStates is now false if both mass and energy balances are
static

Attempt to fix issue #3236

This vector represents error fixes for complex blocks with images.
Vector #5: ['dynamicselect', 'boolean', 'comparison', 'real', 'individual', 'stray', 'implementation', '09',
'150', '2dtable', '3rdparty', '64bit', 'abbreviation']

Avoid Boolean comparison with Real in DynamicSelect (#2862)

Avoid Boolean comparison with Real in DynamicSelect (#2879)

corrected implementation of individual stray permeances

This vector represents fixes for proper comparison with real (floating-point) values.

5.4 The KeYmaeraX project
Vector #1: ['implement', 'syntactic', 'derivative', 'index', 'skeleton', 'skolemization', 'counting',
'magic', 'less', '20150824', '20160308', '20160601', '20160802', '20160816', '2sided']

implement GetPathAll

implement the CreateProblemRequest

implement BranchRoot

implement skolemization

implement more of skeleton

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

44

This vector represents the addition of various functionality to the project in the form of large
commits, for example, the implementation of skolemization (reduction to Skolem normal form is an
approach for removing existential quantifiers from formal logic statements).
Vector #2: ['package', 'private', 'change', 'moves', 'datastructures', 'firstintegrals', 'fol', 'replaceall',
'tooltips', 'dwplus', 'compilability', 'link', 'thanks', 'cert', 'sos']

packages

Change package

Change package for compilability.

merge tons of code from kaisar package to experiments package, get bot working
again

Move strategic AxiomIndex to package btactics

This vector represents fixes for rebuilding packages in the logical organization of the architecture.
Vector #3: ['solve', 'axiominfo', 'nilpotent', 'search', 'feedback', 'anyarg', 'anything', 'axiombase',
'output', 'rescue', 'diffsolve', 'theme', 'choice', 'consistently', 'speedup']

Nilpotent solve (preliminary)

Nilpotent solve speedup

Re-unification to solve p(.)~>.>=0 , p(.)~>2>=0 issues as in

[x':=2]x'>=0<->2>=0 against [':=]

Nilpotent solve: dW only when provable

key/recusor in AxiomInfo

This vector represents fixes for Nilpotent solve (for solving algebraic structures).
Vector #4: ['unification', 'derive', 'bidirectional', 'axindex', 'imply', 'monomial', 'projection', 'init',
'sign', 'bit', 'variation', 'dot', 'dbx', 'match', 'dotterm']

Colored-dots unification

Improve unification a bit further

Unification support for projection

Unification match: 0-indexed colored dots

DiffHelper derive fix (sign error)

This vector represents fixes for the unification algorithms [36] in the theorem prover.

6. Discussion and Conclusion
The results of the clusterer can be considered successful only for the Ardupilot project. For the rest,
there are problems with obtaining both the required number of arbitrarily representative clusters,
and with the quality of the found vectors, so that they actually represent fixes of repeating types of
errors. We see the main problems here in the organization of development of the selected projects,
when developers write uninformative messages about commits. In addition, task management
suffers: code fixes are committed to solve large problems at once, rather than small changes with a
clear justification. The final problem we see is the classification of commits into adding functionality
and fixes: the classifier is based on the code as well as messages of Linux kernel commits and for
other repositories, as it turned out, it does not work entirely correctly.
As for the processed commits, in the Ardupilot project the main errors were specific to the software
domain for unmanned vehicles, such as issues of location processing, obstacle avoidance,
abstraction from hardware and scheduling. For SCADA systems, errors specific to Java applications
and MVC architecture were found, which is not surprising, because such projects visualize
monitoring data of cyber-physical systems. For the Modelica system, the Electrical.digital
subsystem was found, which is prone to errors, as well as other issues there are related to the
conversion of numeric floating-point values. Finally, in the theorem prover for cyber-physical
systems KeYmaeraX (with not a good organization of commits that does not reveal the full
complexity of development), the main logical subsystems for proving cyber-physical models in
which there were many changes in the code were found: skolemization, nilpotent solve and
unification.

Старовойтов Н.А., Старолетов С.М. Классификация коммитов в репозиториях киберфизических систем для исследования
исправлений ошибок в них. Труды ИСП РАН, том 36, вып. 2, 2024 г., стр. 33-46.

45

The final advantages of our solution are the ability to easily evaluate what is being done in a given
repository (with a sufficiently large number of well-organized commits) and what errors were
corrected in order to learn from examples of the development of this kind of systems with increased
reliability requirements.

References
[1]. git. Available at: https://git-scm.com, accessed Jun. 24, 2024.
[2]. Otte S. Version control systems, 2009. Available at: https://api.semanticscholar.org/CorpusID:7541013,

accessed Jun. 24, 2024.
[3]. Chacon S., Straub B. Pro git. Springer Nature, 2014.
[4]. Herzig K, Just S., Zeller A. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In

Proc. 2013 35th international conference on software engineering (ICSE). IEEE, 2013, pp.392–401.
[5]. Kagdi H., Collard M. L., Maletic J. I. A survey and taxonomy of approaches for mining software

repositories in the context of software evolution. Journal of software maintenance and evolution: Research
and practice, vol. 19, no. 2, pp. 77–131, 2007.

[6]. Tian Y., Lawall J., Lo D. Identifying Linux bug fixing patches. In Proc. 2012 34th international conference
on software engineering (ICSE). IEEE, 2012, pp. 386–396.

[7]. Lee, E. A. The past, present and future of cyber-physical systems: A focus on models. Sensors, vol. 15,
no. 3, pp. 4837–4869, 2015.

[8]. Lee, E. A. Plato and the nerd: The creative partnership of humans and technology. MIT Press, 2017.
[9]. Rajkumar R., De Niz D., Klein M., Cyber-physical systems. Addison-Wesley Professional, 2016.

[10]. Gill H. From vision to reality: cyber-physical systems. In Proc. HCSS national workshop on new research
directions for high confidence transportation CPS: automotive, aviation, and rail. Austin USA, 2008, pp.
1–29.

[11]. Sztipanovits J., Koutsoukos X., Karsai G., Kottenstette N., Antsaklis P., Gupta V., Goodwine B., Baras J.,
Wang S. Toward a science of cyber–physical system integration. Proceedings of the IEEE, vol. 100, no.
1, pp. 29–44, 2011.

[12]. Siddesh G.M., Deka G.C., Srinivasa K.G., Patnaik L.M., Cyber-physical systems: a computational
perspective. CRC Press, 2015.

[13]. Rajkumar R., Lee I., Sha L., Stankovic J. Cyber-physical systems: the next computing revolution. In Proc.
of the 47th design automation conference, 2010, pp. 731–736.

[14]. Luo Y., Xiao Y., Cheng L., Peng G., Yao D., Deep learning-based anomaly detection in cyber-physical
systems: Progress and opportunities. ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–36, 2021.

[15]. ArduPilot Project. Available at: https://github.com/ArduPilot/ardupilot, accessed Jun. 24, 2024.
[16]. Staroletov S. Architectural software-hardware co-modeling a real-world cyber-physical system: Arduino-

based ardupilot case. In Proc. 2021 30th Conference of Open Innovations Association. IEEE, 2021, pp.
267–278.

[17]. Scada-LTS. Available at: https://github.com/SCADA-LTS/Scada-LTS, accessed Jun. 24, 2024.
[18]. Modelica Standard Library. Available at: https://github.com/modelica/ModelicaStandardLibrary,

accessed Jun. 24, 2024.
[19]. Fritzson P. Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical

approach. John Wiley & Sons, 2014.
[20]. KeYmaera X, theorem Prover for Hybrid Systems. Available at: https://github.com/LS-Lab/KeYmaeraX-

release, accessed Jun. 24, 2024.
[21]. Fulton N, Mitsch S., Quesel J.-D., M. Volp, Platzer A, KeYmaera X: An axiomatic tactical theorem prover

for hybrid systems. In Proc. Automated Deduction-CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25. Springer, 2015, pp. 527–538.

[22]. Quesel J.-D., Mitsch S., Loos S., Arechiga N., Platzer A. How to model and prove hybrid systems with
KeYmaera: a tutorial on safety. International Journal on Software Tools for Technology Transfer, vol. 18,
no. 1, pp. 67–91, 2016.

[23]. Staroletov S. Automatic proving of stability of the cyber-physical systems in the sense of Lyapunov with
KeYmaera. In Proc. 2021 28th Conference of Open Innovations Association. IEEE, 2021, pp. 431–438.

[24]. Staroletov S., Schulte H., Baar T., Konyukhov I., Shilov N., Rozov A., Liakh T., Zyubin V. Modeling and
verification using different notations for CPSs: The one-water-tank case study. In Proc. 2021 16th
Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2021, pp. 485–488.

Starovoytov N.A., Staroletov S.M. Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced Error Fixes Investigation.
Trudy ISP RAN/Proc. ISP RAS, vol 36, issue 2, 2024., pp. 33-46.

46

[25]. Bartocci E., Deshmukh J, Donze A., Fainekos G., Maler O., Nickovic D., Sankaranarayanan S.
Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications.
Lectures on Runtime Verification: Introductory and Advanced Topics, pp. 135–175, 2018.

[26]. Morgan J., O’Donnell G. E. Cyber physical process monitoring systems. Journal of Intelligent
Manufacturing, vol. 29, no. 6, pp. 1317–1328, 2018.

[27]. Canizo M., Conde A., Charramendieta S., Minon R., Cid-Fuentes R. G., Onieva E., “Implementation of a
large-scale platform for cyber-physical system real-time monitoring,” IEEE Access, vol. 7, pp. 52 455–52
466, 2019.

[28]. Ashibani Y., Mahmoud Q. H. Cyber physical systems security: Analysis, challenges and solutions.
Computers & Security, vol. 68, pp. 81–97, 2017.

[29]. Lee E. A. Cyber physical systems: Design challenges. In Proc. 2008 11th IEEE international symposium
on object and component-oriented real-time distributed computing (ISORC). IEEE, 2008, pp. 363–369.

[30]. Eichler C., Wagemann P., Schroder-Preikschat W. Genee: A benchmark generator for static analysis tools
of energy-constrained cyber-physical systems. In Proc. of the 2nd Workshop on Benchmarking Cyber-
Physical Systems and Internet of Things, 2019, pp. 1–6.

[31]. Fabarisov T., Yusupova N., Ding K., Morozov A., Janschek K. Model-based stochastic error propagation
analysis for cyber-physical systems. Acta Polytechnica Hungarica, vol. 17, no. 8, pp. 15–28, 2020.

[32]. Lanotte R., Merro M, Munteanu A., Vigano L. A formal approach to physics-based attacks in cyber-
physical systems. ACM Transactions on Privacy and Security (TOPS), vol. 23, no. 1, pp. 1– 41, 2020.

[33]. Tan L., Liu C., Li Z., Wang X., Zhou Y., Zhai C., Bug characteristics in open source software. Empirical
software engineering, vol. 19, pp. 1665–1705, 2014.

[34]. Xiao G., Zheng Z., Yin B., Trivedi K. S., Du X., Cai K.-Y. An empirical study of fault triggers in the
Linux operating system: An evolutionary perspective. IEEE Transactions on Reliability, vol. 68, no. 4, pp.
1356–1383, 2019.

[35]. Staroletov S., Starovoytov N., Golovnev N. Analyzing hot bugs in the Linux kernel by clustering fixing
commit messages. Proceedings of the Institute for System Programming of the Russian Academy of
Sciences, vol. 35, no. 3, pp. 215-242, 2023.

[36]. Hoder K., Voronkov A. Comparing unification algorithms in first-order theorem proving. In Proc. KI
2009: Advances in Artificial Intelligence: 32nd Annual German Conference on AI, Paderborn, Germany,
September 15-18, 2009. Proceedings 32. Springer, 2009, pp. 435–443.

Информация об авторах / Information about authors
Никита Александрович СТАРОВОЙТОВ – магистрант и ассистент кафедры прикладной
математики. Сфера научных интересов: кластеризация, анализ текстов.

Nikita A STAROVOYTOV – master student and assistant at the department of Applied
Mathematics. Research interests: clusterization, text analysis.

Сергей Михайлович СТАРОЛЕТОВ – кандидат физико-математических наук, доцент. Сфера
научных интересов: формальная верификация, model checking, киберфизические системы,
операционные системы.

Sergey Mikhailovich STAROLETOV – Cand. Sci. (Phys.-Math.), associate professor. Research
interests: formal verification, model checking, cyber-physical systems, operating systems.

