Tpyowr UCII PAH, mom 37, ewin. 6, wacmu 3, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 6, part 3, 2025

DOI: 10.15514/ISPRAS-2025-37(6)-38

Apantauusa anroputma ThreadSanitizer
Ana obHapyXXeHUs roHOK No AaHHbIM B sape OCPB

E.C. Envuunos, ORCID: 0000-0003-4555-1204 <elchinov@ispras.ru>

Hncmumym cucmemnozo npoepammuposanus um. B.I1. Ueannuxoea PAH,
Poccus, 109004, 2. Mockea, yn. A. Comncenuywina, 0. 25.

Annoranus. Ju3aifn u peanusanys KOPPEKTHBIX aITOPHTMOB MHOTOIIOTOYHON CHHXPOHM3ALUHU SIBIIAIOTCS
HEOTBEMJIEMOH YacThi0 pa3pabOTKUM COBPEMCHHBIX OIEPALMOHHBIX CHCTEM pPEaJbHOIO BPEMEHH.
TeCTMpOBaHl/le KOPPEKTHOCTH AJITOPUTMa B MOZICJIN IaMSTH A3bIKa — O1HA U3 BaXKHEHIIINX 3a/1a4 Ha 3TOM IIyTH.
B crartee ommchIBaeTCS MHTETpamysl IIMPOKO HCIIOIB3YyeMOro aaropuTMa OOHApY)KEHHS TOHOK JaHHBIX
ThreadSanitizer u3 nporpammuoii uHpacTpyktypsl LLVM B cucteMy cOOpDKM M TECTUPOBAaHHS spa
OnepauHOHHOﬁ CUCTEMBI PCAJIbHOI'O BPEMEHU U €r0 NMPEUMYIIECTBA U HEAOCTATKH B CPAaBHEHUU C APYTUMHU
MOAXOJaMH OOHapy»KeHHs OMMOOK MHOTOINOTOYHON CHUHXpOoHM3auuu. Cpeau Hpovero paccMaTpuUBaeTCs
OIpelIeNICHHe CEMAHTHKU YIPABICHHS MPEPHIBAHMAMU U PabOTHl C (U3MYECKUMH SIPAMH B KOHTEKCTE
CHHXPOHH3AIMU B MOJIENH «BbINONHAETCs npexe» (happens-before). B 3akimoueHue npruBoIsATCS pe3ysIbTaThl
nnTerpaunu uHcrpymenra ThreadSanitizer B sapo omeparmoHHO# cuctemsl peansHoro Bpemenun CLOS B
CpPaBHEHUH C CYIIECTBYIONMMY OIX0AaMH 00HAPYKEHHs OMINOOK B sIApe JAHHOH OIEPaI[IOHHOI CHCTEMBI.

KiroueBble €j10Ba: MHOrOMNOTOYHAS CHHXPOHHM3ALMS; JAMHAMHYECKHIl aHA/M3; OINEPALOHHBIE CHCTEMBI;
anroputMm thread sanitizer; TOHKH 1O JAHHBIM.

Jnst uurupoBanus: EnpunHoB E.C. Anantaums anroputma ThreadSanitizer st oOHapys>KeHHs TOHOK 110
nanHpiM B siape OCPB. Tpymst MCIT PAH, tom 37, BbIL. 6, wacth 3, 2025 r., crp. 91-108. DOI:
10.15514/ISPRAS-2025-37(6)-38.

91

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

Adaptation of the ThreadSanitizer algorithm for data
race detection in a RTOS kernel

E.S. Elchinov, ORCID: 0000-0003-4555-1204 <elchinov@jispras.ru>

Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Correct design and implementation of concurrent algorithms is a crucial part of modern real-time
operating system development. One of the main steps along this way is a verification of such algorithms within
the programming language memory model. The article describes an integration of the ThreadSanitizer — broadly
used LLVM tool for data race detection — into the RTOS kernel environment and discusses its advantages and
disadvantages over other tools for data race detection. Among other things, the semantics of context switches
and interrupt management within the happens-before synchronization model is considered. In conclusion the
results of a ThreadSanitizer tool integration are provided compared to current approaches of concurrency bugs
detection in RTOS kernel.

Keywords: mutlithreaded synchronization; dynamic analysis; operating systems; thread sanitizer algorithm;
data races.

For citation: Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS
kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 6, psrt 3, 2025, pp. 91-108 (in Russian). DOI:
10.15514/ISPRAS-2025-37(6)-38.

1. BeedeHue

ANTOpUTMBI MHOTOIOTOYHON CHHXPOHM3ALUM HAXOJAT MIMPOKOE IMPUMEHEHHE B pa3paboTke
COBPEMEHHBIX OIEPAI[MOHHBIX CHUCTEM, B OCOOCHHOCTH, IOAAEPKUBAIOMIUX CUMMETPUYHYIO
MHOTOIIPOIIECCOPHOCTh M BBHITECHEHHE Ha YPOBHE 3aJad sapa. B To ke Bpems, HeTpHUBHAIbHbBIE
QITOPUTMBI MHOTOIIOTOYHOH CHHXPOHH3AIMH CYIIECTBEHHO YCIOXKHSIOT MPOIECC TECTHPOBAHUS
KOJa sipa U MOTYT COAEpXaThb TPYJHO OTJIAKMBaeMble 0e3 IOMONHHUTENbHBIX HHCTPYMEHTOB
OLIHOKH.

B mnomb3oBaTenbckOM OKpYXKEHMH AT OTIaAKM M BepUHKAIMU CHCTEM IIPOIECCOB,
KOMMYHUIMPYIOIIUX 4epe3 pa3feNsieMyl0 MaMATb, CYLIECTBYeT MHOXECTBO MOAXOJOB,
UCHOJNIB3YIOMNX Pa3NIMYHbe METOJbl CTaTHYECKOr0 M JMHAMUYECKOTO aHainm3a KOoja U €ro
ucnonHeHnid. HekoTopsle omepanyoHHbIE CHCTEMBI OOIIEro Ha3Ha4YeHWs, Hampumep, Linux,
HOJUICP’KUBAIOT COOCTBEHHBIC HHCTPYMEHTSI | JUIS aHaN3a KoJja siapa (takue kaxk LKMM [1] nimm
KCSAN [2]).

B nanHOH paboTe paccmaTpuBaeTcs pAacCIIMpPEHHE BO3MOXKHOCTEH IUHAMUYECKOTO aHaau3a
OPUMEHUTENbHO K IOMCKY OMMOOK MHOTONOTOYHOM CHHXPOHHU3ALUM B SApE ONEPAlMOHHBIX
CHCTEM peaJbHOTo BpeMeHH. B cpaBHeHHH ¢ onepannoHHoi cuctemoii (OC) oblero Ha3HaYeHHUs,
OC peansHoro Bpemenu (OCPB) xapakTepHO HMEIOT CTaTHUECKYIO0 HACTPOWKY BHUPTYyaJbHOU
HaMSITH, MEHBIIHH 00BEM KOJa S/Ipa U CTPOTHE OTpaHHYEHNUs Ha BpeMsl HCIIOJTHEHHUS 3a/1ad Aapa 1
3aTpaunBaeMyro mamaTh. PaccmaTpuBaemas B cratbe OC HMeeT BCe OIMCAHHBIE XapaKTePHBIE TS
cucTeM peanbHOro BpeMeHM depThl. C yuérom ocobenHocteil mpocrtpanctBa simpa OC n, B
YaCTHOCTH, TPEOOBAHMIT OMEPAIIMOHHBIX CHCTEM PEalbHOTO BPEMEHH, CYIIECTBYIOIIHE TTIOAXOJIBI K
JMHAMHYECKOMY aHAIIM3y Kojia TpeOyIoT aJanTaliy 1 nepepaboTKu.

B nanHO# paboTe omuCHIBAaeTCS afanTalys alropuTMa JeTeKTopa roHoK JaHHbIX ThreadSanitizer
[3] n HeobXommMble ONTUMHU3AIMH €ro OHOMMOTEKM BPEMEHH WCIIONHEHUS I8 paboTHl B
mpoctpaHcTBe snapa ymomsiHyroir OCPB, a Taxke pe3ynbTaTel €ro HWHTErpalii B CHUCTEMY
TecTupoBaHHs sAapa. Jnsd ompenenenus TpeOOBaHMII K aNrOPUTMy BHAdale OTPENeIsIeTCs
CEeMaHTHKA YIPABICHHUSA MPEPHIBAHUSIMH B TEPMUHAX OTHOIICHHUS «6bINOJHAEMCA Npexcoey

92

Enbunnos E.C. Ananrarus anropurma ThreadSanitizer st oGHapykeHus roHok 1o gauubiM B sixpe OCPB. Tpyoet UCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, c. 91-108.

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

(happens-before). Taxoke ONUCHIBAECTCS BIHMSHHE CBOWCTB CHCTEM pEAJbHOTO BpPEMEHH Ha
YCIEIHOCTD IPUMEHEHHS Pa3INYHBIX TTOJX0/I0B K IIOUCKY OIIMOOK CHHXPOHU3ALHH.

2. FT'OHKU o OaHHbIM

Tonkn mo nmaHHBIM — OAMH M3 Hambojee PacHpPOCTPAHEHHBIX THUIIOB OMIMOOK B aJrOPHTMax
MHOTONOTOYHOH cuHXpoHM3amuu. [lo cranmaprty s3pikoB C um C++, Ha KOTOPHIX HaIHCaHa
3HAYUTEJIbHAS YaCTh CUCTEMHOI'0 IPOrpaMMHOTr0 00eCIIedeH s, OHU IIPUBOJIAT K HEONPEAEIEHHOMY
noBeneHuro [4]. Jng onpeneneHHus KOPPEKTHOCTH NPOrpaMMbl B KOHKYPEHTHOM HCIIOJHEHHU
MHOTHE COBPEMEHHBIE A3bIKU IIPOrPAMMHPOBAHMS BHEIPUIN B CBOU CTAHJAPThl TaK Ha3bIBacMble
MO/IeJIM HaMSTH — HaOOPBI MPABHIT JUIS KaXJJOH ONepaliuy YTeHNs, ONPENSIIOINX BCe BO3MOXKHbIE
MoAN(UIHUPYIOIIHE OIIepaIiH, Pe3yIbTaThl KOTOPBIX OHA MOXET BepHyTb. Bropas 3agaua Mozenu
MaMSTH — OTIPE/ININTh BCE KOPPEKTHBIE UCIOIHEHHUS TIPOTPAMMBI C TOUKH 3PEHHST MHOTOIIOTOYHOH
CHHXPOHU3AIHH.

2.1 MaTemaTuyeckme NopssgKu Hag MHOXECTBOM onepauun Hag NnaMATbEo

B MOICIN MaMATH SA3bIKa C JUIA KQKOO0TO HCIOJHEHUA NPOrpaMMbl ONPEACIACTCSA HECKOJIBKO
YaCTUYHBIX MOPAAKOB Hal BBIIIOJHACMBIMU ONIEPpALIUAMU HAX TaAMATHIO.
I[J'I}I Z[aJ'II:HCfIH.ICFO H3JI0KCHUA HOHaZ[O6HTC}I CJICAYIOINE OTHOLWICHHUSA U OTIPEACIICHUS

e happens-before — OTHOLIEHNE «BBINONHAETCS IPEXAe» — Ul ABYX onepauuii A u B BepHO
A happens-before B, ecnu W3 pe3yibTata HWCIOJAHEHHs omnepauuud B cnemyer ¢akr
3aBEpIICHNS OTepaIiy A.

o sequenced-before (Taxoxe, program order) — OTHOIICHHE «IIPEUICCTBYET B OJTHOM TTOTOKE»
— mis 1Byx omepauuii A u B BepHO A sequenced-before B, ecnu omepaunu A u B
UCTIOJIHSIIOTCS B OZIHOM IIOTOKE, IIPUUYEM olepanus A MpealecTByeT onepauuu B.

e synchronizes-with — OTHOILICHUE «TIPUYMHHOCTHY» ONEPALMi CUHXPOHHU3ALUH — JUIS ABYX
onepauuii A 1 B Ha 0THON TIEpeMEHHOM CHHXPOHU3AIMK BEPHO A synchronizes-with B,
ecliu A — ornepauysi YTeHHs: HEKOTOPOro cocTosHusl, B — oneparus 3anucu (M3MEHEeHus)
COCTOSIHUS, ¥ ONIepalys A YUTAeT Pe3yJIbTaT 3arucH onepanuu B.

® qtomic-onepaliy — CHELMAIbHBIH TUI ONEpaluil Haa MaMsThIO, UMEIOIIUX, COTJIacHO
CTaHZAPTY, ONpeACIEHHOE MOBEACHUE IPU KOHKYPEHTHOM MCIOJTHEHUH KOH(IUKTYIOIIUX
OTIepaIHii.

® release-oniepallil — OmNepalnud 3amucu (M3MEHEHHS) COCTOSHHUS HEKOTOPOro OOBEeKTa
CHHXPOHHU3ALUH.

o acquire—onepaunﬂ — OI€paluu YTEHUS COCTOSIHUSA HEKOTOPOI'o o0BeKTa CUHXPOHH3AUHU.

CormnacHo crannapry, eciiu B — release-oneparnms u A — acquire-onepanysi, YATAIONMas 3HAYEHHE,
3anucanHoe onepauuei B, To BeIoHsAETCS OTHOIIEHUE A synchronizes-with B.

2.2 OnpepeneHune roHKU AaHHbIX

CranpapTsl s3b1ka C, HaunHas ¢ Bepcun C11 onpenensioT TOHKY JaHHBIX KaK J1Ba OJJHOBPEMEHHBIX
KOHQUIUKTYIOIINX HEaTOMapHBIX oOpamieHus K mamatd. COrjacHO CTaHAAapTy, ABE MOIBITKH
JOCTyNa KOH(IMKTYIOT, €CIHM COOTBETCTBYIOIIME UM SY€fiKM HaMATH HMEIOT HEeMyCcToe
HepeceyeHue, 1 XoTs ObI OJIHA U3 MOIBITOK Moauduiupyromas [4]. JIBe onepanuy MOryT CUUTaThCS
OJHOBPEMEHHBIMU B CIyuae, KOT/la OHU He YIOPAA0UYEHBI IOPAIKOM happens-before, COTIIaCHO €ro
OIIPE/ICJICHUIO B MOJIENH MaMATU — UHBIMU CJIOBAMH, €CIIU B HCIOJIHEHHU B MPOMEXKYTKE MEXIY
3TUMH OIepalisIMU HeT HabIr0JaeMOl CHHXPOHU3ALUK COOTBETCTBYIOLINX UM IIOTOKOB.

93

3. JuHamuyeckue Mmemodbi 06HapyXeHuUs1 20HOK OaHHbIX

Jl1s momcKa TOHOK JIaHHEIX B KOZE TPUMEHSETCS JBa OCHOBHBIX KJIACCA METOJ0B — aJITOPUTMBI
CTAaTUYECKOTO M JUHAMHYECKOTO aHaJM3a KOJa.

ANTOpUTMBI CTAaTUYECKOTO aHalu3a KOAA WUIMYT OIIMOKYU, Omupasch Ha UCXOAHBIH kox, 0Oe3
HEMOCPEJICTBEHHOTO HCHONHEHHs anropurMa. Cpeau CTaTHYeCKHX HHCTPYMEHTOB UIS IOMCKa
TOHOK JaHHbIX B koze siapa OC moxHO Beaenuth LKMM [1] u3 sapa OC Linux.

B ommmune oT cTaTM4eCKHX METOROB, NPH HCIOJIB30BAHMM AUHAMUYECKOTO AHAIN3a aJTOPUTM
0oOHapyXeHHs OUIMOOK BHEIPSACTCS B aHATM3UPYEMbIH KOJ Ha 3Tare COOPKU M MPOU3BOJUT TIOUCK
oIMOOK Ha OCHOBE aHAJIHM3a TEKYIIETO UCIOIHEHNUS Ha HEKOTOPBIX TECTOBBIX CILIEHAPUSX.

Cpenyt OCHOBHBIX NIPEUMYIIECTB THHAMUYECKOTO aHaIN3a:

° I[I/IHaMI/I‘{eCKI/Iﬁ aHajlns3 IIO3BOJIACT TNPpaKTUIECKU HUCKIIIOYUTH IOJIy4e€Hue
JIOKHOIOJIOKUTEIIBHBIX PE3YJIbTATOB, OrpaHU4YUBAsACh HEOOJIBIINM (B CpaBHEHHH CO
CTaTUYCCKUM aHaJ'II/ISOM) KOJUYECTBOM aHHOTAIHH K AHAJIM3UPYEMOMY KOLY.

e MHorue JUHAMUYECKUE AITOPUTMbI TPeOYIOT 3aTpaT MO MaMATH U BPEMEHU HCIOIHEHUS,
IPONOPLUUOHANBHEIX ~ TPEOOBAHUAM AHAIU3UPYEMOH CHCTEMBI, UYTO IO3BOJISAET
aHAIIM3UPOBATH CIIOKHBIE UCTIOJIHEHUSL.

U3 MHUHYCOB IMHAMHUYECKOT0 NOAXO0JAa, MOKHO OTMETUTh:

e Tak Kak JUHAMHYECKHE METOJbI PAcCMAaTPHBAIOT JIHIIb KOHKPETHOE HCIIOJHEHHE,
Ka4eCTBO aHAJIN3a HAMPSIMYIO 3aBHCUT OT KaYEeCTBA TECTOBOTO MOKPBITHSI aHAIU3UPYEMOTO
KoJa.

° I[I/IHaMI/I‘{eCKI/Iﬁ aHaJIM3 He CII0OCOOEH 00eceunTh CTPOrue€ rapaHnTuu KOPpEKTHOCTHU KOJa,
TaK KaK B TECTOBBIX CLHEHAPHUAX MOTYT PEAIM30BbIBATHCS HE BCE BO3MOKHbBIC UCIIOJITHEHUS.

Jlyis AMHAMKYECKOTo ToKMcKa TOHOK B koje siupa OC Linux monaepkusaercs nHctpymeHT KCSAN
(kernel consurrency sanitizer) [2]. s moibp30BaTeNbCKUX MPHUIOKEHHIH HHPPACTPYKTYpa COOPKU
LLVM npenocraBisieT HHCTpyMEHT AuHamMu4eckoro ananu3a Thread Sanitizer [5].

Ha MOMEHT HamucaHHsl CTAaTbU CYLIECTBYET HECKOJBKO MOAXOIOB K AWHAMHYECKOMY aHAIU3Y
MpOrpaMM Ha MPeAMET FOHOK JaHHBIX, CPEAU KOTOPBIX MOKHO BBIJICIUTD aIrOPUTMBI, OCHOBaHHBIE
Ha UCIIOJE30BaHUH TOYEK OCTAHOBA 10 JaHHEIM (wWatchpoint-based) 1 alrOpUTMEL, HCIIOIB3YIONIHE
JUTS TIONCKA TOHOK YIIOMSHYTO€ paHee OTHOIICHHUE happens-before HaJl OepalysiMU C IAMSATEIO, a
TaKKe METOJI, OCHOBaHHBIH Ha OCTPOSHUN MHOYKECTBA aKTHBHBIX KpuTHuecknx cekuuid (lockset).
ITo ompenenenuro, FOHKA JAHHBIX — 3TO OAHOBPEMEHHBIH KOH(IUKTYIOIIHA HeOe30IIaCHBIIH HOCTYIL.
YTHOMSHYTBIE TIOAXO/IBI PA3INYAOTCS AJITOPUTMOM OOHAPYKEHHUS OJHOBPEMEHHBIX OTIEpAIlnil HAJT
OJ/THOM A4YEeHKON maMsTH.

OcHOBaHHBIE Ha TOYKaxX ocraHoBa (watchpoint-based) anropuTMbl HaxoIAT OIXHOBPEMEHHBIE
JIOCTYIIBI IyTEM TPHOCTAHOBKH IPOTPAMMBI B MECTaX IOCTyNa K MaMATH Ha IICEBIOCTydYalHbBIH
MPOMEKYTOK BpEMEHH M 00pabOTKH BCEX OCTYIIOB, MPOM3OIIEIINX K JaHHOW suelike MaMsTH B
0003HAYECHHBIN TPOMEKYTOK, KaK OJHOBPEMEHHBIX C MEPBBIM JOCTymoM. JImst JOCTYIOB K
HHTEPECYIOIIEMY apecy TaKHe aJrOPUTMBI UCIONB3YIOT MEXaHU3M TOYCK OCTAHOBA IO JIaHHBIM
(watchpoint).

JleTekTOpbI TOHOK MO JaHHBIM, OCHOBaHHBIE HA IIOCTPOEHHH Topsika oneparmii (happens-before-
JIETEKTOPBI), TPOU3BOIAT ITOUCK OTHOBPEMEHHBIX JOCTYIIOB IO ONPEAENCHUIO M3 CTAaHIapTa, TO
€CTh TOICPKUBAIOT B MAMSTH YaCcTh WCTOPUH TOCTYNOB K TMAMSITH M CXKATOE MPEACTABICHHE
nopsinka happens-before M TPOBEPSAIOT, YHOPSIOYCH JHM KAKABIA CICAYIOMIUI JOCTYN ¢
KOHQIUKTYIOIIAMHA C HUM COXPaHEHHBIMH JOCTYIIAMH.

ANTOPUTM TOCTPOEGHHS MHOXKECTBA AKTUBHBIX KpuTHieckwx cekuuid (lockset) mms kaxmoro
JIOCTYTIa K TIaMSTH OTpPEIeNsIeT Bce aKTHBHBIE HA 3TOT MOMEHT KPUTHYECKUE CEKIIMU H IIPOBEPSET
JUTSL KKTOW TIEpEeMEeHHO, YTO Bce KOHQIIMKTYIOIINE TOCTYTIBI K HEH pa3IelsioT MexXIy co00i XoTs
OBl OJJHY OOLTYIO KPUTHIECKYIO CEKIIHIO.

94

Enbunnos E.C. Ananrarus anropurma ThreadSanitizer st oGHapykeHus roHok 1o gauubiM B sixpe OCPB. Tpyoet UCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, c. 91-108.

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

COOTBeTCTBeHHO, npeuMyecTBaMu 1noaxoaa, OCHOBaHHOT'O Ha TOYKax OCTaHOBA ABJIAIOTCS:
e MuHUMAaIbHBIC 3aTpaThbl MaMATH — HCO6XOZ[I/IMO JIMIIb XPaHUTH I/IH(I)OpMaL[HK) O TEKYLIHUX
TOYKaX OCTaHOBA 11O JaHHBIM;

e OrcyTcTBHE HEOOXOMMMOCTH B aHHOTAHMsAX K KOZOBOH 0ase, Tak Kak JOCTYIIbI,
MPOUCXOAAIINE B MOMECHT OXXKHUJaHHSA Ha TOYKAX OCTaHOBA, BCETJa HE YHOPSAAOYCHBI C
00pabaTeIBaeMBIM JOCTYIIOM B CMBICIIE TIOpsIIKa happens-before B MOmeIN TaMATH.

B cBoro ouepenb, U3 IUIFOCOB MOJXOJd, OCHOBAHHOTO Ha IIOCTPOCHHH BO BpPEMs HCIIONHEHUS
HpeICTaBICHUS YaCTUYHOTO TOpsiaKa happens-before, MO)XHO OTMETHUTB!

o CnocoOHOCTh 06Hapy)KI/IBaTI) TOHKH II0 UX OIPEACTICHHUIO B MOJCIU NaMATHU A3blKa — TO
€CTh HE3aBHCHUMO OT IIeJIEBOM HJ'IaTq)OpMBI H €€ MOJIeNIH MMaMSITH.

e (OO0paboTKa Kax 0l oneparuu HaJi HaMsAThIO 1eTePMHUHUPOBAHHBIM 00pa3oM — TO €CThb IS
BepU(UKAINN KOHKPETHOTO CIIEHAPHS MCHOJHEHHA IPOrpaMMbl €ro JOCTaTOYHO
MPOaHaIN3HPOBATh OJHMH Pa3.

Takum 06pa3oM, AETEKTOPbI, OCHOBAHHbIE Ha IOCTPOCHHUN NOpAAKa happens-before, B CpaBHEHHUH C
MOAXOOM, OCHOBAaHHBIM Ha TOYKAaX OCTAHOBA, MO3BOJAIOT HE3aBHCHUMO OT TEKyIIeil IeleBOi
wIaThopMbl HaXOAWTH OoJee MIMPOKMUH CIEKTp OmMOOK, B TOM YHCIIC TOHOK JIaHHBIX, HE
HPUBOAIINX K HEKOPPEKTHBIM 3HAYCHUSM B aHAIM3HUPYEMOM HCIOJIHEHHH, HO TpeOyloT Ooiee
JIeTalIbHBIX aHHOTAIUH 1 TONOJIHUTEIBHBIX PECYPCOB IO BPEMEHH U AMSTH.

ITTo cpaBHEHHIO ¢ aNTOPUTMaMH, OCHOBAaHHBIMH Ha TOYKaX OCTAHOBA MO JaHHBIM JIMOO TOCTPOCHHHI
nopsinka happens-before, MeTon, OCHOBaHHBIN Ha MOCTPOCHUH MHOXKECTBA AKTUBHBIX KPUTUYCCKUX
cexuuii (lockset) obecriednBaeT MEHBIINE 3aTPATHI IO AMSTH, YeM METOJ], OCHOBaHEII Ha happens-
before u, B OTIINYHE OT IETEKTOPOB, OCHOBAaHHBIX HAa TOYKAX OCTAHOBA, O3BOJIAET JETEKTHPOBATh
HOTEHIUAIbHBIC TOHKY, HE PEaIn30BaBIINECs B aHAM3UPYEMOM UCTIONHEHUH. OIHAKO, STOT METO[
He I03BOJISIeT KOPPEKTHO aHAIN3UPOBATh AITOPUTMBI HEOJIIOKHPYIOIIeH CHHXPOHHU3AINH, a TAKXKE,
0 CyTH MOAXO0Ja, CIOCOOEH FeHepUpOBaTh JIOXKHBIE COOOLIEHHs 00 OmuOKax.

K moaxomam, OCHOBaHHBIM Ha TOYKAaX OCTAaHOBA, OTHOCSTCS TaKHE aITOPUTMBI KaK, HAIpUMep,
RaceHound [6] u Kernel Concurrency Sanitizer [2] B sape Linux. Anropurm Thread Sanitizer [3],
B CBOIO OYepesib, SIBIAETCSA AETEKTOPOM, OCHOBAHHBIM HA IIOCTPOCHMH MOpsiKa happens-before.
Cpenu AETEKTOPOB, HCHONB3YIOIIUX HNOCTPOCHHE MHOXECTBA AKTUBHBIX KPUTHUUECKUX CEKIHUH,
MOJKHO BbIIenuTh Eraser [7].

4. Aneopumm Thread Sanitizer

AunroputM noucka roHok Thread Sanitizer oTHOCHTCS K KiTacCy ANHAMHYECKHX AITOPUTMOB ITOMCKA
TOHOK, OCHOBAaHHBIX Ha aHaJIU3e MOpsKa onepauuil happens-before n, COOTBETCTBEHHO, TODKEH
HOJUICP)KUBATh B CBOEH NMaMSATH HEKOTOPOE CXKATOE NPEeJCTaBICHHE YNOMSHYTOTO IOPSAKa Haj
BCEMH XPAaHUMBIMU OTIEPAIIAMH C TaMAThI0. C 3TOM IeNbro KaXkI0if OTeparny ¢ TaMAThIO CTABUTCS
B COOTBETCTBHE €& 3I10Xa — IIeJI0e HEOTPHIATENbHOE YHCIIO, a KaKIOMY NMOTOKY M NepeMEHHBIM
CHHXPOHHM3AI[MN COOTBETCTBYIOT BEKTOPHBIE YacHl [8].

4.1 Mogenb cuHxpoHu3sauum anroputma ThreadSanitizer

B Mopenn namsaty sa3pika C oneparyuy BHYTPH OZHOTO MOTOKA YHOPSAOYEHBI MOJTHBIM HOPSAKOM
sequenced-before (cM. 1. 2.1), U3BECTHBIM TaKXKe Kak program order. OTHOMIeHUE happens-before
B MOJICNIH IaMsTU ONpEeAeNAeTCs KaKk TpaH3UTHBHOE 3aMbIKaHUE Sequenced-before, synchronizes-
with 1 emé HeCKONBKHX MOPAAKOB, e Kaxnas Xyra synchronizes-with ¢opmupyercs release-
omnepanueii 1 COOTBETCTBYOIIEH eif (Habmroatommeil e€ addexT) nocneyromnielt acquire-onepanuei
HaJl HEKOTOPOM IIEPEMEHHON CHHXPOHHU3ALIUH.

95

B monenu cunxponusanuu aiaroputma Thread Sanitizer mopsinok happens-before Boipaxkaetcsi B
BUJIC TPAH3UTUBHOTO 3aMBIKaHHs MOPIJIKOB sequenced-before n synchronizes-with, 4to sBIseTCS
YIPOIICHHEM MOIENH maMsTh si3bika C.

4.2 Anoxu u BeKTOpPHbIe Yachbl

Tlockonbky B MOmenu CHHXpPOHHM3AIMH BHYTPU KaXIOTO IOTOKA OTHOLICHHE Ssequenced-before
oIpezeseT MONHBIM MOPANOK Ha omepanusx, anroputm ThreadSanitizer comocrapiseT kaxmoi
onepanuu eé€ 310Xy — HEKOTOpOe LieJIoe HeOTPULATeNbHOE YHCIIO, ABIIAIONIeecs Mepoil Iporpecca
MOTOKa K MOMEHTY JaHHOM OIepaluy, aHaJIOTHYHO Jorudyeckum uacam Jlhmmopra [9]. B
JIECKPHITOPE KaXkIoW oOpabarhiBaeMoil omeparuu Haj mamsateio, Thread Sanitizer, mommmo
MPOYHNX XapaKTePUCTHK, COXPAHSET SI0XY STOH OoNeparyy ¥ UAeHTH(HUKATOP e€ IOTOKa.

B xadecTBe cxKaToro mpeAcTaBileHUs Hopsaka happens-before B ThreadSanitizer ucnons3yroTcs
BEKTOpHbIE uachl [§8], sABIAIONIMECS IIHPOKO HCIOIb3YeMBbIM 00O0OIIEHHEM JIOTHYECKHX YacoB
JIbmnopra. Eciiu T — HEKOTOpBIN NOTOK UCIOJIHEHUS, TO BEKTOPHBIE Yackl noToka T — cnucok,
XpaHAIMUKA Ul KaXJIOro aKTHBHOIO IIOTOKA B CHCTEME OJIIOXy ero IIOCIe[HeH orepanuy,
YIOPSIIOYEHHOH J10 Tekymieit onepanuy B motoke T B cMbIcie opsiaka happens-before.

4.3 CuHxpoHusaumsa

JU71s KOpPEKTHOH pabOoTHI ANTOPUTMA HEOOXOJHM CHOCO0 Mepecyéra CiKaToro NpeAcTaBiIeHus rpada
OTHOIIEHUS happens-before Tocie onepanuii CHHXpOHH3AIHH (TO €CTh release N acquire onepanui
Haj TIepeMeHHBIMU CHHXpoHm3armu). C 5TOH Ienbio KaXIod MepeMeHHOH CHHXPOHM3AaIHd —
NPUMHUTHBAM CHHXPOHM3ALMA W aTOMapHbIM (afomic) TEPEeMEHHBIM — TAKKe CTaBATCS B
COOTBETCTBHE BEKTOPHBIC YaChl, XPAHAIME Ul KAKAOTO I[OTOKA MOCIEAHIOK €ro JI0XY,
MpEIIIECTBYIONIYI0 WIN PaBHYIO (B CMBICIEC OTHOLICHUS happens-before) HEKOTOpoOH release-
oIepaluy HaJl 3TON NEepPEeMEHHOM.

Jns xaxnoi release-omneparmy motoka T Hax mepeMeHHON CHHXPOHHM3AINH S €€ BEKTOPHbIE Jachl
Vs (puc. 1) 0GHOBISIOTCS MO3IEMEHTHBIM MAKCUMYMOM (JIajiee — OMepanusl max') ¢ BEKTOPHBIMH
yacamu Vr noroka T. Jns acquire-onepaumii, Ha060pOT, BEKTOPHBIE Yackl VT OOHOBISIOTCS
HO2JIEMEHTHBIM MakcUMyMoM ¢ Vs. TakuMm o0pasom, Mt AyrW OTHOLIEHHS synchronizes-with
Mexay onepauusmu release(S) (nanee — cokp. rel) B T1 u acquire(S) (nanee — cokp. acq) B T2
BepHo V'12 = max’(Vr2, V's) > max’(Vrz, max’(Vr1, Vs)) > V1 (tne V'1z u V's — 06GHOBNEHHBIE
3Ha4eHust V12 U Vs COOTBETCTBEHHO) (pHcC. 1).

Takoe mOBe/IeHHE COTNACYETCsl C ONpeeNeHUsIMU BEKTOPHBIX YacOB U OTHOIICHHUH synchronizes-
with u happens-before B MoenH NaMSATH.

4.4 TeHeBaA NaMATb U NONCK FOHOK

Jns xpanenus uudopmaimu 06 odbpadotaHHbIX goctynax k mamsta Thread Sanitizer ucnons3yet
OT/IeNbHBIA PETHOH TaMsATH — TaK Ha3bIBaeMYIO TEHEBYIO MaMsTh — TaKOH, 4TO KaXIOH suelike
MAIIMHHOTO CJIOBA B OCHOBHOM IaMSTH COOTBETCTBYET sTUelika TEHEBOI MaMsTH.

Kaxxnas suelika TeHeBOM NaMATH XPaHUT HEOOXOAUMYH HMH(OPMAIMI0 IPO HECKOIBKO (B
peanusanuu B LLVM — 4) nocneqHuX AOCTYNOB K COOTBETCTBYIOIIEMY MAalMHHOMY CJIOBY B
OCHOBHOW mamsaTH. Jnst kaxnoi omepanuu (JUCTUHr 1) B TEHEBOW MaMsATH coxpaHsercs eé
UJICHTU(UKATOP OTOKA, TEKYIIast S1I0Xa ITOT0 ITOTOKA, 3aTPOHYThIe OalThI M THII JocTyma (pHC. 2).
TakuM 00pa3oM, B MOMEHT O0OpaOOTKHM TeKylled omepanuu X Haj MaMATbIO TEHEBas MaMsTh
ompezeseT NOTCHIHANbHO KOH(IUKTYIONIKE MIPpeAIIecTBYoIye onepauu Yi, a BEKTOPHBIC Yachl
HO3BOJIAIOT NIPOBEPUTH, YTO MEXKAY Kaxaol koHGmukTyromel onepanueil Yi u X mpucyTcIByer
OTHOILUEHUe happens-before (To ectb, X happens-before Yi). B mpoTuBHOM cilydae MHCTPYMEHT
reHepHupyer coolleHue 06 omuoke.

96

Enbunnos E.C. Ananranus anropurma ThreadSanitizer ayist oGHapykeHus roHok 1o gauusiM B sixpe OCPB. Tpyoet HCIT PAH, 2025, Tom

37 BeIm. 6, gacTh 3, . 91-108.

T2 T1

Vs = max*(vry, vs) 'l'
< release(S)
A
s &
Vs /&
/ 60/
VT2 = max*(vs, VT2) Y s/ O

. . » O
> acquire(S) * ©
Puc. 1. Bekmopnuie uacoi.

Fig. 1. Vector clock.

data

shadow(data)

Regular Write ("a = 1") Atomic Write ("b.store(2)")

Size=4 Offset=0 Thread=1 Epoch=1 | Size=4 Offset=4 Thread=2 Epoch=1

Regular Read ("return a") Atomic Read ("return b.load()")
Size=4 Offset=0 Thread=2 Epoch=2 Size=4 Offset=4 Thread=1 Epoch=2

Puc. 2. Tenesas namsime.
Fig. 2. Shadow memory.

struct {
int a;
std::atomic<int> b;
} data;
int threadl () {

data.a = 1;
return data.b.load() ;

int thread2 () {
data.b.store(2) ;
return data.a;

Jlucmune 1. Ipumep 3anonnenus meneeou namamu.
Listing 1. Shadow memory update example.

97

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

5. Onmumu3sayuu, ucnonb3yemsie 8 LLVM Thread Sanitizer

C 1enbro YMEHBLICHHS PACXOIOB 10 TTaMSITH H IMOICP>KKH MTOTSHIHATFHO HEOTPAaHUYSHHOTO YHCIIa
MOTOKOB B Tekymied Bepcun ainroputMa LLVM Thread Sanitizer ucmonb3yercss HECKOJIBKO
MEXaHH3MOB, B YHCJIE KOTOPHIX OOHOBJICHHE TEHEBOH IaMSTH, TPACCHPOBKA ONEPAIUIl M CIOTHI
CHHXPOHHU3ALUH.

5.1 TpaccupoBKka onepauum U TEHEBOMW CTEK

B Tpaccax onepaumii Ui KaXIOro IMOTOKA COXPAHSETCSA MOPSANOK ONEpaluuil Haj MaMATbIO
OTHOCHUTEJIBHO BBI30BOB IPOLEAYP, YTO, CPEAU MPOYEro, MO3BOIAET BOCCTAHOBUTL CTEK BBI30BOB
nr000# oneparuy 13 TeHeBoi mamsaTu. TeHeBOH cTek MO IeP KUBAST TEKYIUH CTEK BEI30OBOB B BHIE
MaccuBa aJ[pecoB B KOJE, MPENOCTaBIIsAA BO3MOXHOCTb OBICTPO T'€HEpUPOBATh COOOLICHHA 00
ommbkax (puc. 3).

Thread Sanitizer BHeapsieT B KOJ BEI30BBI OMOIMOTEKH BPEMEHU HCIIONHEHHS B MOMEHT BXOJa B
Ka)XTy!o (yHKIMIO U BO3BPATa U3 He€, 4TO MO3BOJISACT NMOANCPKUBATh TEHEBOM CTEK M yUUTHIBAThH
BBI30OBBI 1 BO3BPATHI U3 (PYHKIMH B Tpaccax MOTOKOB.

CTtek TpaccupoBka
Call(&Foo) | Load(&y) Store(&x)}—‘

Foo data |" Call(&Bar) ‘ ..._‘_Relurn \ Call(&Baz) [‘

TeHeBOM CTEK
\&Foo &Baz\

Baz data

Puc. 3. Tpaccuposka u menegoii cmex.
Fig. 3. Tracing and shadow stack.

5.2 CnoTbl CUHXPOHM3aLUMN

s a¢dexTrBHON 00pabOTKH OOJBIIOrO KOJIWYECTBA TIOTOKOB B TIOCIIEIHEH BEPCHH OMOIMOTEKH
BpemeHu ucnonHenus: Thread Sanitizer Obuia clienaHa ONTHMU3AIMS, TTO3BOJISIIONIAS OTPAHUYUTh
pa3Mep BEeKTOPHBIX YaCOB M KOJMYECTBO OUT HACHTH(UKATOPA IIOTOKA B TCHEBOW MaMSITH.

BMmecTo nmoTeHIManbHO HEOTPAHMYEHHOTO M0 BETMYHHE IIETTOYHCICHHOTO HICHTH(HKATOpa IIOTOKA
peanu3anus ThreadSanitizer noanepxuBaeT GUKCUPOBAHHOE KOJIMYESCTBO TAK HA3BIBAEMBIX CIIOTOB
— JIOTHYECKUX SIUHHMI] UCTIOJIHEHHUS, UMEIOIIMX JIOKAIbHBIA cuéTyrk 3moxu (puc. 4). bubnnoreka
BpeMeHrn wucnonHenuss ThreadSanitizer cTtaBUT KaXIOMy HCIOJNHSEMOMY Ha JAHHBIH MOMEHT
IIOTOKY B COOTBETCTBHE HEKOTOPBIN cioT. KaXkaplii 10T, B CBOIO OYEpe b, MOAAECP)KUBAET HCTOPHIO
MOTOKOB, KOT/1a-JIN0O UCTIONHSIBIIKMXCS B IPUBSA3KE K 3TOMY CIIOTY. DIOXa CJIOTA CYUTACTCS ATIOXOH
MPUBSA3aHHOTO K HEMY ITOTOKA, a BEKTOPHBIE YaChl IIOTOKOB M IEPEMEHHBIX CHHXPOHU3AIMN XPAHST
MOCJIEHIO HAOMNI0aeMyI0 30Xy KaXIO0ro cioTa. B TeHeBo#l mamsaru BMeCTo uaeHTH(uKaTopa
MOTOKA XPAHUTCSL MHJEKC CJIOTa, COOTBETCTBYIOLIETO MOTOKY, HCIIOJHUBILEMY OIEPALIUIO.

B Takoit Mosenu Hanu4YKMe Ayrd OTHOUICHUS Synchronizes-with Mexmy HekoTopbiMH motokamMu T1
n T2 Bneu€r 3a coOOW HamM4Ke TOW XKe JYI'd MEKAY COOTBETCTBYIOIIMMH CJIOTaMH IOTOKOB. B
ClIydae €CIIM KOJIMYECTBO MOTOKOB MPEBOCXOTUT KOJIMYECTBO CIIOTOB, TAKOH MOJXO] BHI3BIBACT
Mapa3UTHYI0 CUHXPOHU3ALUIO MEXY MOTOKAMHM, Pa3IeNIOIIMMK OJJMH CJIOT B TEYCHUE BPEMEHU
UCITIOJIHEHUS, 4YTO MOXXET NPUBECTH K JIOKHOOTPUIATENBHBIM BEpAMKTAM B HEKOTOPBIX

98

Enbunnos E.C. Ananranus anropurma ThreadSanitizer ayist oGHapykeHus roHok 1o gauusiM B sixpe OCPB. Tpyoet HCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, . 91-108.

ucnonHeHusx. OJHAKO, €CIIM KOJINIECTBO aKTHBHBIX MOTOKOB HE IIPEBOCXOIUT KOJIMYECTBA CIIOTOB,
JTAHHBII TOIXO0/ HE MIPUBOAUT K MOTEPE MHPOPMAITHH B CKATOM MPEICTABICHUH TOPsIIKa happens-
before Texyiero HCIOTHEHHUSI.

Thread 1 A=1 MA=0—>

T 7N

Thread 2 — B=A > B=A —

Thread 3

slory N Jmoz t T dmor .
io 1 | 2 3
(0, 0) (1,0) (1,1) (3,1) (3, 3) (5, 3)

Puc. 4. Cnomvl cunxponuzayuu.
Fig. 4. Synchronization slots.

6. Mlumeepayus Thread Sanitizer e sdpo OCPB

6.1 TpeboBaHusa npu nHTerpauumn B sgpo OCPB

OcoBEHHOCTH MPOCTPAHCTBA SApa ONMEPALOHHON CHCTEMBI HAKNAIBIBAIOT Psii TpeGOBaHMH Ha
peamu3zanuro anroputMa Thread Sanitizer:

e Bonbiioe KoiMuecTBO MOTOKOB B CpaBHEHUHU C IPOCTPAHCTBOM MOJIB30BATEIIA — Tpe6yeTc;1
YMEHUE 06pa6aTblBaTb CHUHXPOHH3AIUIO COTCH IOTOKOB, HE YBEIUYNUBAsA 3aTPaThbl HaMATHU
1 BPpEMEHU I OAJCPIKAHUA MEXaHNU3Ma BEKTOPHBIX YacOB.

e lcrons3oBaHWe HECTAHAAPTHBIX MEXAHH3MOB CHHXPOHHM3amuu (0apbepoB MaMsiTH H
YIpaBIeHHs] NPEPHIBAHUAMH) — TpeOyeTcs ONMpeneinTh WX CEMAaHTHKY B OTHOLICHHH
nopsinka happens-before W WHTErpUpPOBaTh MOAJNCPKKY OIMCAHHBIX MEXAHU3MOB B
OMOINOTEKY BPEMEHH MCIIOTHEHHSI.

e [lepexonq B HPOCTPAaHCTBO ITOJH30BATENsI M 0OpabOTKa ACHHXPOHHBIX INPEPHIBAHUH —
TpebyeTcs MOAAepKaTh MEXaHH3M MOMCKA TOHOK MEXIy 00pa0OTYMKOM NpEephIBaHHS H
KOJIOM IIPEPBaHHOTO MOTOKA.

ITomumo omucanHbIX TpeOoBaHuii, cBolictBa OC peanbHOr0 BpPEMEHH HAKJIAABIBAIOT Ha
peanu3anuio TOMOJHUTEIbHBIC OTPAaHHYCHUSL:

e OrpaHuucHHBINH U (HUKCUPOBAHHBIM 00BEM (U3UUECKON U BUPTYaNbHOH MaMaTH — 00BbEM
TEHEBOH AaMATU B OTHOLIEHHM K OCHOBHOM MaMsTH s/ipa He JOIDKEH MPeBOCXOAuTh 1:1.

e OrpaHuueHHUS 110 3aTpPaTaM IO BPEMEHH B XyJIIEM CIIy4ae — aJTOPUTMBI, OIHPAOIIUECS
Ha TapaHTHH PEAJBHOTO BPEMEHH, IOJDKHBI KOPPEKTHO paboTaTh B KOMOWHAILMM C
HMHCTPYMEHTOM JUHAMHUYECKOTO aHaIMU3a.

Jnst ymeHbleHHs TpeOoBaHUI anropuTMa IO AONOJIHUTENBHON MaMATH 32 OCHOBY pealld3alliy
6uOIMOTEKH BPEMEHH HCIIONHEHMs OblIa B3ATa ONUCAHHAS BBIIIE BepcHs OMOIMOTEKH BPEMEHU

99

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

ucnionHenuss LLVM Thread Sanitizer, moamepuBaromas TPacCHPOBKY OINEpalMii U CIOTHI
CHUHXPOHHU3AIMH, KOTOpas IMO3BOJIACT IOJJICPKUBATH MPOHM3BOJILHO OOJBIIOE KOJIMYECTBO
JIOTHYECKUX TIOTOKOB NPH (PUKCUPOBAHHOM pa3Mepe BEKTOPHBIX YaCOB M KOPPEKTHO 00padaThiBaTh
MEPETOIIHECHNE CYETYNKOB ITOX TTOTOKOB.

6.2 OnTMMM3aumAa pacxogoB No NamMATH

B texymeii peanusaiuu LLVM Thread Sanitizer TeHeBast maMATh COCTOUT U3 JBYX PETHOHOB: B
HEepPBOM, B COOTHOIIEHUH 2:1 K OCHOBHOM MaMATU, XPaHUTCS UH(OPMAIIKS O MOCIEAHUX JOCTyIax
K NaMATH, BO BTOPOM — MeTauH(pOpMaIUs O IePEMEHHBIX CUHXPOHU3AIlUY, B COOTHOIEHUH 1:1 K
ocHOBHOI mamaTu. B mpoctpanctse sanpa OCPB HeT MeXxaHM3MOB AMHAMHYECKOIO YIpPaBICHUS
BUPTYalIbHOH MaMATHIO, a 00bEM (pU3MUECcKOl MaMsATH Ha LEeNeBBIX IUIaTopMax 3a4acTyio He
MO3BOJISIET IMETh TEHEBYIO IIaMsATh B COOTHONIEHNH O0bIIeM 4eM 1:1 K OCHOBHOH.

TpéxxpaTHas SKOHOMHS HOTpeOIseMOll TeHEBOWM MaMATU IOCTUraercs 3a CU€T yMEHbIICHUS
KOJIMYECTBa CIIOTOB IIOTOKOB M MAKCUMAaIbHOT'O 3HAUEHNUS 3M0XU IOTOKA, a TAKXKE 3aMEHbI TEHEBOT'O
pernona mis MeranHGOPMAalWM XeII-TaONMIEH, XpaHAmeHd IS KaXHoro ajapeca NepeMeHHOI
CHHXPOHU3ALUN €€ BEKTOPHBIEC YaChl.

6.3 ObpaboTka 6bapbLepoB NaMATU U accembiepHoOro Kkoga

bapbeps! mamsTH, MOYTH HE WCIOJb3yeMble B IOJIB30BATENBCKOM KOJE, HAXOJAT MIMPOKOEe
TpHMEHEHHe B KOJIe Apa M JOIDKHBI yIUTHIBATHCS OMOTNOTEKOH BPEMEHH HCIIOMHEHNUS KaK TOUKH
cuHXpoHu3almu. [lpuHimn oOpaboTtku OapbepoB omnwmcan aBropaMu KTSAN [10] u Obut
a[anTUPOBAH IS TeKyIeil Bepcun OMOMMOTEeKH BpEMEHH HCTIONHEHNS.

C wnenblo KOppeKTHOH 00paboTKM acceMOJepHOro M IpoYero Koja, He MOJBEprarolerocs
ABTOMAaTHYECKOMY aHHOTHPOBAHHUIO BO BpeMsi COOpKM (T.H. MHCTpyMeHTanmuu), Thread Sanitizer
HOJUIep>KUBAET SIBHBIE BBI30BEI HHTep(deiica OMOIMOTEKH BpeMEHH HCIIOTHEHHS — QHHOTAIlUN.

6.4 OnTMMn3auma o6paboTKN NepenosTHEHUS CYETUYMKA IMOXU

JIns KOPPEKTHOCTU CBOMCTB BEKTOPHBIX HYacOB U aITOpUTMa OOHApYXKEHHWS TOHOK JaHHBIX
TpeOyeTcss MOHOTOHHOCTD 3IIOX ONepanuil B KakaAoM cioTe. [IoCKoNbKy, ¢ IeNblo ONTHMU3ALIN
3aTpar MO HaMATH, pasMep CU€TYMKa JMOXU B TEKylleW peanus3auud, B cpaBHeHuun ¢ LLVM
ThreadSanitizer, 651 yMeHbIIIEH 10 6 OUT, Ha JTFOOOM peanbHOM HCIOIHEHUHU OyAeT BO3HUKATH
nepenonHeHue cyéryuka smnoxu. Ilocne mepenonHeHus CuéTyMKa 3MOXM HAPYILAETCs CBOMCTBO
MOHOTOHHOCTH, U BCSI COXpaHEHHas: MH(POpPMANUs, coJepKaliasi HoMepa CTapbIX 310X M JaHHbBIE
BEKTOPHBIX YacOB, CTAHOBUTCS HECOIVIACOBAHHOW C TEKyIIUM CcOCTOsiHHMeM cTpykTyp Thread
Sanitizer. Takum 00pa3oMm, sl KOPPEKTHOIH 0OpabOTKH MEPENOoNHEHHsS OJIOXH TpeOyercs
BBITIOJHUTH COPOC BCETO TEKYIIETrO COCTOSTHHUSL.

O0paboTka MepenoJHeHUs CYETYUKA 3IOXM MPOUCXOAUT B JBA 3Tala: CHayaga HMPOU3BOAUTCS
OYHCTKA TPACC HOTOKOB U TaONHUIIbI MEPEMEHHBIX CUHXPOHMU3AIUY, 3aTE€M ONepals OOHOBICHUS
TEHU.

Menbunii [uana3oH BO3MOXKHBIX 310X MOTOKOB, IOMUMO YMEHBILEHHS pa3Mepa sueHKU TeHEBOH
MaMATH, Ja€T pasyMHOE OTpaHMYEHHE Ha pa3Mep Xem-TaOuumel A MetanHpopMmarmu. OxHaKo
TaKO€ pelIeHHe IPHUBOAMT K 4YacTHIM ONepanusM OOHOBJIEHHS BHYTPEHHETO COCTOSHHS
caHMTal3epa, B TOM uuciie OOHyneHHs (cOpoca) TEHEBOM NHaMsATH C IEIbI0 00pabOTKH
HepenonHenus cuéruuka snoxu noroka. B LLVM Thread Sanitizer ans Linux oOHyIeHHe TeHeBOI
aMATH peaau30BaHO uepe3 cucTeMHbIH Bpi30B mmap. OCPB He noanepxuBaeT Takoe pelieHue B
CHJLy CTaTHYEeCKON KOH(MUTYpaluy BUPTYaIbHOH MaMATH.

B cBs13u ¢ 3THM, [T cOpoca TEHEBOH MaMATU COCTOSIHIE CTPaHUII TeHH (yxKe 0OHOBIICHA CTPAHHIIA,
I TpeOyeT OOHYIEHHNS) SMYIHPYETCs IPOrpaMMHBEIM 00pa30oM ¢ HCHoIb30BaHneM Oydepa diaros
(puc. 5). IIpu HEOOXOAUMOCTH OCTYIIA K CTpaHHUIle, Tpedyromel cOpoca TaHHBIX, IOTOK CHAaJana

100

Enbunnos E.C. Ananranus anropurma ThreadSanitizer ayist oGHapykeHus roHok 1o gauusiM B sixpe OCPB. Tpyoet HCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, . 91-108.

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

oOHyIsIeT €€ MaHHBIC, 3aTeM COpachIBaeT (iar COCTOSHUS CTpAHMIBL. Tak Kak cOpOCHI CTpaHHMI]
TEHEBOI MaMATH KOHQIIMKTYIOT C YTEHHEM HH(OPMAIIHH O IOCTYIaX U3 TCHH, BO3MOYKHBIC JIOYKHBIC
TOHKHU (PUIBTPYIOTCSI C TOMOIIBIO TIOJCUCTEMBI TPACCHPOBKHU TOCTYIIOB K TTAMSITH.

OnucaHHas pealu3alys MO3BOJSET HE OCTAaHABIMBATH MPOrPECC CHCTEMBI BO BPEMs OIEpaIHU
OOHOBJICHHSI TEHH, YTO Ba)XHO JUIA JHMHAMHYECKOTO aHAIHM3a KOJa, OMHPAIOIIETrOCs HA TapaHTHU
peaNbHOro BpEeMEHH.

store(0x1238) load(0x2be0) load(0x3a08) store(0x4800)

| =te! H ; |

' page status: \AJB‘ [I)‘

l l
refresh(B) refresh(D)
A ¢ Y l‘

Page A Page B Page C Page D
[0x1000-0x2000] | [0x2000-0x3000] | [0x3000-0x4000] | [0x4000-0x5000]

Puc. 5. Ilocmpanuynoe 06HO81eHUe meH.
Fig. 5. Per-page shadow reset.

7. [Toddepikka npepbieaHull e peanusayuu ThreadSanitizer

OIHAM U3 KITIOYEBBIX OTIIHIHI MIPOCTPaHCTBA AApa OT IMOJIb30BATCILCKOTO IPOCTPAHCTBA SABJIACTCS
HaJIn4ue HpCpBIBaHI/Iﬁ " yIipaBJICHUSI KOHTEKCTOM HCIIOJITHEHUS.

7.1 O6paboTka npoueayp o6paboTYNKOB NpepbiBaHUMN

TTockonbky BHyTpH sigpa OC OCHOBHAsI YacTh B3aUMOACHCTBHUS C MOJIb30BATENIEM U alNapaTypoi
IOCTPOEHA Ha MEXaHU3Me MIPepBIBAaHUM, KO 00pabOTKU NpepbIBaHUI MOXKET KaK BHOCUTD BKJIAJ(B
CHHXPOHU3ALIUIO IOTOKOB, TaK U COJIEPKaTh TOHKH JaHHBIX, KOTOPbIE HEOOXOIMMO CBOEBPEMEHHO
obHapyxuBath. Takum o6pazoM, ThreadSanitizer 00s13aH BHEAPATH COOTBETCTBYIOIIUE IPOBEPKH B
KO/, HICIIONIHAEMBIH B IIpoLecce 00pabOTKH IpepbIBaHU.

Tak kak Texymas peanusamus anropurMa ThreadSanitizer conep>kKuT OJOKHUPOBKH U KPUTHUECKHE
CeKLUH, BbHI30BBl OHMOIMOTEKH BPEMEHHM HCIOJIHEHHS JODKHBI HCHONHATBCA C 3alpeToM
ACHHXPOHHBIX TNpEphIBaHUN. 3ampeT NpepblBaHWMil Ha BpeMs BBI30BOB (YHKIMII OuOIMOTEKH
BpeMeHH wucnonHeHus Thread Sanitizer rapanTupyer, 4To Ha OJHOM (HU3UYECKOM sIpe
00pabOTUMKK aCHHXPOHHBIX IpepblBaHHsA 00pabaThIBAIOTCS B H30JLIUM OTHOCHTEIBHO KOJAA
npoBepok u3 Oubnmorexu BpeMeHu ucnonHenust Thread Sanitizer a1t poAUTENBCKOTO MOTOKA.
Taxxe, mpouexypbl MNEPEKITIOYEHHS KOHTEKCTOB HAPYIIAIOT IIPEANOIOKCHHE MOACHCTEMBI
TpaccupoBKkH BbI30BOB Thread Sanitizer, 4Tto BeI30B (DyHKIMH M BO3BpaTa M3 HEe€ MPOHCXOIIT B
OJHOM TIOTOKE U TPEOYIOT OTKIIOYCHHS BHEAPEHHS IPOBEPOK B HX KOJE.

7.2 lvHaMn4eCcKun aHan1M3 ob6paboTUMKOB aCMHXPOHHbIX NpepbiBaHUN

HOCKOJ’IBKy ACUHXPOHHBIC MNPEPBbIBAHUA HCHOJHANOTCSA KOHKYPEHTHO C KOJAOM POAUTEIBLCKOIO
IIOTOKa, MEXAY HUMHU CYHIECTBYET BO3MOKHOCTb BOSHUKHOBEHUS 'OHOK I10 JaHHBIM. C 3TOl 11eNBI0

101

00paboTUHK MpephIBaHMS CIEAYEeT pacCMaTpUBATh KaK OTACIBHBII JIOTHUECKUI IIOTOK, MMEIOIHI
JIPYroil MAEHTU(PUKATOP AOCTYNOB, XPAHAMIMXCS B TCHEBOW IAMATH, TO €CTh IPUBS3AHHBIH K
OTAENBHOMY CIIOTY IOTOKA.

Tak Kak B Ka)Jplii MOMEHT BPEMECHH Ka)KIbIi MOTOK HCIOIHSCT JIUOO COOCTBEHHBIH KO, THOO KO
00paboTurKa NpepBIBaHMS, JIOTHYCCKHH MOTOK 00OpabOT4MKa MPEPBIBAHUS MOXKET paslelsaTh C
POAUTENBECKIM OTOKOM TEHEBOH cTek U Oyhep TpaccupoBkH (puc. 6). Takum 00pa3oM, HoIAEpKKa
ACHHXPOHHBIX TPEPHIBAHUH TOYTH HE TpeOyeT IOMONHUTENBHOH mamsaTh. Takke ONMMCAaHHBINA
MOAXOJ YNPOIIaeT THAarHOCTHUKY HMPH TPACCHPOBKE CTEKa JOCTYIIA, BBI3BABIIETO TOHKY, TaK Kak
OyzeT y4TEH CTeK BBI30BOB HE TOJILKO 00paboTUMKa IpepbIBaHKs, HO M IPEPBAHHOTO MOTOKA.

Crek TpaccupoBka

CaII(Foo)‘Load Store| CaII(Bar)] i—|
Foo Lllnterrupt .. |Cal(Baz)| .. [Call(..)| .. | Ret | ..
Bar

nt | | TeHeBoOM CcTEK __
'Baz ... |Foo | Bar | #int |Baz

Puc. 6. Tpaccuposka u menesoii cmex oopabomuuxa npepvléaus.
Fig. 6. Tracing and shadow stack with interrupt handlers.

B onmcanHO# peann3anpy JOKAIBHOE XPAaHWIWIIE TAHHBIX CTPYKTYPHI IOTOKA B peaU3alliH
ThreadSanitizer B sape OC mpuBs3aHO K HICHTH()UKATOPY COOTBETCTBYIOMIETO KOHTEKCTA
HCIIONTHEHUS, a TEKYIIHI CJIOT JOTHYECKOT0 TOTOKA 3aBUCUT OT HAJIMYHUS MIPEPHIBAHUMH.

ANTOPUTM, peaNu3yIOIMA MOANCPKKY OOpabOTYMKOB NpEphIBaHHN B KaueCTBE OTHCIBHBIX
JIOTUYECKUX MTOTOKOB, IOJDKECH ONPEICITUTh CEMAHTHKY OIEpalHii IEPEKITI0YCHUS KOHTEKCTA B AP
OC OTHOCHTEIBHO CHHXPOHH3AIMH B MOJIeNH aMATH. B peanusanmu siapa OC npUCyTCTBYIOT TPU
OCHOBHBIX BUJIa TIEPEKIIIOYCHUI KOHTEKCTA: IEPEKIII0YeHIE Ha MCIIOHEHHE IPYToro MOToKa s/pa,
MEePEeKIIOYeHHE B IPOCTPAHCTBO IIOJNB30BATENs W, B MOMEHT BO3HHKHOBEHHS NpEPHIBAHUS,
HEepeKIFoYCHNe HA TOYKY BXOAa B ero oOpabOoTYMK M BO3BpAaT M3 IpepbiBaHus. lIpepbIBaHms,
KOTOpble HEeoO0X0AMMO o00pabaThiBaTh, MOTYT OBITH KaK NPEphIBAHMAMH U3 IIPOCTPAHCTBA
MOJIb30BATEIs, TAK M ACHHXPOHHBIMH MPEPHIBAHUSIME U3 TIPOCTPAHCTBA SAPA.

7.3 Mopenb nepekntoyeHusi KOHTeKcToB B sigpe OC CLOS
O06paboTka IpepbIBaHUN U IIEPEKIIIOUCHUH KOHTEKCTOB HcnonHeHus B sape OC TpedyeT onucaHus
CEeMaHTHKU pabOThl KaXIOHU 3aTparuBaeMoil omeparuu, eé npenycioBus U 3ddexra B HeKOTOpoi
MOJICNI COCTOSIHHSI CHUCTEMBL. B ympoInEHHOW MopjenH Jajee paccMaTpHBAeTCs Cleyrolee
COCTOSIHHE, JIOKAIIBHOE IS KXAO0TO s/ipa EHTPaIbHOTO MPOoLeccopa:

e context: integer — ID Tekymero notoka sigpa OC

e ienable: hoo! — dnar paspenieHns aCHHXPOHHBIX TPEPbIBaHUI

e is_user: bool — ¢mar UCTIONHEHNUS OJIB30BATENILCKOTO KO

e async_int: infeger — ypOBEHb BIOXKEHHOCTH TEKYyIIEro 0OpaOOTYNKA ACHHXPOHHOTO

nipepbiBaHus sapa (0 a1 cioydasl HCIIOTHEHHUS KOZa MOTOKA), JOKAJIbHBIN JUIsl TEKYIIEro
context

102

Enbunnos E.C. Ananrarus anropurma ThreadSanitizer st oGHapykeHus roHok 1o gauubiM B sixpe OCPB. Tpyoet UCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, c. 91-108.

J1ns IpoCTOTHI paccyskKAeHUH 1 pea3aliii MOJIEIb HE pas3/ieliseT pasInyHble HOMepa IPEephIBaHuUI.
B nanHO# MoJenH BEPHBI ClIENYIOLIME HHBAPUAHTBI:

e is_user = ienable
e async_int > 0 = —is_user

OmnpeznenuM B ONMUCAaHHOW Mojenu oOpabaTbiBacMble ONEpalluy YIPaBICHHUS IPEepbIBAHUAMHU (CM.
Tabn. 1). HerpynHo 3aMeTUTh, YTO BBIICONHCAHHBIE MHBAPUAHTHI COINIACYIOTCA C ONMUCAHHBIMU
OIepanusMy.

Tabn. 1. Onepayuu 6 modenu nepexnouenus konmexcmog OC CLOS.
Table 1. Operations in the CLOS OS model of context switching.

Omneparnust Ormucanne IIpenycnoBue Opdexr

async_enable Paspemenue acHHXpOHHBIX |—is_user A —ienable |ienable =1
MpephIBaHAN

async_disable 3anper aCHHXPOHHBIX —is_user A ienable ienable =0
MIpephIBaHNN

switch_context(T) |Ilepexmouenue Ha notok T |—is_user A —ienable |context=T A
async_int =
async_int(T)

switch_to_user INepextoyeHue B Koz —is_user A —ienable |is user=1A

I10JIb30BaTEIst ienable = 1 A async_int
=0
kernel_sync_int | BxoJ B CHHXpOHHOE —is_user (0]
HpephIBaHue apa
kernel _sync_ret |Bo3BpaT U3 CHHXpOHHOTO | ~is_user (0]
HpephIBaHuS sapa
kernel_async_int |Bxox B acCHHXpOHHOE —is_user A ienable async_int =
NpepBIBaHuE sapa async_int+1
kernel_async_ret |Bo3Bpar n3 aCHHXpOHHOTO |~—is_user A async_int =
MIPEpPBIBAHUA SApa async_int >0 async_int—1

user_int Bxoz B (;r000¢€) is_user is_user = 0 A ienable
MpepBIBaHHUE TTOJIH30BATEIS
user_ret Bosspar u3 (Jro60ro) —is_user A —ienable A |is_user=1 A

MpEpbIBaHUS I10JIb30BATEIA

async_int=0

ienable =1

7.4 CeMaHTUKa aCUHXPOHHbIX NpepbiBaHUI B Koge Aapa

Omnepanus paspelleHus NOpepbIBaHUN async_enable uMeeT CeMaHTUKY release-omepaluu (CM.
ONpEJIeNIeHUsT paHee), IOCKONIbKY, MOMUMO YIPaBJICHHS IPEPHIBAHUSAMH, CIIYXHUT allapaTHBIM
GappepoM i omepanuii 3amucu (T. H. release-0apbepoM). AHAIOTMYHO, OIEpanus 3ampera
npepeBanuil async_disable nmeer >d¢ext anmapatHoro Gapsepa s omepanui ureHus (T. H.
acquire-6apbepa). Takum oOpa3oM, Touka BXOJa B TIpepeIBaHWe kernel async_int W omepanus
BO3BpaTa W3 HEro kernel_async_ret MMEIOT, COOTBETCTBEHHO, CEMaHTHKy dacquire W release
OTIeparyii.

103

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

Onepauus kernel_async_int TpeOyeT —is_userAienable, a 3Haunt, Habmonaet 3¢ dekt ienable = 1
TIpH —iS_user HEKOTOPOH oTepalny BKIIOYEHNUS IPEPhIBaHUI async_enable Ha TaHHOM sizipe.
Onepauust async_disable nveer >ddexr ienable = 0, a 3HauuT, HaOmomaer 3¢hdekT Bcex
00paboTaHHBIX MpEpHBAaHUKH Ha MAaHHOM sAApe, B CHIy TpemyciioBus ienable omepanum
kernel_async_int, e€ addekra async_int = async_int + 1 u npeaycnoBus async_int > 0 onepauuu
kernel_async_ret.

Onepauu kernel _sync_int v kernel_sync_ret He MEHSIFOT COCTOSIHHSI MOZICIH M HE 00pabaThIBAIOTCS
B peaTH3alnH.

Taxum oOpa3omM, Ha ogHOM simpe CPU BepHO, uTO

e async_enable synchronizes-with kernel async_int
e kernel_async_ret synchéronizes-with async_disable

C menpr0 HOAAEPXKAHHA OSTOTO OTHOLIEHMS, B CTPYKType-IeCKpUNnTope (U3HUIECKOro sipa
BBIJICISIIOTCS OT/IeNbHBIC BEKTOPHBIE Yachl, «core» velock, mo ananoruu ¢ 06paboTKoi peryspHoi
NepeMEHHON CUHXpOHU3alMu (puc. 7).

kernel space Thread
< release() enable interrupts
) Interrupt ,l,
&
o) acquire()—™> enter <« — — — — — — — interrupt
@
5 |
Q
8 « release() leave — — — — — — —>» return back
) !
acquire() > disable interrupts

|

Puc. 7. Acunxpounvie npepviganusi.
Fig. 7. Asynchronous interrupts.

7.5 CemaHTUKa NepeKkrIio4eHMN KOHTEKCTa UCNOJTHEeHUs

TIpu cuaxpoHHOM nepekitoueHnt ¢ kouTekcra notoka Thread 1 (nanee T1) Ha KOHTEKCT APYroro
notoka snpa Thread 2 (ganee T2) — switch_context(T2) — Bce mocnenyromue onepanuu notoxa T2
HaOmonaroT 3G QeKT Bcex onepanuii Tekyuiero notoka T1, HCIOTHEHHBIX K JAHHOMY MOMEHTY.
Tak kak Juit swifch_context BbIIONHSETCA mpexycioBue —is_userA—ienable, BepHO, uTO
async_disable sequenced-before switch context, u s cunxponuzauuu notokoB T1 u T2
BO3MOXHO HCIIONB30BaTh TE e BEKTOPHBIE Yachl «core» velock, uTo M B mpenplaymeM MyHKTe
(puc .8).

7.6 CemaHTMKa npepbiBaHMA B Koge nonb3oBaTtens

HepeKn}oquI/Ie B HNPOCTPAHCTBO MOJb30BATEJIA OCTAHABJIIMBACT IIPOrpecC KoAa MOTOKa sapa,n
OJHAKO ap0 NMpoa0JIKACT 06pa6aTBIBaTB NpEPhIBAHUS ITOJIB30BATECIILCKOTO KOAA, KAK ACHHXPOHHBIC

104

Enpunnos E.C. Ananramus anropurMa ThreadSanitizer s o6HapyskeHust rosok no nauusM B siape OCPB. Tpyowr MCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, . 91-108.

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

(HampuMep, TIpepeIBaHUE TaiiMepa), Tak M CHHXPOHHBIE (HAlpuUMep, CHCTEMHBIE BBI30BBHI). [lo
aHaJIoruu ¢ 00pabOTKOI MPEepHIBaHUIA B SIIpe, ONICpaLuy switch_to_user v user_ret uMeroT release-
CEMaHTHKY, a OIlepaLHs user ret UIMEET acquire-CeMaHTHKY.

Tak Kak user_int IMeeT HPERyCIIOBHE iS_user, a OIepamu swifch_to_user W user_ret UMEIOT
a¢dexkr is_user = 1, BepHO, uTO user _int Habmonaet sbdext switch _to_user v user_ret.

Taxxe switch to_user mMeer mnpexycioBue —is_userA—ienable, To ectb, HaOmomaoT 3pdekT
ienable = 0 onepanuu async_disable. B cBoro ouepens, async_disable nabmonaet 3¢ ekt Bcex
00pabOTaHHBIX MPEPHIBAHUI HA TAHHOM siipe (cM. paszaen 7.4).

Taxum o6pa3om, Ha ogHOM siape CPU BhimosnHsAeTCS

e switch_to_user synchronizes-with user_int

e user_ret synchronizes-with user_int

Jl1s 0O6paboTKM 3ITOr0 OTHOLICHHs, aHAJOTMYHBIM C «core» velock oOpasom, B cTpyKType-
JECKPUNTOPE (pU3MYECKOTO s/pa BBIACISAIOTCS elIE OHU BEKTOPHbIE Yachl, «user» velock (prc. 9).
CaolicTBo async_disable synchronizes-with switch to user obecrmednBaeTcss CHHXpOHH3ALHUEH
«user» velock ¢ «core» velock.

kernel space Thread 1
._8= llﬂ—re!ease(} switch to context
3= Thread 2 :
§ —acquire(}—b[_ resume from context }4— -_—— - - -
1% !

Puc. 8. Ilepexniouenue konmexcma.
Fig. 8. Context switch.

kernel space Thread

|

switch to user — — — > user start

user space

User

<«—release()

5= Interrupt ' .l,
]
95‘, ——acquire() enter)4— et E— — interrupt
-) .
g* 2 :
(7 i
= 4—re|ease()—tleai}- —————— - > return back
]
'

|

Puc. 9. llomv306amensckue npepoiéanus.
Fig. 9. Userspace interrupts.

105

8. Peaynbmamsi

8.1 NpounsBoanTENLHOCTb

B cBs13u ¢ mpruopuTeTOM ONTUMHU3aIUH PACcXOJIOB 110 TTAMSTH, ATaNTHPOBAHHBIHA K Koy siapa OCPB
anroputM ThreadSanitizer 3aMeTHO ycTymaeT o mpou3BoauTensHocTH Bepcnn ThreadSanitizer u3
Habopa HHCTPYMEHTOB TNporpamMMHOil wuH(pacTpykTypsl LLVM. Ha puc. 10 mnokasaHo
OTHOCHUTEJBHOE YBEIMYEHHE BPEMEHH YTEHHS U 3amucu coodOmeHus pasmepoM 1024 Gaiita mist
pasnUYHBIX IOPTOB (IPUMHUTHBOB B3amMopeiicTBus Mexny nporeccamu B OCPB CLOS).
3ameienne HHTEPGEcoB GOJBIINHCTBA IPHMHUTHBOB CHHXPOHU3ALMH TAKXKE JISKHUT B Mpeeaax
ot 100 1o 150 pa3 Mo OTHOLICHUIO K UX HEMHCTPYMEHTHPOBAHHBIM BEPCHSIM.

Hecmotpst Ha mpHOpUTET SKOHOMHHU PECypCOB MaMATH HaJ ONTHMH3aNHUeEl TPON3BOIUTENEHOCTH,
TeKyIIas peaju3anys alropuTMa IO03BOJISET YCIEHO TecTupoBath ko saapa OCPB B pa3mnaHbIx
creHapusx paboThl, 0OHAPYKUBATh OMIMOKM MHOTOMOTOYHON CHHXPOHH3AIUH M MPEIOCTaBIATH
JETATBHYIO JUArHOCTHKY UX MECTa BOSHHKHOBEHHSL.

ARINC-653 and SAP ports on Cortex-A55 Development Board

300
= Read with tsan [— Write with tsan

@ Read without tsan Write without tsan
m 250

]

| -

3

202

© 200 4

()

o

c

©

£ 150 4

S

p .

(]

Q. oo 4

(0]

2

)

©

o 90

o

Sampling Queuing SAP

Puc. 10. 3ameonenue npoyedyp unmepgeiicoe ARINC-653 u SAP nopmos.
Fig. 10. Performance decrease for ARINC-653 and SAP port interfaces.

8.2 O6HapyXeHHble OLUIMGKN MHOTrOMOTOYHOW CUHXPOHM3aLUm

Tlockonbky no narerpanmu Thread Sanitizer kox simpa OCPB CLOS tectupoBacs ¢ IpIMEHEHHEM
JIETeKTOpa TOHOK M0 faHHBIM RaceHunter, 0CHOBaHHOTO Ha METO/I€ TOYEK OCTAHOBA IO JAHHBIM, &
TaKke B CHIIy CPaBHHUTEIBHO HeOoipmIoro odwréMma koma, anmroputMm Thread Sanitizer cnocoben
HAaWTHU CPaBHUTEILHO HEMHOT'O HOBBIX OIIMOOK B Kofe siapa. Takxe, yacTble onepanuu oopaboTku
HEPEHONHEHNUS SII0XU TEOPETUUECKU CIIOCOOHBI IPUBECTU K HEOOHAPYKEHUIO TOHOK B HEKOTOPBIX
UCIIONHCHUSIX.

106

Enbunnos E.C. Ananrarus anropurma ThreadSanitizer st oGHapykeHus roHok 1o gauubiM B sixpe OCPB. Tpyoet UCIT PAH, 2025, Tom
37 BeIm. 6, gacTh 3, c. 91-108.

HecMmotpst Ha 3TO, B pe3ysibTare HHTETpalMd B CHUCTeMy cOopku M TectupoBaHus sapa OC
peansHoro Bpemern CLOS anropurma Thread Sanitizer 6bi1a moaTBepkKIeHa 0HA U OOHAPYKEHBI
emé JABC TOHKHM IO JaHHBIM — KakK MEXAY MOTOKaMU sAapa, HUCIIOJIHAIIUMHCA Ha Pas3jJINndHbIX
MPOLECCOPHBIX SAPaX, TaK M MEKAY KOJIOM IOTOKA U 00pabOTYNKOM NPEphIBaHUSA HA OTHOM sIpe
(stcTHHT 2).

[TSAN] race condition on addr 0x822034e0

[tid=9 pattern = "....... X" kind="Regular Write"] ,
[tid=8 pattern = "....... X" kind="Regular Read "]
[TSAN] tid 9 backtrace

[00] 0x000000009003c8ac

[01] 0x000000009004c604

[02] 0x0000000090047bdc

[03] 0x000000009002eac8

[09] 0x000000009001e5cO
[10] 0x0000000000000004
[TSAN] tid 8 backtrace
[00] 0x00000000900329e8
[01] 0x00000000900522b4
[02] 0x0000000090052988
[03] 0x000000009002eac8

[09] 0x000000009001e5c0
[10] 0x0000000000000000

Jlucmune 2. Coobwenue 06 06Hapysicentoll 20HKe no OAHHbIM.
Listing 2. Detailed log message about a data race detected.

Taxxe, U1 TeCTUpOBAaHUS HMHCTPyMEHTa B cucTeMy TecTupoBaHus sigpa OCPB noGapien
CIleHapuil, coaepxaIlui FOHKU 10 JaHHBIM, U MO3BOJIIOMUI IPOBEPATH KOPPEKTHOCTh pabOTHI
Thread Sanitizer B koze sizpa.

9 3aknoyeHue

B nmanHoit paboTe MOKa3aHo, 9TO alIrOPUTM MOKCKa TOHOK IO JaHHBIM, OCHOBAaHHBIN Ha MOCIIEIHEH
Bepcuu LLVM ThreadSanitizer, MokeT OBITh aIanTHPOBaH K WHTETPALMK C CHCTEMOW COOPKH U
tectupoBanus siapa OC pearsHOTO BpeMeHH. BO3HHKAOIINE MPU 3TOM 3aJa4d COOTBETCTBHS
KECTKAM TpeOOBaHUSAMH Ha MPEICKA3yEeMOCTh BPEMCHH HCIIOTHEHHS U 3aTPaThl TPeOyeMOol aMsITH
HUMEIOT PEIICHHS, MO3BOJSIONNEe OOHAPYKUBATH TOHKU IO JAHHBIM, OKa3bIBas OTPAHUYCHHOE
BIISTHUC HA 3TH CBOICTBA MCIIOIHEHHS.

B cpaBuenun ¢ OC Linux, rie B kauecTBe HHCTPYMEHTA THHAMUYECKOTO aHaI3a JJIs TIOMCKA TOHOK
0 JIAHHBIM B siZipe OBbUT BBIOPAH MOJIX0/l, OCHOBaHHBII Ha Toukax octanoBa mo aaHHbM (KCSAN),
B OC crmenuaipHOrO Ha3HAa4eHWs, B 4acTHOCTH, B OC peanbHOrO BpEeMEHH, IPOOIEeMBI IpU
MHTETPalH JETEKTOPOB, OCHOBAHHBIX HA MIOCTPOCHUH OTHOUICHUS happens-before TPeo10TUMBL,
YTO TMO3BOJISET MPUMEHATh 00a CEMEWCTBAa JCTEKTOPOB TOHOK IO JAHHBIM, M aHAJIM3HPOBAThH
OOJIBIINI CHEKTP MCIIOJIHEHHH.

Cnucok nutepartypsbl / References

[1]. J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern, Frightening small children and discon-
certing grown-ups: Concurrency in the linux kernel, SIGPLAN Not., vol. 53, pp. 405—418, Mar. 2018.

[2]. M. Elver, Concurrency bugs should fear the big bad data-race detector. https://lwn.net/Articles/816850/ ,
2020. [Online; accessed 21-May-2025].

[3]. K. Serebryany and T. Iskhodzhanov, Threadsanitizer — data race detection in practice, pp. 62—71, 12 2009.

107

Elchinov E.S. Adaptation of the ThreadSanitizer algorithm for data race detection in a RTOS kernel. Trudy ISP RAN/Proc. ISP RAS, vol. 37,
issue 6, part 3, 2025. pp. 91-108.

[4]. ISO Central Secretary, Information technology — Programming Languages — C, Standard ISO/IEC
9899:2024, International Organization for Standardization, Geneva, CH, 2024.

[5]. D. Vyukov, Llvm thread sanitizer. https://github.com/google/sanitizers/wiki/threadsanitizercppmanual,
2020. [Online; accessed 22-May-2025].

[6]. N. Komarov, On the implementation of data-breakpoints based race detection for linux kernel modules,
2013.

[7]. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, Eraser: a dynamic data race detector
for multithreaded programs, ACM Trans. Comput. Syst., vol. 15, p. 391-411, Nov. 1997.

[8]. F. Mattern, Virtual time and global states of distributed systems, 01 2004.

[9]. L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM, vol. 21, p.
558-565, July 1978.

[10]. A. Konovalov, Kernel thread sanitizer. https://github.com/google/kernel-sanitizers/blob/mas-

ter/KTSAN.md , 2015. [Online; accessed 24-April-2025].

Unopmayusi 06 aemopax / Information about authors

Erop Cepreesuy EJIBUMHOB — crapimii 1abopaHT OT/AeNla TEXHOJOTHH HpPOrpaMMHUpPOBAHHUS
Hnctutyta cucteMHoro mporpammupoBaHus. Cdepa HaydHBIX HHTEPECOB: METOIBI
JuHamMudeckoro anammsza 10, ainropuTMBl MHOTOINOTOYHOW CHHXPOHH3AIWH, OIEpPAIl[HOHHBIE
CHCTEMBI.

Egor Sergeevich ELCHINOV — Senior Lab Assistant of the Department of Programming
Technologies of the Institute for System Programming of the RAS. Research interests: methods for
software dynamic analysis, concurrency algorithms, operating systems.

108

