
Journal of Software Engineering and Applications, 2016, 9, 296-317
Published Online June 2016 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.96021

How to cite this paper: Lavrischeva, E.M. (2016) Assembling Paradigms of Programming in Software Engeneering. Journal
of Software Engineering and Applications, 9, 296-317. http://dx.doi.org/10.4236/jsea.2016.96021

Assembling Paradigms of Programming in
Software Engeneering
Eraterina M. Lavrischeva
Moscow Institute of Physics and Technology (State University) MIPT, Dolgoprudny, Russia

Received 20 April 2016; accepted 24 June 2016; published 27 June 2016

Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Assembling paradigms programming are based on the reuses in any programming language (PL)
with the passport data of their settings in WSDL. The method of assembling is formal and secures
co-operation of the different reuses (module, object, component, service and so on) being devel-
oped. A formal means of these paradigms creation with help of interfaces is presented. Interface
IDL (Stub, Skeleton) is containing data and operations for transmission data to other standard
elements linked and describes in the standard language IDL. Assembling will be realized by inte-
gration of reuses elements in these paradigms on the instrumental-technological complex (ITC).

Keywords
Paradigm, Assembling, Theory, Interface, Reuses, Object, Component, Service, Program Systems,
Interoperability, Multilanguages, Reengineering

1. Introduction
The term paradigm was defined by R. Floyd (1978) and it is a theory and method for setting the style of the
writing program. We consider the paradigm: the modular, object, component, service, aspect, etc. The essence
of each paradigm-independent formal description of a software element can be used as reuses in other systems.
The term build (assemble) was used by V. M. Glushkov (1974) in relation to programmes, whose role is similar
to the conveyor assembly into the vehicle Ford. This term began to be used by many programmers to build large
programs on the IBM framework and almost all come to a common definition of Assembly programming (1982).
This programming is by a method of combining (integration, composition, aggregation) of the assemblies inde-
pendent software elements with using the interface (Stub, Skeleton) to more complex software structure. Offered
paradigms of programming are oriented on development of the complex program systems from the different
formal program elements of these paradigms with the use of interface objects. A formal vehicle includes theoretical

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.96021
http://dx.doi.org/10.4236/jsea.2016.96021
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

E. M. Lavrischeva

297

and applied aspects of planning the proper elements and operation of their integration in the complex program
systems (PS).

Assembling polyglot elements is based on theory of fundamental type of data (FDT), arising up still in the
1970 years of past century in the works Dijkstra, Hoare, Wirt, Agafonov and so on and ales and standard of
general types of data of ISO/IEC 11404-2007 (General Data Types—GDT) for the generation GDT ↔ FDT. A
given theory is originally realized on the assembly polyglot in the АPROP (1982) system. The facilities of sup-
port of specification of elements in the multiple programming languages PL, description of interfaces in the IDL
language, saving them in library of prepared elements belong to them. Assembling elements of paradigms in the
new PS is carried out by interfaces and the special operations of instrumental-technological complex (ITC).
These paradigms are taught on the course education “Software engineering” for students and also some themes
SE for performing by bachelors, by master’s degrees, graduate students of faculty of cybernetics of the Kiev na-
tional university of Tara’s Shevchenko and faculty of informatics of the MIPT. A bunch of theoretical and ap-
plied aspects is implemented in the ITC (http://7dragons.ru/ru) and the KNU program factory
(http://programsfactory.univ.kiev.ua) as CASE-instruments Students can study, create, certify and accumulate or
configure objects and components in ITC repository, as well as assemble them in PS [1]-[5].

Next, the paper considers the modular assembly, an assembly object, assembly components and Assembly
service programming and general means and methods for assembly programming.

2. Paradigm of the Modular Programming
In 1970s years the modular programming, a basis of which is made by methods of decomposition of subject
domain and integration modules in the complex structures appeared. The modules will realize some functions
and will use the functions of other modules.

Module it is logically finished part of the program, executing a definite function. He possesses by such prop-
erties: completeness, independence, separate compilation, repeated use and so on. The modules accumulated in
libraries of the modules, as prepared “details”, from which the more PS going and are adapted to the new terms
of environment of their treatment.

Such structures PS were designed top-down, the prepared modules got out from libraries of the modules and
going to the new structures PS. In institute of cybernetics АN of Ukraine development of different approaches to
automated was conducted assembling the programs, including system of the computer-aided of the programs
manufacturing—APROP (1976-1987) [1] [2]. In her main constituents were: module passport with the interface
(passed data and Call operators) specification, method of assembling the different PL modules and function of
type of data conversion for class of widely used PL machines of ЕS. Base conception of the APROP system-
interface as a PL communication and modules, on record in different PL (FORTRAN, PL/1, Algol-60, Assemb-
ler, COBOL). Main its objects: module, module-mediator, interface model of MIL (Module Interface Language),
library of the modules and method of assembling the different PL modules [6]-[10].

2.1. Interface Communication of the Modules in PL
Every pairs of modules in different PL associates by interface as a module-mediator (stab in Corba). Communi-
cation of pairs of the functional polyglot modules was executed in the APROP system on OS of IBM-360. Such
product differed from the traditional monolithic product by the expressly modular construction. In function of
interface mediator entered: data communication through the formal and actual parameters; verification of ac-
cordance of their types of data, quantity and order of their location of parameters. If types of given parameters—
unreeving (for example, integer or real), direct and reverse their transformation entered in the mediator function.
The generation module-mediator contains the appeals to the elements of library of interface functions, which are
executed on transition m one module to other and back.

Great number of three from the caused and causing modules in different PL and module-mediator united in
the APROP system in aggregate-monolithic product on ЕS OS-360, intended for the decision of class of applied
tasks. The reflection of formal and actual parameters entered in the mediator function, verification of accordance
of passed parameters (quantity and location order), and also their types of data. A model chart of communication
of modules in different PL is shown on the Figure 1.

The program is led on chart with, in which two calls are contained—Call () and Call B () with parameters.
These calls “pass through” interface modules-mediators A’ and B’, which carry out functions of data conversion

http://7dragons.ru/ru
http://programsfactory.univ.kiev.ua/

E. M. Lavrischeva

298

Figure 1. Chart of calls of the modules and in through the А’ and B’
interfaces.

and their transmission to the modules and В/After implementation of the modules and in results will be
transformed back to type of the program С. If types of given parameters—not relevant (for example, is passed
whole, and result—material or vice versa), direct and reverse their transformation enters in the mediator function.
The generative module-mediator contains the appeals to the interface library elements, which are executed in the
moment of transition of one module to other and back.

2.2. APROP System Functions
Executes the APROP systems next functions of union of the modules [1] [2]:
• treatment of the passport given modules in PL;
• analysis of parameter of the modules specification and drafting a task on treatment of irrelevant types of data,

verification of rightness of the parameter passing on their quantity and on types of data in the PL class;
• type of data conversion in by the PL (b-Boolean, с-character, і-integer, r-real, a-array, z-record, etc.) gene-

rator of types of data with the use of interface library functions;
• Generation of the modules-mediators and drafting table of communication of pairs of components;
• Integration of pairs of the modules and their placing in structure of program aggregate;
• Translation and compiling the modules in PL as a prepared program structure;
• tracing interfaces and debugging functions of the modules in every pair of aggregate structure;
• testing a program aggregate on the whole;
• forming the programs of start of program aggregate and document.

In the complement of the APROP system the next components enter:
• Systems of programming (PL/1, FORTRAN, Assembler, language-constructor graphs);
• Treatment elements (modules in PL, Bank of the modules, Library of functions of data type conversion,

language interpreter, intermodal interface);
• Automation facilities (treatment of the modules in PL, generation of the modules of communications, as-

sembling the interlingua modules, testing the modules, testing interfaces, testing a complex aggregate from
module);

• Forming an output result.
In this system it is realized assembling, based on two types of interfaces (intermodal and interlinguas) for

every pair of the modules in PL. An idea of realization of intermodal interface in the APROP system is protected
in the candidate’s dissertation Grichenko V.N. (1991), method of assembling in the doctoral dissertation of au-
thor and in monographs [1]-[3].

Thus, interface of the modules as a communication of different types of objects in PL mean—the first home
paradigm of interface in programming is realized in the APROP system.

Two types of interface are realized in the system—interface of the modules and the PL pair, interface between
modules and interlingual interfaces.

Interface between modules of PS—it component for the generation of the interface modules-copulas of the

E. M. Lavrischeva

299

interactive between itself modules.
Interlingual system interface—it is a component, containing a set of functions and macros in class of types of

data and structures of the great number PL on their relevant transformation, described higher.
Interface of the modules, as a communication of different linguistic objects in PL mean—the first realization

of interface paradigm in programming (1975-1982) [1]-[5].
The generation of the interface modules-mediators for the two objects with operators of converting passed

data and control transfers enters in task of interface between different modules (there and back).
Assembling the prepared modules in the APROP system is based on aggregate of the modules in Bank of

the modules, their passports and operators of assembling parts of the programs and complex systems [1]:
1) Operator of the Link assembling, questioner assembling two objects or count modules;
2) Link sag A (A2, A3 * A4)—to link the A, A3 and A4 modules in the segment structure and, where A4 is

caused dynamically;
3) Link Prig B ((B1, B2), C = X (C1), D = (Y, D1 = Y1))—to unite the B1 modules, B2, to them to add with

and D with the C1 parameters. Y, D1.
4) Operator//The EXEC module А1//PL Trans А1…
5) To generate an interface mediator mod-interface generation for А1 ∩ А2 and so on…
The rules of assembling determine compatibility of united objects, which contain description of functions for

the concordance of different descriptions, are presented in their passports.
The process of assembling modules can be conducted by the hand, automated and automatic methods. As a

rule, the last shift is impossible, is related to the not enough formal determination of the program reuses RC and
their interfaces. A hand method is inadvisable, since assembling ready components RC is a large volume of ac-
tions, which carry rather conservative, by what creative nature. The most acceptable method—it is the auto-
mated assembling, when on the set specifications of the programs assembling by the standard rules of assem-
bling heterogeneous objects is carried out.

The facilities which support a given method of assemble name instrumental by facilities of the assembling
programming. The facilities of completion belong to them (unions of components in the more complex object);
interface facilities of description and use of models of programming (aggregate of models of integration of dif-
ferent program elements).

Necessary terms of application of this method of programming are:
1) Presence of generous amount of various RC, as objects of assembling;
2) Passport system of objects of assembling;
3) Presence enough’s complete set of standard rules of communication of objects, algorithms of their realiza-

tion and facilities of automation of process of assembling;
4) Technologies by line with sequence of operations of the gradual making and establishment of communica-

tions between RC in case of formation of the system or PS.
The last condition means that the definite forms of PS presentation must exist as knowledge’s about the sub-

ject domains, universal from point of planning and PS development. The main thing task of assembling – expo-
sure of communication types, description of them in interface and realization as a mediator of interfaces between
some modules and/or components, which secure their “docking” or communication in process implementation
in some environment.

Assembly method. This method with interface was developed abroad in the projects MIL, SAA, IBM, Sun,
Овеrоn, Corba and so on. The idea of assembling presently became model in class of traditional and modern PL.
She is realized like in the adopted systems and is based on theory of unreeving type of data conversion in PL and
is described in guidance’s on application. New approaches to assembling are published in a number of works,
including at 1. Bay (Co-operation of the polyglot programs, 2005) and so on.

The Corba system for the objective elements realized a universal manager of mediator—broker of objective
queries, which links prepared objects-methods and components in any PL through mediators—stub (there) and
skeleton (back). An interface mediator of objects is described in the new language IDL (Interface Definition
Language). In him parameters of data communication are marked in and out between the heterogeneous objects
in any PL. Data of prepared objects and RC contain the type of data declaration in corresponding PL and at their
transmissions from one object to other they are checked on accordance of description in mediator of stub, them
relevant parameters from skeleton. Thus, the result module paradigm is module on which you can run method of
assembly using the interface.

E. M. Lavrischeva

300

3. Paradigm of Object Programming
At the turn of 1980s Grady Booch suggested object-oriented approach that changed the way of software devel-
opment process. At that point of time structured programming approach had reached the crisis of complexity. As
such, appearance of object-oriented programming (OOP) approach was seen as a way out of the crisis of the ap-
plication complexity. Many analysts and programmers were looking to this approach with skepticism by seeing
it as fashion and not as competitive advantage. The main thing that OOP gives is reducing the complexity of
software artifacts, the ability to add and remove objects without any difficulty, hereby solving some aspects of
the crisis of complexity [4]-[10].

The object-component theory was built on base of OOP formalisms, Frege triangle and Von Neumann-
Bernays-Gödel set theory. This gives a chance to create common mechanism to generalize the notion of object
with the appropriate properties and characteristics. The object is defined on the object level analysis involving
logical and mathematical concepts of representation, function specification, Object Model (OM).

Every object comes to a set О = (О0, О1, ∙∙∙, Оn), where О0 is the base object of domain. An object of domain
O denotes a named part of the real world with a certain level of abstraction; it is described by Frege triangle
(Denotation, Sign, Concept) (Figure 2).

On this figure, each object O is presented as Oi = Oi (Nai, Deni, Coni), where Nai, Deni, Coni are a sign
(name), denotation and the concept of object, respectively:

The sign sets a name of a certain essence in the real world;
The denotation designates an essence by sign;
The concept reflects semantics of the denotation, which is specified at levels of design of objects, bringing in

the mathematical apparatus.

3.1. Levels of Logical and Mathematical Modeling of Domain
Design of domain model is performed at the four logical and mathematical levels of object definition (Figure 3):

1) Generalized level is used to determine the basic concepts of the given domain excluding their properties;
2) Structural level is used to determine the location of objects in the structure of the model and establish rela-

tionships between these objects;
3) Characteristic level serves for setting the general concepts and specific features of objects;
4) Behavioral level determines the behavior and modification of objects based on events that they create in

their interaction with each other.
Axiom 2.1. Domain area that is modeled from objects is an object itself.
Axiom 2.2. Domain area that is modeled may be a part of another domain area.
When modeling an object from any given domain area, it has at least one property or characteristic, semantics

and unique identification in a set of objects of that domain area and the set of properties (predicates) providing
relationships between objects in the given domain area.

The property of the object is defined by a unary predicate that takes value of true for its external and internal
features of the model.

Feature is a collection of properties (unary predicates), which are a subset of the set of selected system pre-
dicates which returns true values if the object implements such functionality.

I III

II Sign, Word

Denotation,
Subject (reality)

Concept, Idea

Desi
gn

ate Express

Determine

Figure 2. Frege triangle.

E. M. Lavrischeva

301

 O0 O1 On...I. Generalized Level
Defines a set of objects

 O1 O2 On

II. Structural Level
Defines hierarchy of objects

 O0 O3 O3

 O1 On

III. Characteristic Level
Defines a set of predicates for objects

 O0

I11,I12

I01

In1,In2,In3

...

 O1 On

IV. Behavioral Level
Defines a objects behavior

 O0
I11,I12

I01

In1,In2,In3

...
Figure 3. Example of object-interface graph. At each level of
the design uses the logical-mathematical operations: (∪, ∩, /,
◊, ⊕ , –).

Relation is indicated by binary predicate over the set of objects and returns true on a given pair of objects.

The main types of relationships are: the set—to the set, the element from the set—to an element of the set, an
element of the set—to the set, the set—to an element of the set.

These relation types correspond to the following operations: generalization, specialization, aggregation, asso-
ciation, details of classification and instantiation. The type of relation 3 and 4 are IS-A and PART-OF. They are
used for structural ordering of pairs of objects.

Designing of domain models. Set-theoretic concept lies at the foundation of model design. On the first de-
sign level, domain objects are detected. Then these objects are structurally arranged on the base of binary rela-
tion. On the generalized level an object is regarded as mathematical concept according to Von Neumann-
Bernays-Gödel set theory.

On this level of design, the domain area as a set of basic functions of objects is formed associated with de-
composition or compositional changes in variable objects and components. It consists of a number of functions
that cover the transformation of denotations and concepts in the object analysis and the objects which include
changes associated with an increase or decrease in the number of objects.

The result of the generalized level is a set of objects О = (О0, О1, ∙∙∙, Оn), where О0 corresponds to the mod-
eled domain area. The following is true for the O set:

() ()00 & iI I O O ∀ > ∈  (3.1)

On the structural design level each object is presented as a set or a particular element of the set. In this case,
the expression (1) is transformed into the following form:

() () () ()0 & 0 & & i ji j i j i j O O ∀ ∃ > ≥ ≠ ∈  (3.2)

Here, each object (except О0) is the set of elements or certain elements of the sets, so set-theoretic algebra op-
erations can be applied to them. This expression defines the PART-OF relation and instantiation. Thus, on this
level classes, class instances and so on are defined. The properties of objects and relations are defined for these
objects, together with classification, specification, etc.

On the characteristic level, each object corresponds to a concept. If О' = (О1, О2, ∙∙∙, Оn) is the set of objects
of domain, and P' = (P1, P2, ∙∙∙, Pr) is a set of unary predicates related to the properties of objects in domain, then
the concept of object Оi is the set of statements that are based on predicate P', assuming truth for the corres-
ponding object. This means concept Coni = {Pik} provided Pk(Оi) = true, where Pik is a statement for the object
Оi according to the predicate Pk. According to these rules, the properties and characteristics of objects are de-
termined within a given abstraction of IS-A for object concepts.

Expression А = (O', P') defines the algebraic system of objects concepts O' and predicates P', intended for
objects analysis and identifying domain features.

E. M. Lavrischeva

302

Axiom 2.3. Every object of domain has at least one property or characteristic, which defines the semantics
and the unique identification of a plurality of domain objects.

Predicates P' contains following operations: 0-ary operations for constants, unary operations for the objects
properties, binary operations to provide relationships between pairs of objects.

The behavioral level defines the sequence of object states and their processes of transition or reflection from
one state to another. The relations between objects are formed on the basis of binary predicates that are asso-
ciated with the objects properties, and the level of relation detailing between the classes of objects.

The main objective of every level is to describe the internal and external characteristics of objects, which it is
necessary for organization of connection between them.

The concept of a class is replaced by the notion of set. If the object is part of another object, it is determined
by the set. However, not every object is an element of any other object (class). For example, an object that is re-
sponsible for the whole of a particular OM is not a part of any other object in this OM. The definition of the ob-
ject is formulated by: every object is with necessity a set or an element of a set.

The regular operations are executed over the set of objects: association, intersection, difference, combining,
symmetric difference, Cartesian product. Specification of object in a given concept are class (a set of objects);
an instance of a class (an object that is an element of a certain set), consolidated class (a set which is a direct
sum of several other sets); crossing-class (a set that is a common part of other sets), aggregated class (a set
which is a subset of the Cartesian product of several other sets).

Establishment of a particular domain model has an iterative nature and begins with the definition of domain as
the start object. At each iteration, analytic functions that approximate the structure and properties of domain ob-
jects are applied until the final model is built.

3.2. Object Analysis of Domains
The modeling of objects is performed in the following system:

(), , ,О I A Р′ ′ ′ ′∑ = , (3.3)

where О' = (О1, О2, ∙∙∙, Оn) is a set of objects, I is a set of interfaces of О'; A' = (A1, A2, ∙∙∙, An) is a set of opera-
tions over elements of the set О; P = (P1, P2, ∙∙∙, Pr) is a set of predicates to define the properties of the object
concepts (for example, Coni = (Pi1) = true/false). Each of the operations A' has a certain priority, arity and asso-
ciates with the appropriate valid descriptions (Nai, Deni, Coni) of object signs, denotations and concepts and the
set of operations A' = {decds, decdn, comds, comdn, conexp, Conner}. In other words, decds, decdn are decom-
position; comds, comdn are composition and conexp, Conner are contraction.

Theorem 2.1. The set of operations A' of object algebra is a system of operations on the four-tiered represen-
tation of the model of the object domain.

The result of the structural ordering of object model OM is graph G = {O, I, R}, defined on the set of objects
O, interfaces I and relations R between objects. Conditions of constructing the graph G:

The set of vertices O displays all domain objects one-to-one;
For each vertex, there must be at least one interface Ik ∈ I and relation, owned by a set of relations R;
There is at least one vertex that has the status of a “set of objects” and reflects the domain area in general with

accordance to the axioms 2.1, 2.2.
Built graph G is complemented by interface objects and structurally ordered to control the completeness and

redundancy of graph elements and eliminate duplicate elements (Figure 4).
The set of objects-functions O is associated with a set of implementation methods on remote domain objects.

During specification, the objects are linked through interface objects from the set I. It means vertices of the
graph G belong to one of the two types—functional or local O and interfaces I.

In the graph, interface objects correspond to functions describing data exchanged between objects (Figure 5),
methods of data transmission through RPC operators, RMI operations and conversion of some data not relevant
in terms of their order of execution platforms and formats.

Graph G set of domain objects and interfaces form the OM. The objects of OM are represented by the general
and individual properties or the external and internal characteristics. The check of object properties is performed
by applying instantiation operations. Interface objects can be input (In) and output (Out) from the set of inter-
faces I = (In (Ok), Out (Ok)), i.e. the input interfaces In (Ok) and output interfaces Out (Ok).

E. M. Lavrischeva

303

O1

O2 O3 O4

O5 O6 O7 O8

Figure 4. The object graph G.

O1

O2 O3 O4

O25

O5 O6 O7 O8

O26 O47 O48

Local object

Interface object

Repozitory object

Figure 5. The object-interface graph GI.

To define the semantics of the object graph G, IDL interface language is used (proposed by OMG). OMG was

first implemented in CORBA system, coupled with methods for constructing and developing shared objects [9].
To the aggregate of the set-theoretic operations include: Ω = (∪, ∩, /, ◊, ⊕, –). Algebraic system for structu-

rally-ordered level is: Σ = (S, Ω). Objects defined at the synthesis level are provided as sets of elements or a spe-
cific set of algebraic systems Σ = (O', Ω) structural level.

Input and output parameters, which are exchanged between functional objects, are described by myltilan-
guages (C, C++, C#, Pascal, Ruby and etc.). On Figure 4, objects О2 and О5 yield an interface object О2.5, which
secures data exchange for conducting calculations. If types of passed parameters in the interface object are irre-
levant (e.g., input parameter is integer and output is real), generative functions are created for the transformation
integer ↔ real [10]-[15].

In graph GI (Figure 5) you can build a program P1-P6 using operation ∪, function interface In and the opera-
tor link:

1) 1 2 5P О О= ∪ , ()1 25 2 5link P InO О О′= ∪ ;

2) 2 2 6P О О= ∪ , ()2 28 2 8link P InO О О′= ∪ ;
3) 3P ;
4) 4 4 7P О О= ∪ , ()4 47 4 7link P InO О О′= ∪ ;

5) 5 4 8P О О= ∪ , ()4 48 4 8link P InO О О′= ∪ ;

6) ()0 1 2 3 4 5P P P P P P= ∪ ∪ ∪ ∪ . (3.4)
Results from the linkage of two objects of a graph (e.g., ()2 25link P O′ is an interface object 25InO′ . There are

many input interfaces coincides with the set of interfaces of the target object, and a plurality of source interfaces
with multiple input interfaces of the object transmitter.

Axiom 1.2. Advanced graph G with interface objects that are structurally ordered (top), controlled complete-
ness, redundancy and backup elements.

Objects can have multiple interfaces that can inherit the interfaces of other objects in the case when they pro-
vide the data to the multiplicity of interfaces.

Many of the objects and interfaces of the graph relates to common characteristics of objects in OM. They are

E. M. Lavrischeva

304

considered to be reliable if the following condition holds: each internal characteristic is equivalent to the external
characteristics of the object. If this condition is not met, the element is removed from the set and from the graph
respectively.

Formal association operations of objects and interfaces are as follows:
(),k kO O In O∈ are a set of input (In) interface objects;
(),k kO O Out O∈ are a set of output (Out) interface objects.

Classes of objects. When objects are combined according to the general characteristics of classes in the OM,
it has following form: OM = (Oclass, GС), where Oclass = {Oclassi} is a set of object classes for functions or
methods with common properties; GС is an object graph that reflects connections and relationships between
classes and instances.

Each class is represented as

(}, ,i i i iOclass ClassName Meth Field= , (3.5)

where ClassNamei is the name of the class; { }i i
jMeth Meth= is a set of its methods; { }i i

nField Field= is a
set of properties that determine the state of the class instances.

Every i i
nPfield Pfield∈ has methods i

nget Pfield and i
nset Pfield for writing and reading values of the

corresponding properties as attributes and interfaces of OM and component models in which the objects me-
thods are represented by software components.

The set of methods provided as:

{ } { }i i i
n nIMeth IMeth get Pfield set Pfield= ∪ ∪ , (3.6)

which corresponds to the interface Ifunci consisting from the methods from IMethi.

3.3. Description of Interface Objects
Formalism of description of the IDL interfaces is presented in OMG CORBA. In it, the interface mediators (stub,
skeleton) contain the passed data definition between PL-objects as stub for a client and skeleton for the server
and operations of data communication between objects [10].

The description of operations of data communication includes:
Name of interface operation;
List of parameters (zero or more);
Types of arguments and results, otherwise—void;
Handling parameter for description of exceptional situation, etc.
IDL language is used for interface specifications (such as stub or skeleton). Interface options have the fol-

lowing description: in—input parameter, out—output parameter, inout—compatible option.
The interface specification for one object can be inherited by another object and this description then becomes

the base. The interface inheritance mechanism consists of saving names of objects without resizing them. It
concerns description of operations, which must have unique denotations.

The names of operations can be used dynamically during implementation of skeleton interface.
A type is described in the TD class, which is passed through parameters of the RPC operators, RMI, as well as

with WCF, .NET protocols, etc. TD is described in one of ООP languages (C#, VBasic, Pascal, and so on).
Input and output interfaces for the Р1 and Р2 programs (Figure 6) have different semantics, but identical syn-

tactic description in a certain PL. Data communication between these programs and Р3 is carried out through the
functions F1 (.), F2 (.) and the In and Out interfaces, which perform TD transformation of data passed between
Р1, Р3, and Р2, Р3.

The described formalism of interface is presented not only in the CORBA system, but also in IBM ОS, Mi-
crosoft and so on. It is based on libraries with data type conversion utilities, which are used during integration of
heterogeneous program resources (objects, components, services). Thus, the result object paradigm is object on
which you can run method of assembly using the interface.

4. Paradigm of the Component Programming
The component programming is based on Ready Components (RC) reuses. Creation of the new PS from RC is
considered as a strategically way to the rise of productivity labors in programming and providing his quality. He

E. M. Lavrischeva

305

Figure 6. Chart of function calls between objects.

is development of the module and object to the components at direction of generalization of collective technol-
ogy and principle of Reusability, as bases of modern industrial technologies and factories of the programs. Indi-
cated types of program elements are united by the general principle of reusable, which is used in much spheres
of activity of different categories of computer specialists. But, without regard to that ready RC and components
a generous amount is accumulated, the component programming of the new systems remains problematic, be-
cause for a few years the generation of computer facilities changes and it requires reengineering considerable
part of the prepared programs that causes the considerable duplication of functions. Such situation was folded as
a result of absence of standardized approaches to construction of the programs from the prepared program ele-
ments, and also creation of elements, and related to absence of necessary theoretical and methodological base
for decision of tasks of creation of the PS from the prepared elements [15]-[17].

It large attention is spared and abroad. She is explored in the state programs of Japan, Great Britain, the USA
and so on, and also in the peace corporations (IBM, Microsoft, Intel, Hewlett-Packard and etc). Problem of
reuses are considered at the international conferences during decades. In reuses are laid large facility for the re-
ceipt of income in case of development from them of complex PS, as financial products.

That is why development of theoretical, methodological and engineering bases of component programming
for the decision of this actual tasks, and also contemporaneity tasks such, as creation on the component basis of
the PS, Web-applications, modern information systems and technologies, is a very important and perspective
problem.

4.1. Basic Concepts of Component Programming
Component is understood by us as a PL-independent self-relevant of software product that provides execution
for a certain set of application functions and services of applied domain, which can be accessed with remote
Calls [18].

RC as an element of typical repeated decision in PS is necessary typical architecture, descriptions and
attributes, which are given in the interface part and are used at the exchange by data for co-operation of compo-
nents in the different environments. That is given thus component, becomes an indivisible and encapsulation of
object, which satisfies to the functional requirements, and also requirements in relation to architecture of the
system and implementation environment component programs.

Basic operations of components are:
• specifying components and their interfaces (pre- and post-conditions, which must be satisfied by caller them)

in such languages as IDL, API, WSDL etc.;
• maintenance of components and reuses into the component repository for their future integration
• collection RC into Applications, Domain, PS etc.

Component program or PS from components—it is an aggregate of components, that will realize the func-
tional and not functional requirements to her, is built on rules of configurations of collective type with providing
co-operation.

Model domain is built in objects which can be transformed to the components with the use of mathematical
vehicle: models of component and interface, component environment, external and internal component algebra
and algebra system of transformation of types of given components for their co-operation [12]. Component con-
struction PS from ready RC from the different libraries gives the considerable cutback of spending and improves
PS quality [17].

E. M. Lavrischeva

306

4.2. The Model Interface and Component
A model of component is investigation of generalization of typical decisions and has a kind [18]:

() , , , ,C CNa CFa Cln CIm CSe= , (4.1)

where CNa—unique identifier of component;
CFa—interface of providing functions of management by copies of component;
CIn = {Cln1, ∙∙∙, Clnk}—set of interfaces, related to the component;
CIm = {CImj}—a set of realization of component;
CSe = {CSer}—a set of general system services.
The set of the interfaces components CIn = {CInIn ∪ CInOut) consists of entrance CInIn and the initial (out-

put) CinOut—initial (output) interfaces (realization is in other components) as parameters of interface. That is
the component has entrance interfaces at own realization, and initial interfaces of realization other component.
Each of them has the proper model

(), ,i i i iCIn InNa InFu InSp= (4.2)

where InNai—name of interface, InFui—functionality (aggregate of methods), InSpi—interface specification:
type, constants elements of signature of methods, descriptions and others like that declaration.

The CFa function interface determines the methods and appeal to the specimen of components (search, choice,
elimination and others like that).

Every realization CImj ∈ CIm is a set by model:

(), , ,j j jCIm ImNa ImFu ImSj= (4.3)

where ImNaj—identifier or name realization, ImFuj—functionality, ImSpj—description specification implemen-
tation condition, which dependence from the definite platforms).

A necessary requirement of existence of component is been by condition of his integrity:

()i j i jCIn CInI CIm CIm Pr CIn CIm ∀ ∈ ∃ ∈ ⊆  , (4.4)

where Pr (CIni) means functionality from realization of CIni interface methods.
Axiom 2.2. For the union of two heterogeneous components C1 and C2 it is necessary the terms exist, if

CIni1 ∈ CInO1 and CInk2 ∈ CInI2 such, that S (CIni1) = S (CInk2) & Pr (CIni1) ⊆ CImj2, where S (sign).)
means signature of the proper interface.

Tne Model Component PS
This model PS is identical to the model of program component with that particulte that by its elements there

can be the programs, as independent components.

{ } { } { }1 1, , , , , , , ,n i m kPS PSLm Lm Lm R R R PSLn Ln Ln=    ,

where PSLm{Lm1, ∙∙∙, Lmn}—a set of the component realisation RC, PS; R{Ri, ∙∙∙, Rm}—a set of predicates;
PSLn{Ln1, ∙∙∙, Lnk}—set of interfaces of components and programs.

The operations of the set R can answer the union or RC configuration in some complex structures of the pro-
grams and PS from the set of components interfaces.

Components or RC can change, to be replaced new functionally by similar, equivalent or identical RC with
purpose of receipt of new variants of the programs product (PP) after axioms.

Primary objective PS this communication (assembling) of components, and also change some RC identical or
equivalent in the PS structure. The communication has it арність and can consist of set of data, which enter to
the class of interfaces of the marked class RC. This operation is executed after model of component (3.1) and
interface (3.2), which contain the predicates, which determine a condition of data communication to other com-
ponents.

Between components the relations can exist: inheritance enterharance, ecsempliration, contract, union (com-
munication). All relations are determined on interfaces and predicates after such maintenance.

Relation of ecsemplirationї. CInskij = (IInskij, InFui, ImFuj) describes the definite exsemplar component C,
where: IInskij—unique identifier of exsemplar, InFui—interface functionality Clnl ∈ CIn, ImFuj—element, that

E. M. Lavrischeva

307

secures implementation realization of CImi ∈ CIm.
Relation of contract. Between the C1 and C2 components the relation of contract exists

()2 1 2 121 , ,m i m im
iCont CInO CInI IMap= ,

where CInO1і ∈ CIn1—initial interface of first component, CInI2m ∈ CIn2—entrance interface of second,
12
imIMap —mapping of accordance between methods, which enter in the complement of both interfaces taking

into account signature and passed types of data. If the C2 component has realization of the CInI2m interface, im-
plementation of functionality of the InFu1і interface CInO1і is secured.

Relation of interconnection. If between the C1 and C2 components the relation of the 21m
iCont contract exists,

between their copies CIns1kij = (IIns1kij, InFui, ImFuj) but CIns2pmq = (IIns2pmq, InFum, ImFuq) the relation of
communication in regard to the 21m

iCont —contract, which is described in kind exists

()1 , 2 , 12j mq imBind IIns ki IIns p Cont .

Relation of interoperability. If the PS components located in the distributed environment and they enter to the
set of components, RCs to repository PS, a model of co-operation, definite on the set of interfaces of ready RC
and remote Calls is used [18].

4.3. Model of Component Environment
Definition 3.1. Component environment—it is a definite set of components, which co-operate between it
through interfaces and services, which regulate communication between components and interfaces, which are
saved in proper repositories.

The model of component environment has next expression:

(), , , ,CE CNa InRep ImRep CSe CSeIm= , (4.5)

where CNa = {CNai}—a set of names of components, which enter in the complement of environment; InRep =
{InRepi}—epository interfaces of environment components, ImRep = {ImRepj}—repository realization, CSe =
{CSei}—interface of system services, CSeIm = {CSeImr}—a set of realization for the system services.

Every element from InRep it is two (CIni, CNaj), where CIni—interface of components, CNai—component
name for which the interface exists. Every element with ImRep is like described (CImj, CNai), where CImj—
realization, which is described by expression (3.4), and CNaj—name of component, to which this realization
belongs.

A component environment is considered as a set of servers of PS, where components-containers, the exsem-
pers of which will realize functionality of component are opened out. Container intercommunication with server
is secured through the standardized interfaces (CFa). Interconnection between different RC, which are unfolded
in the different servers, are secured by realization of the CSe interface.

The condition of integrity of the component program consists in existence for each component C1 from the
CE initial interface CInO1і and component C2 with the proper entrance interface CInI2m and contract Cont12im
= (CInO1і, CInI2m, IMap12im), that enters in the complement of the set Cont.

Defenition 3.2. Program system (PS) it is a set RC, functions (objects), interfaces and data. Will give the PS
model with the use of components in such kind:

, , , , , ,PS f s int dМ CSet P PC M M M M= , (4.6)

where CSet = {C1, ∙∙∙, Cn}—a set of components;
P—some predicate from the Ci belonging to PS;
PC—specific predicate, which determines, that Ci satisfies to the definite function from the great number Mf;
Mf = {F1, F2, ∙∙∙, Fr}—a set of functions (methods) domens, also comes forward as a model of PS descrip-

tions;
Ms = {Msin, Msout, Msinout}—a set of services from communication with entrance Msin by initial Msoutt and

server data Msinout of PS;
Mint—model of interfaces of interconnection of objects between itself;
Md—a set of data and metadata of the subject domain PS.
The sets Mf, Ms and Mi are related to the interface data (type of in, out, inout) and points of variants.The

E. M. Lavrischeva

308

condition of integrity of the component program consists in existence for each component C1 with CE, that the
initial interface CInO1і has, component C2 with the proper entrance interface CInI2m and Cont12im contract =
(CInO1і, CInI2m, IMap12im) enters in the complement of the set Cont.

For description of functionality of components in different PL with the proper types of data in them are used.
In case of union, integration of such components the task of transformation of types of data passed by interface
for the relevant converting of types of data according to model of integrated environment makes up one's mind.

Two approaches exist in case of decision of RC integration problem:
1) Application of model of co-operation of pair of polyglot components in PL in environment of the distri-

buted systems by their composition through the module mediator (stub, skeleton) with the use of interlinguas
and intermodal interface [11];

2) RC interface description in the IDL language after the In parameters, Out, Inout for the task of data at the
data exchange between itself [9] [10].

4.4. Transfer Object Model to Component Model
Component program or component application is a set of components that implement the functional and
non-functional requirements and is built according to the rules of component configurations within the compo-
nent model framework.

According to the formal definition of the domain model, it is a source of transformative shift from objects to
components using formal mathematical tools of modeling: models and component interfaces, component-based
applications, the component environment, internal and external component algebra construction [9]. This appa-
ratus is used for formal development of component applications using reusable assets from different libraries
with significant reduction in costs and improvement of the quality of future products [2] [7].

Component model emerges from generalized solutions to the nature of objects. The methods of objects are
converted to the component architecture, structure, properties, and characteristics.

There are two approaches to solving the problem of integration of reusable components:
1) Use of the interaction model through the intermediary module (stub, skeleton) using cross-language and

intermediate interface [1] [2];
2) Description of the reusable component interface in the IDL language with in, out, inout parameters to spe-

cify the data values.
In the theoretical aspect, multilingual component integration is based on formal mappings (presented as a su-

perposition of base mappings).

4.5. Modification Applications from Components
The system is assembled from reusable components by modifying or adding their interfaces and/or implementa-
tions [2]-[5].

The general component algebra includes external, internal and evolutional algebras:

{ } { } { } { }1 2 3 1 2 3, , , , , , , ,CSet CESet CSet CESet CSet CESetϕ ϕ ϕ∑ = = Ω ∪ Ω ∪ Ω , (4.7)

where ϕ1 is the external component algebra, ϕ2 is the internal component algebra, ϕ3 is the evolution component
algebra.

External component algebra ϕ1 = {CSet, CESet, Ω1}, where
CSet is a set of components C, CESet is the environment Е with set of components С and interfaces Int.
Ω1 = {CE1, CE2, CE3, CE4} represents algebra operations:
CE1—operations of component processing;
CE2—initialization operations;
CE3 = CE1 ∪ CE2—assembling operations;
CE4 = CE1\C—operation for extracting component С from its environment;
C2 − CE2 = C2 ⊕ (CE1\C1)—substitution operation.
Internal component algebra: ϕ2 = {CSet, CESet, Ω2},

where CSet = {OldComp, NewComp} is a set of old components OldComp and a set of the new components
NewComp.

The set OldComp = (OldCName, OldInt, CFact, OldImp, CServ) includes interfaces, implementations in the

E. M. Lavrischeva

309

server environment;
The set NewComp = (NewCName, NewInt, CFact, NewImp, CServ) includes interfaces, implementations for

these components;
Ω2 = {addImp, addInt, replInt, replImp}, where addImp denotes the operation of adding an implementation;

addInt is the operation for adding an interface; replImp is the operation of the substitution of a component im-
plementation, replInt is the substitution of a component interface.

Component Evolution Algebra. Reuse is the basis of the components evolution. Methods of transformation
are divided into two types: methods that change the functionality and behavior of the components and methods
that are associated with non-functional changes. The first type includes changes in the interface (changes in in-
terface signatures, adding a new interface) and the implementation (changing algorithms and logic, replacing
and adding realizations) and others. The second type includes changes related to non-functional characteristics
of the application (reliability, efficiency and mobility), languages and execution platforms.

Component evolution algebra is ϕ3 = {CSet, CESet, Ω3}, where Ω3 = {Оrefac, OReing, ORever} is a set of compo-
nent evolution operations; Оrefac is the refactoring operation, OReing is the reengineering operation, ORever is the
reverse engineering operation for a certain component.

Component refactoring model is as follows:

{ }{ }{ }, n
Refac RefасМ О CSet NewComp= = , (4.8)

where ОRefac = {AddImp, AddNImp, ReplImp, AddInt} is the refactoring operation, the pair (CSet, ОRefac) is an
element of the evolution component algebra.

Components of evolution algebras are built on base of the semantics terms and requirements on features re-
factoring implementation

(),RefacO CSet Ref= ,

where CSet = {Cn} is a set of components, and Refac = {AddImp, AddInt, RelImp, AddInt} is a set of refactoring
operations. AddImp adds a new implementation of the existing interface; NewComp = AddImp (OldC, NewCIm,
NewCInO) is the operation of adding a new component, NewCInt = OldCIn ∪ NewCInOs is the operation of
adding output interfaces for a new implementation, NewCImp = OldCIm ∪ {NewCImp} is the operation of add-
ing a new implementation.

Theorem 3.2. Algebra component refactoring ∑refac = (CSet, Refac) is complete and consistent.
Model for component reengineering is as follows:

{ }{ }{ }, n
Reing ReingМ O CSet NewComp= = , (4.9)

where OReing= {rewrite, restruc, adop, conver} are reengineering operations, the pair (CSet, OReing) is an element
of evolution component algebra.

Reengineering algebra components ∑Reing = (CSet, Reing) are used in case of component integrity violation or
changes in their functionality.

Axiom 3.5. For ∃OldInt ∈ OldInI there exists an adding operation of input interfaces and corresponding func-
tionality.

This operation is associative and commutative and observes integrity of the component.
Operation AddImp denotes adding a new implementation of the input interface, which is not included in the

set of component interfaces:

(), ,NewC AdNIm OldC NewImp NewCInt= .

These operations are associative and commutative. The integrity of the component is retained.
Operation ReplIm is the replacement of an existing implementation by a new one without changing the input

interface: NewC = ReplIm (OldC, NewCImp, NewCInt, OldCImp, OldCInt).
Lemma 3.1. Operation of replacing the existing implementation with a new one given terms and semantics,

mentioned above, preserves the integrity of the component.
Operation AddInt is adding a new input interface for an existing implementation.
Lemma 3.2. Operation of adding a new input interface for an existing implementation given terms and se-

mantics, mentioned above, preserves the integrity of the component.

E. M. Lavrischeva

310

Reverse engineering model: { }{ }{ }, n
Rever ReverМ O CSet NewComp= = , (4.10)

where ORever = {restruc, conver}, the pair (CSet, ORеver) is an element of evolution component algebra. ∑Rever =
(CSet, Rever).

In reverse engineering, reengineering operations can be used: Reeng ⊂ Reverse. The feature of the set Reverse
is that its operations are not completely defined, but rather partially. It is because the reverse engineering means
complete alteration of the program system using components.

Overall, the component algebra ∑Reface, ∑Reign, ∑River, as well as models RRefac, МReing and МRever constitute the
formal apparatus of evolution algebra from models, operations and methods for the evolution of the components.
Thus, the result component paradigm is the component on which you can run method of Assembly using the in-
terface.

5. A Common Assembling Model and Methods for All Paradigms
Multilingual RC assembling model. Let CSet = {Ci} a set of components (or object, module) written in mul-
tiple programming languages. During their interaction, components Ci are exchanging data. Each pair of com-
ponents Ci and Cj may be equivalent provided they have the same semantic structure and type, or non-equivalent
otherwise. In the latter case their conversion is required using functions represented by mappings:

: , : , :ij i j ij i j ij i jFN N N FT T T FV V V− > − > − > (5.1)

with FNij establishing correspondence between the names of variables, FTij describing the equivalent mapping of
data types, FVij implementing the necessary conversion of data values.

Problem of variables replacement FNij is solved by ordering variable names (for example, in the configuration
description for the components in question). Mapping between data types FTij is based on the transformation of
data types, each of which is represented by an abstract algebra and algebraic system T = (X, Ω), where X is a set
of values that can make a change of this nature, and Ω is a set of operations over these variables. Reflection FVij
is applied in case types Ti and Tj are not equivalent (e.g., the conversion of an integer value to real) [17] [18].

Conversion from the type Ti = (Xi, Ωi) to the type Tj = (Xj, Ωj) is meant as a conversion, in which the semantic
content of operations from Ωi is equivalent to content of operations from Ωj. These conversions are available for
common data types in most programming languages as described by the ISO/IEC General Data Types (GDT)
standard 11,404 - 2007; it provides mechanisms for generating FDT from GDT [2].

The problem of component interconnection occurs when assembling them into compound structures. To solve
this problem, the set of reflections is built for different types of method calls, in order to establish a correspon-
dence between the set of actual parameters V = {v1, v2, ∙∙∙, vk} of the object and set of formal parameters F =
{f1, f2, ∙∙∙, fl} for components. The problem of constructing data types using algebraic systems for basic data
types used in various PL and isomorphic mapping between algebraic systems are considered following [2] [3].

Implementation of interfaces. Interface is based on transformation of irrelevant type of objects in different
PLs, passed through mechanisms of formal and actual parameters. The data, related to general data types and
fundamental data types can correspond to the request parameters of other objects. They may be incompatible
between themselves because of the differing platforms, number of parameters sent, and varying compiler im-
plementations of data types; therefore, they require the proper transformation [15] [16].

Different programming languages do not have a common implementation of fundamental data types and gen-
eral data types, which are described in ISO/IEC 11,404 standard.

Fundamental types are:
Simple data types (real, integer, char, etc.);
Structural data types (array, record, vector, etc.);
Complex data types (set, table, sequence, etc.).
They are used by all programming languages and are implemented by translators.
General data types are:
Primitive data types (character, integer, real, complex number, etc.);
Aggregate data types (enumeration, pointer, set, bag, sequence, etc.);
Generated data types (which emerge as a product of data type generator from one or several data types);
Reusable components (reuse, artifact, object, component, service, etc.) are described in a programming lan-

guage using one of the standard WSDL, Grid or IDL interfaces. They are saved in the RC repository and interface

E. M. Lavrischeva

311

repository.
For data type transformation from one PL into other, three libraries are developed:
GDT library;
Library for reflection functions GDT ↔ FDT;
Library for functions for data transformation PLі ↔ PLj;
Intermediate libraries for functions and routines for transforming standard data types within a certain envi-

ronment (CTS, CRL, FCL)
Theoretical integration of elements paradigm (module, object, component, service and so on) are based on

the formal reflections, given as superposition of base reflections. Every component has passport data on the
WSDL for interface (Figure 7).

In the given time problem of transformation of data it is offered in standard of general types of ISO/IEC
11404-2007 GDT data. By us GDT generation to FDT and transformation of them by primitive functions of the
special libraries of the VS system machineries are offered.Net (CLR, CTS and CLS and others like that).

He is used for certification of prepared components and saving them in repository of student factory of the
programs http://programsfactory.univ.kiev.ua)

From the formal specification data, by which are exchanged every pair of the Ci and Cj components, can be
equivalent, if they have an identical semantic structure and type, otherwise—not equivalent.

5.1. Theory and Method of Assembling Elements Paradigms in the PL
The method of assembling includes the mathematical theory determinations of communications (from and on
the management) between the different language modules and generation of the interface modules-mediators for
every pair of the modules. Communication of the modules is described by operators of call of the CALL type
with the great number of actual arguments (in, out, input), passed other, linked functionally to the module. These
data is described in the module and interface [3] [5].

The main task of communication of pair of the different language modules consists of decision of task of their
co-operation. The essence of this task consists of construction mutually of univocal correspondence between the
great number of actual arguments of the {v1, v2, ∙∙∙, eve} defiant module and great number of the formal parame-
ters F ={f1, f2, ∙∙∙, fк1} caused module and reflection of their data by the algebraic systems.

Figure 7. Standard of component data definition in WSDL.

http://programsfactory.univ.kiev.ua/

E. M. Lavrischeva

312

The algebraic systems are built in class of primary types of data of the PL (t = b, c, і, r) complex types of data
(t = a, z, u, e) and possible types of their transformation. Transformations between types of array and records are
taken to determination of isomorphism between the main thing great numbers of the proper algebraic systems by
the operations of change of structured level of data—selectors and constructing. For tract of land an operation of
selector is taken to the reflection of set of indexes on the set of values of array cells. Such operation is like de-
termined for record as a reflection between selectors of components and components.

Formal inequivalent type of data conversion in PL is executed by the next procedures.
1) Construction of operations of type of data conversion { }tT Tα= for the set of programming languages
{ } 1,n

L lα α=
= .
2) Construction of reflection of primary types of data for every pair of the connection modules in lα1 and lα2

and application of operations of the S selector and designer C for the reflection of complex data structures in
these languages.

Formal type of data conversion is carried out for every type of tTα

:t t t tT G Xα α α α= Ω

where t—type of data; tXα —the set of values, which can accept the variables of this type; t
αΩ —the set of op-

erations above these types of data.
For the primary and complex types of PL data of the algebraic systems are built:

{ }
{ }

1

2

, , ,

G , , , .

b c i r

a z u e

G G G G

G G G

α α α α

α α α α

∑ =

∑ =
 (5.2)

Every element of class of primary and complex types of data is determined on the set of their values and op-
erations above them:

t t tG Xα α α= Ω , where t = b, c, і, r, a, z, u, e.

The isomorphism reflection of two algebraic systems with the compatible types of data of two different PL
corresponds to the operations of transformation of every t type of data. In class of the systems Σ1 and Σ2 types of
data of conversion t → q for pair of languages of let and lq next properties of reflections are definite:

1) tGα and qGβ —isomorphism (q definite on that great number, that and t);
2) Between tXα and qX β exists isomorphism, for which set t

αΩ and q
βΩ different. If t q

α βΩ = Ω ∪Ω not
emptily, consider isomorphism between t tG Xα α

′ = Ω and q qG Xβ β
′ = Ω . Such transformation is taken to the

first case.
3) The powers of the algebraic systems must be equal t qG Gα β= .
Any reflection 1) 2) saves a linear order, because the algebraic systems (1) are linearly well-organized.
Lemma 1.1. For any isomorphism reflection ϕ between the algebraic systems tGα and qGβ equalities are

executed () () max
min min min

t q t qХ X Х Xα β α βϕ ϕ⋅ ⋅ ⋅= = .
Formal terms of type of data of t conversion = b, c, і, r, a, z, u, e. are determined by the theorems 1 - 5 [10].
Proof of this theorem is banal and is investigation of properties of elements of the set.
Theorem 11. Let’s ϕ—reflection of the algebraic system cGα in the G system c

β . For that that ϕ was iso-
morphism’s, it is necessary and enough, that ϕ isomorph mapping cXα on cX β with saving a linear order.

Necessity. Let’s ϕ—isomorphism. Then in case of reflection all operations of set are saved c c
α βΩ = Ω = Ω ,

including relational operator, which determines the linear order cXα and cX β .
Sufficient. Lets ϕ isomorphism mapping cXα on cX β —with saving a linear order. A relational operator is

executed according to the efficiency principle. Will prove the operation of succ by lemma, in obedience to
which equality is executed ()min min

c cХ Xα βϕ ⋅ ⋅= .
Consistently applying an operation of succ to this equality and taking into account the linear efficiency cXα

and ()()cX х succ хβ < , get, that for any c cx Xα α∈ and min
c cx Xα α

−≠ from equality ()c cX xα βϕ = , where c cx Xβ β∈ ,
equality is executed

()() ()c csucc x succ xα βϕ = . (5.3)

An operation of pred is proved like with the help ()max max
c cX Xα βϕ = .

Theorem 12. Any isomorphism ϕ between the algebraic systems bGα and bGβ is identical isomorphism:

E. M. Lavrischeva

313

()
()

.falseb .falseb

.trueb .trueb.

X X

X X
α β

α β

ϕ

ϕ

=

=
 (5.4)

Proof. In case of the G reflection b
α and bGβ always justly Хα. false b < Хβ. true b. Therefore, taking into account

saving a linear order, possible isomorphism solely is (3).
Theorem 1.3. Any isomorphism between the algebraic systems with the factual number types is identical av-

toisomorphism.
Proof of this theorem is banal and is investigation of properties of elements of number great numbers.
Theorem 1.4. Lets anGα and aGβ —algebraic systems, which answer the types of data of tract of land (а); ϕі

and ϕv—isomorphism reflections of great numbers of indexes (і) and values of elements ()Y x0 of ()Y x0tracts
of land, which save a linear order. Then isomorphism ϕ between the algebraic systems is wholly determined by
the isomorphism reflections:

() ()
:

: .

a a
і

a a
v

X X

At X AT X
α β

α β

ϕ

ϕ

→

→
 (5.5)

Isomorphism ϕ between the algebraic systems anGα and anGβ is determined by the reflections ϕі and ϕv,
which are saved by the linear order and efficiency of array cells.

Theorem 1.5. Lets zGα and zGβ —two algebraic systems, which answer the types of the data “record” or
structure and z zx Xα α∈ , z zx Xβ β∈ . Then, if between sequences of components of records of zxα and zxβ exists
mutually univocal correspondence, isomorphism ϕ between zGα and zGβ is determined by the isomorphism
reflections of the algebraic systems, to which the components of record or structure correspond.

Transformations between tracts of land and records are taken to the primary types of data of their elements
conversion. The transformations between the actual types and other number values suppose the use of empiric
cases, because isomorphism of the main thing great numbers of these algebraic systems is absent.

In case of primary and structural type’s conversion operations of the S selector and constructing are used C
for the change of level of structural of data. An operation of the S selector for tract of land is determined as li-
mitation of reflection:

: on , :M І AT І E M І AT′→ ⊂ → (5.6)

where E—the І' ⊂ І. then M|{k} k corresponds—array cell at І' = {k}. This operation is like determined and for
the M record|{Svm}, where M—reflection between selectors of components and components, and Svm deter-
mines the proper component of record.

The operation of constructing from tract of land consists of formal adduction in order of components and de-
termination of accordance between the set of indexes and set of array cells. This operation is like determined for
record.

Thus, the set of the operations P, S and C determines elementary rules for constructing complex types of data
more from simple for the interactive modules on different to PL.

5.2. Use Assembly Method
A method of assembling based on the formal transformation of the different language modules was used during
realization in the systems:
• APROP system was based on aggregate of the modules of Bank modules [1] [2];
• complex Program-Program (1987-1988) on the project KP NTP SEV-87 “INTERFACE-SEV” [3];
• APFORS system for automation of application packages creation on project of GKNT USSR (1988-1991)

[4];
• Consulting model for information of users about the prepared modules of repeated use from Bank of the

modules and selection of them for application in the practical purposes (1990).
An interface vehicle is used in paradigm of the programming.

5.3. Development of a Method of Interaction
Definition 4.1. Interoperability is the ability of components or systems to interact with each other and exchange

E. M. Lavrischeva

314

common data.
Formally, interoperability model is understood as the representation of relationship parameters between dif-

ferent elements of software or informational systems. This model reflects the relationship system and the de-
signing process for software product development. The relationships may be described with mathematical means,
such as abstract algebras, standard OSI, interoperability theory and so on [9]-[19].

Interaction model is designed to share information between different components and systems in different en-
vironments. Interaction means links relations between two or more component objects. In the foundation of this
interaction, there are messages sent by processes between applications, systems and environments. In the com-
munications, the interface is defined in IDL or other language (APL, SIDL, etc.). In general, the interface is a
mechanism for interoperability of applications for modern heterogeneous environments that support the devel-
opment of applications and systems [14]-[16].

The interaction model describes relationship between the components and the application through the trans-
mitted parameters. The model Мinter has the following representation:

{ }, ,inter pro sys envМ М М М= , (5.7)

where Мpro = {C, Int, Pr} is the application model, C is an object component, Int is an interface, Pr is the data
transfer protocol; Мsys = {PS, Int, Pr} is the system model; Мenv = {Envir, Int, Pr} is the environment model,
where Int, Pr contain set of external interfaces and calls for data transfer between applications over network.

The basic parameters of the interaction model Мinter are application, interface and message.
Interative cooperation models are implemented in the ITC. Examples of pairs of systems include Visual Stu-

dio ↔ Eclipse, CORBA ↔ VS.Net, and IBM VSphere ↔ Eclipse. Their cooperation is secured by the specific
mechanisms in the modern system environments [17]-[19].

Implementation of the Interaction model
The applied models for system interconnection via Eclipse IDE have the following implementation in the ITC

[13] [14]:
Visual Studio.NET, Eclipse implement interaction of software systems in C# and Java programming lan-

guages according to the description of their interfaces and stubs/skeletons, which help restructure transmitted
data.

CORBA, Java, MS.Net support connections between heterogeneous programs in the Eclipse repository and
processing the transmitted data.

IBM VSphere, Eclipse support merging software systems built from heterogeneous components and two-way
data transmission. The basic parameters for the interoperability model Мinter are program, interface and message
or protocol.

6. Technologies of Assembling Elements of Paradigms
Methodology of planning and realization by the AS method of the assembling programing from the prepared
elements of paradigms by CASE-instruments (translators with PL, testing, transformation, generators and etc.),
and also instrumental facilities (Eclipse, Protege, VS.Net, Corba, Java and т. п) are realized in ITC [6]-[17].

In ITC a prepared resource of paradigms is been by RC (reuse, assets, artifacts, services and etc.). They ref-
lection some functions of the functional objects. Each RC is specified by the proper standards by specification of
realized functional elements in WSDL (Figure 7) and interface in the languages IDL, API, SDIL and so on. It
gives possibility to put together RC on the single basis, general for all types of heterogeneous resources [18].

Principles of development of the systems from the prepared program and informative by ready resources
(components, services, interfaces, data, artifacts and etc.) such:
• composition of the complex systems of the distributed AS type from components, interfaces and services

with their properties, descriptions and machineries of aggregation in the more complex structures and rules
of co-operation in the integrated environments;

• component engineering (CBSE), as distributed AS creation from the prepared “details” activity, based on the
really existent positions of engineering products, namely, is standard the Cycle Life requirements, exploita-
tion and RC or SPF elimination with the use of the systems of classification and the RC cataloguing, stan-
dardization facilities, standardization of RC description and integration of them in AS and SPF;

• Interoperability RC and the distributed AS elements, which is based on interfaces and rules of co-operation

E. M. Lavrischeva

315

of components between itself for providing integration and functioning in the different environments;
Variant as power of RC and component AS to the changes by elimination of some of functional, uncompleted

either additions of new functional RC in the configuration structure SPF or distributed AS and etc.
The technology of the PS planning from RC includes (Figure 8):

• the PS planning with the use of the models MDD, MDA and processes of standard CL;
• Ontological planning of domains with the task of model of descriptions and system architecture from the

prepared components;
• Specification of heterogeneous program resources in ЯП, their realization, verification of their rightness by

verification and testing a component in the tasks of passport of prepared element;
• Selection functionally prepared components in repository;
• Assembling heterogeneous components of repeated use RC and passed between them data, irrelevant on type,

format, size and so on. Conversion;
• From some artifacts of source code and adaptation of them under the concrete purposes of before created

program decision or program;
• Description of specific about by the DSL language facilities with the use of DSL Tools’ VS.Net for the re-

ceipt of output code;
• RC and PS testing with the necessary data capture for the PS quality estimation;
• Engineering quality of the program systems, including an expert and metrical analysis of indexes of quality

and achievement of product quality indexes;
• Saving results of planning in repository of components;
• RC documenting, new functional components and so on.

Elements of paradigms of programming, necessary at planning domains are realized in the ITC complex, PS
from RC. In him found the reflection fundamental positions of led paradigms of programming, including; theory

Figure 8. Keywords in the main page of the web site ITC.

E. M. Lavrischeva

316

of co-operation and the PS variant; theory of design and adaptation of projected AS in other environments,
technology of the ITC making on the 10 lines from RC; Cycle Life 12207 standard and ISO/IEC 3226 quality
estimation processes, ontology of calculable geometry; line of teaching to the modern languages C#, Java and
CASE-instruments—Protégé, Eclipse, VS.Net, Java and so on.

To the technological lines it is possible to apply through web-site (http://7dragons.ru/ru). For teaching to the
object the “Program engineering” it is possible to apply to e-textbook author on the experimental factory of the
programs http://programsfactory.univ.kiev.ua) in Ukrainian and to web-site www.intuit.ru in Russian.

7. Conclusion
The theory and paradigms assembling of producing PS from reusable software resources was developed over
many years and entered the practice of reuses in many countries. In a single conceptual framework, this tech-
nology combines theoretical object simulation and OM with object-functions and interfaces. At the same time, a
large number of software reusable resources have been accumulated along with the development of object and
components by interfaces communication. This new approach allows constructing compound applications by
using various kinds of systems, functional components and services. Some aspects of the theory focused on the
interoperability of software resources and configuring these resources in PS. Considered programming paradigm
taught in the KNY and the MIPT, as well as the students developed individual thesis on this topic.

References
[1] Lavrischeva, E. and Grischenko, V. (1982) The Connection of Multi-Language Modules in OS ES, M.: 137 p.
[2] Lavrischeva, E. and Grischenko, V. (1991) Assembly Programming. K: Nauk.dumka, 213 c.
[3] Lavrischeva, E. and Grischenko, V. (2009) Assembly Programming. Basics of Software Industry. 2nd Edition,

Naukova Dumka, Kiev, 371 p. (In Russian) http://www.twirpx.com
[4] Lavrischeva, E. (2008) Software Engineering (in Ukrainian). Akademperiodika, Kiev, 319 p.
[5] Lavrischeva, E., Koval, G., Babenko, L., Slabospitska, O. and Ignatenko, P. (2011) New Theoretical Foundations of

Production Methods of Software Systems in Generative Programming Context. IK-2011, Software Institute NANY,
277 p. http://www.nbuv.gov.ua/

[6] Lavrischeva, E. (2008) Formation and Development of the Modular-Component Software Engineering in Ukraine.
Akademperiodika, Kiev, 31 p. (In Russian)

[7] Lavrischeva, Е. and Petruchin, V. (2007) Methods and Means of Software Engineering. 415 p. (In Russian)
http://www.intuit.ru/ and http://www.twirpx.com/

[8] Lavrischeva, E. (2006) Methods Programming. Theory, Engineering, Practice. Naukova Dumka, Kiev, 451 p. (in
Russian)

[9] Lavrischeva, E.M. (2014) Software Engineering Computer Systems. Paradigms, Technologies, CASE-Tools. Naukova
Dumka, Kiev, 284 p. (In Russian)

[10] Lavrischeva, E., Stenyashin, A. and Kolesnyk, A. (2014) Object-Component Development of Application and Systems.
Theory and Practice. Journal of Software Engineering and Applications, 7, 756-769.
http://dx.doi.org/10.4236/jsea.2014.79070

[11] Lavrischeva, E. and Ostrovski, A. (2013) New Theoretical Aspects of Software Engineering for Development Applica-
tions and E-Learning. Journal of Software Engineering and Applications, 6, 34-40.
http://dx.doi.org/10.4236/jsea.2013.69A004

[12] Radetskyi, I. (2011) One of Approaches to Maintenance Interconnection Environments Visual Studio and Eclipse.
Problems in Programming, 2, 45-52. (In Ukrainian)

[13] Lavrischeva, E., Dzubenko, A. and Aronov, A. (2013) Conception of Programs Factory for Representation and
E-Learning Disciplines of Software Engineering. 9th International Conference ICTERI, ICT in Education, Research
and Industrial Applications, Integration, Harmonization and Knowledge Transfer, Ukraine, 17-21 June.
http://ceur-ws.org/Vol-1000/

[14] Aronov, A. and Dzubenko, A. (2011) Approach to Development of the Students’ Program Factory. Problems in
Programming, 3, 42-49. (In Ukrainian) http://www.isofts.kiev.ua/

[15] Grischenko, V. (2007) Object-Component Designing Method for Software Systems. Problems in Programming, 2,
113-125. Akademperiodika, Kiev. (In Ukrainian)

http://7dragons.ru/ru
http://programsfactory.univ.kiev.ua/
http://www.intuit.ru/
http://www.twirpx.com/
http://www.nbuv.gov.ua/
http://www.intuit.ru/
http://www.twirpx.com/
http://dx.doi.org/10.4236/jsea.2014.79070
http://dx.doi.org/10.4236/jsea.2013.69A004
http://ceur-ws.org/Vol-1000/
http://www.isofts.kiev.ua/

E. M. Lavrischeva

317

[16] Lavrischeva, K. (2010) Formal Fundamentals of Component Interoperability in Programming. Cybernetics and Sys-
tems Analysis, 46, 639-652. Springer, Heidelberg. http://dx.doi.org/10.1007/s10559-010-9240-z

[17] Lavrischeva, E., Zinkovich, V., Kolesnik, A., et al. (2012) Instrumental and Technological Complex for Development
and Learning Design Patterns of Software Systems. State Intellectual Property Service of Ukraine, Copyright Registra-
tion Certificate No. 45292, 103 p. (In Ukrainian)

[18] Lavrischeva, K.M. (2012) Component Programming. Theory and Practice. Problems in Programming, 4, 3-12. (In
Ukrainian) www.isofts.kiev.ua

[19] Lavrischeva, K.M. (2011) Interaction of Programs, Systems and Operating Environments. Problems Programming, No.
3, 11-23.

Submit your manuscript at: http://papersubmission.scirp.org/

http://dx.doi.org/10.1007/s10559-010-9240-z
http://www.isofts.kiev.ua/
http://papersubmission.scirp.org/

	Assembling Paradigms of Programming in Software Engeneering
	Abstract
	Keywords
	1. Introduction
	2. Paradigm of the Modular Programming
	2.1. Interface Communication of the Modules in PL
	2.2. APROP System Functions

	3. Paradigm of Object Programming
	3.1. Levels of Logical and Mathematical Modeling of Domain
	3.2. Object Analysis of Domains
	3.3. Description of Interface Objects

	4. Paradigm of the Component Programming
	4.1. Basic Concepts of Component Programming
	4.2. The Model Interface and Component
	4.3. Model of Component Environment
	4.4. Transfer Object Model to Component Model
	4.5. Modification Applications from Components

	5. A Common Assembling Model and Methods for All Paradigms
	5.1. Theory and Method of Assembling Elements Paradigms in the PL
	5.2. Use Assembly Method
	5.3. Development of a Method of Interaction

	6. Technologies of Assembling Elements of Paradigms
	7. Conclusion
	References

