
Journal of Software Engineering and Applications, 2018, 11, 408-434
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.118025 Aug. 30, 2018 408 Journal of Software Engineering and Applications

Scientific Basis of System Programming

E. M. Lavrischeva

ISP RAS, Moscow, Russia

Abstract
Theoretical foundations of programming systems from modules, objects,
components, services are given. Identified relevant theory of programming
proposed by the author with the participation of students and postgraduates:
graph modular programming theory with graph representation as an adja-
cency matrix for mathematical achievability of graph vertices; theory of ge-
nerating programming and theory of software factories; theory of graph ob-
ject and component modeling (OCM) by means of logic and alge-
bra-mathematical theory of determining individual elements of complex sys-
tems; theory of system programming based on ontological and ser-
vice-component models (SOA, SCA) with security and quality systems. The
Internet Smart and Nanotechnology are given for perspective transition of
computer technology to nanotechnology.

Keywords
Science, Concepts, Formalism of Modules, Interface, Assembly Method,
Object, Component, Life Cycle, Logic-Mathematical Theory, Model OM, FM,
Configuration, Verification, Testing, Reliability, Quality Products

1. Introduction

The author of the article is a mathematician by education and for more than 50
years has been engaged in the development of the idea of A. P. Ershov (1972) in
the future to develop the theory of programming as a mathematical science [1].
Since the advent of different programming languages (LP) to describe different
kinds of programs for solving mathematical, biological, economic and other
problems with the help of electronic computers, many scientists began to devel-
op separate areas of programming theory. The theory includes formal descrip-
tions of programs, their translation, debugging, testing and quality assessment.
In connection with the application of international LP (Algol, PL/1, Fortran,

How to cite this paper: Lavrischeva, E.M.
(2018) Scientific Basis of System Program-
ming. Journal of Software Engineering and
Applications, 11, 408-434.
https://doi.org/10.4236/jsea.2018.118025

Received: July 9, 2018
Accepted: August 27, 2018
Published: August 30, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.118025
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.118025
http://creativecommons.org/licenses/by/4.0/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 409 Journal of Software Engineering and Applications

Cobol, Prolog, Smalltalk, Module, etc.) for describing different types of modules
that implement the functional tasks of the computer of type IBM-360. In 1975,
the idea of an Assembly of diverse modules, like assembling a car from finished
parts in the factories of Ford. Some of the theories programming are discussed
below.

The author has formulated the method of Assembly of modules based on in-
terfaces (intermodule and interlanguage) and was published in articles [2] [3]
[4]. In the method of the Assembly is implemented the theory and practice of
transforming non-equivalent types of data transmitted via the interface using the
libraries of the 64 functions presented in the book [5]. System APROP was used
to create software systems in air defense systems and VMF. The Assembly pro-
gramming of systems from ready-made reuse and modules is created. It is pro-
tected in the doctoral dissertation [6] [7] [8]. The method of Assembly is also
presented in the framework of generating programming K. Chernetsky and
formulated models of transformation and configuration of applications by
means of the language DSL (Domain Specific Language) and ADI (Architecture
Description Language), etc. [9] [10] [11] [12].

The emergence of the OOP by G. Buch and UML has served as the impetus
for the creation of the theory of object graph object and component modeling of
complex systems based on logic and algebra-the mathematical theory of the de-
scription of the individual elements of complex systems and ensuring their va-
riability according to the model of the basic characteristics of MF (Feature Mod-
el) as the mathematic apparat of the description of programs and systems [13]
[14]. The development of the object paradigm is the theory of component pro-
gramming and reusability Implementation and refinement of it spent Grish-
chenko V. N. in the system of “Informatization, NASU” and presented in his
doctoral dissertation [15]. This theory is presented in the book [16] describes the
component method and examples of building different component systems to
ensure the reliability and quality of manufacturing such systems.

Due to the wide development of e-science and the spread of the Semantic Web
and Web service tools, the ontological description of the domain of the life cycle
of ISO/IEC 12207 standard is given and a formalized description of service and
aspect programming from ready resources accumulated in repositories is given.
Taking into account the theory of variability of systems from services and as-
pects, testing, configuring them into the system and evaluating the quality of the
output files of the system [17] [18] [19] are proposed.

The author investigated the mechanisms of development of Internet Smart
and Nanotechnology and formulated the General provisions of the development
of smart computers and the concept of the transition of computer technology to
nanotechnology [24].

2. The Fundamental Basis of System Programming
2.1. Basic Elements

The program is the object of development, which is run on the computer. Ready

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 410 Journal of Software Engineering and Applications

program is a software product (PS) [9] [20]. Object design: module, program,
system, family, etc.

A module is considered a software element that converts the plurality of
source data X in a variety Y of the output method of display system. Modules are
a pair S = (T, χ), where T—model of the system; χ is the characteristic function,
defined on the set of vertices X of a graph of modules G.

The interface is the handler objects with each other to exchange data between
them.

The development method is a method or systematic approach to achieve the
goals which are set before creating the object of development. The method of
modular programming is the decomposition of the problem into separate func-
tions, each of which is a module and object, component, aspect, service and oth-
er methods.

Life cycle model PS—this is cascade, spiral, iterative, etc. On the basis of these
models developed the first version of the standard ISO/IEC Life Cycle 1996, and
then 2007. This standard give has a set of software development processes.

The technological process is an interrelated sequence of operations performed
during the development of the object. The process is designed to transfer object
from one state to another until final product [10].

Line technology (LT) and grocery PL specifies a set of development processes
of some object, functions that convert to the ready program product (PP).

2.2. The Method of Programming Modular

The term module appeared in connection with the transition to the ES (IBM)
computer (1976), which were implemented programming systems with lan-
guages ALGOL, FORNAN, PL/1, COBOL, and ASSEMBLER. Each language was
independent of each other in form and content. Program in any of these lan-
guages got the name of the module. For the organization of communication of
multilingual modules, an interface was formulated, which described the general
data and data transfer operators from one module to another [9]. The method of
modular programming was developed, which provides the formation of a mod-
ular graph structure, by which the Assembly of individual program elements
from modules and interfaces was сarrived out.

The module is the basic software element with properties [16]:
-the logical completeness of function;
-the independence of one module from the other;
-replacement of individual module without disturbing the structure of the

program;
-call other modules and return data to the call module.
The module converts the multiple input data X in a variety of output Y and is

given as a mapping.
M: X→Y.
Communication between modules:
-relationship management (SR = K1 + K2);

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 411 Journal of Software Engineering and Applications

-connection according.
Modular graph structure G = (X, Y), where
X is a set of vertices, and G is a finite subset of the direct product X×X×Z on

the set of arcs of the graph.
A modular structure is a pair S = (T, χ), where
T—the model of the modular structure;
χ—the characteristic function defined on the set of vertices X of a graph of

modules graph G.
The value of the function χ is defined as:
χ (x) = 1 if the module with vertex x ∈X included in the PS;
χ (x) = 0 if module with top x ∈X is not included in the PS and it’s not refe-

renced from other modules.
Definition 1. Two models of modular structures T1 = (Gl, Y1, F1) and T2 =

(G2, Y2, F2) are identical, if G1 = G2, Y1 = Y2, F1 = F2. Model T1 is isomorphic to
T2, if G1 = G2 between the sets Y1 and Y2, there exists an isomorphism φ, and for
any Х ∈ X, F2(x) = φ (f1(x)).

Definition 2. Two modular structures S1 = (T1, χ1) and S2 = (T2, χ2) are iden-
tical if T1 = T2, χ1 = χ2 and modular structures S1 and S2 are isomorphic if T1 is
isomorphic to T2 and χ1 = χ2.

The module is described in PL and has a description section of the passport,
which specifies external and internal parameters. To pass parameters to another
module, use the Call (...), RMI (…) and another. The parameters may be con-
verted to the form of the calling module and back in case of differences of their
types. It was developed the library of primitive functions convert dissimilar data
types PL [16]. This theory is suitable to the component.

2.3. Assembly Method

Assembly method based on the interface that connects the modules and data
exchange. Interface first implemented in the system APROP (1975-1982) [9]. It
can be inter-module, Interlingua and technological (1987) and became a funda-
mental concept in technologies programming SE [11] [20].

The intermodule interface is the contact modules to transmit and receive data
between them. Interlingua interface is a library function interface to transform
non-equivalent data types of the PL for IBM OS-360. Developed interface library
(64 functions) which converts different data types (TD) in PL (ALGOL, COBOL,
FORTRAN, PL/1, etc.). The system was handed over in 52 organizations of the
USSR for Assembly of multi language modules to the applications in OS ES,
IBM-360 (1982).

The formal conversion of objects TD Assembly is performed using algebraic
systems Σ1, Σ2 for each TD PL tTα : ,t t tG Xα α α= Ω ,

where t
αΩ —set of operations on the simple t (t = <b-boolean, c-character,

i-integer, r-real> and complex t = <a-array, p-pointer, u-union, s-sequence> TD
modern PL built classes of algebraic systems:

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 412 Journal of Software Engineering and Applications

{ }1 , , , ,b c i rG G Gα α α αΣ = Ω

{ }2 , , , .a p u sG G G Gα α α αΣ =

Systems Σ1 and Σ2 the transformation TD t→q for the pair of languages Lt and
Lq have the properties:

1) tGα and qGβ —isomorphic (to q and t defined on the same set);
2) tXα and qX β are isomorphic if t

αΩ and q
βΩ are different. If

t q
α βΩ = Ω ∩Ω is not empty, then there is a isomorphism between ,t tG Xα α

′ = Ω
и ,q qG Xβ β

′ = Ω .
3) Between the sets tXα and qX β may not be isomorphic matching, then

build such a mapping between tXα and qX β that it is isomorphic.
If data types are different, for example, t—string, and type q is real, then there

is no isomorphic correspondence between sets tXα и qX β . The maps preserve
the linear order of the elements based on the linear order of the elements of the
algebraic systems of these classes.

Theorem 1. Let ϕ—displays the algebraic system cGα to cGβ . In order to ϕ
be an isomorphism, it is necessary and sufficient to ϕ isomorphic reflected cXα
and cX β , preserving linear order.

Assembly method and the library interface are also implemented in the com-
plex PROMETEY by V. V. Lipaev and became the basis for the creation of qual-
ity software for different computers [11] [16]. As results, the Assembly pro-
gramming was formed, which allows integrating heterogeneous software re-
sources like reuses into complex systems by the method of configuration Assem-
bly. For this method and participation in the creation of various complex pro-
grams, the author was awarded the prize of the Soviet of Ministers of the USSR
(1985).

The Assembly was based on the theory of conversion of the fundamental TD
(FDT) and later the common types of GDT. The FDT theory arose in the 70-ies
of the last century in the works of Dijkstra, Hoare, Wirth, Ershov, Agafonov etc.
Theory of general TD is defined in ISO/IEC 11,404-2006 (General Data Types),
which allows the generation of the GDT↔FDT [21].

In 1990-1996 appeared languages of the description of interfaces—MIL (Mod-
el Interface Language), API (Application Program Interface) and IDL (Interface
Definition Language). They are used in the configuration assemblies of dissimi-
lar programs in modern PL (C, C++, Basic, Java, Python, etc.). Эта система
была встроена в ОС ЕС (IBM-360). Later, there were development operators:
make (BSD, GNU, Microsoft, Intel, UNIX and others), building in Grid tech-
nology, integration and so on. Operator make allows to collection executable
files from software resources of libraries in the class of operating systems and
programming systems. GNU Build System and Build Grid provide the Assembly
of any software resources in different PL. The higher level of communication
and interaction of program elements is provided by the standards OSI (1992)
and WSDL (W3C.org).

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 413 Journal of Software Engineering and Applications

Processing Data Types of PL
The data type TD is used in the description of PL programs (Algal, Prolog, PL/1,
Fortran, Ada, Pascal, etc.). Axiomatic TD destroy developed by E. Dijkstra, N.
Wirth, W. Tursky, P. Naur, A. Zamulin, N. Agafonov and others in the 1970. So
on, which operate programs in PL include [9] [16] [21]:

-FDT—Fundamental Data Type implemented using primitive functions
transform TD one LP to another and displayed in IBM-360 (1982);

-GDT—General Data Types (ISO/IEC 11404 GDT) for modern object-type PL
(Basic, Java, Python, etc.);

-Big Data for Cloud Computing.
FDT and GDT DT—simple and complex.
Simple TD—integer (i), valid—real (r), boolean (b) and characterr (c) have a

common form:
type ()1 2, , , nT X х х х= ,

where T—the type name, ()1 2, , , nX х х х names of values from the set of
values of type T of X.

Operations (<, ≤, >, ≥, =, ≠) or (≤) determine the linear order of the elements
of the set X. Operations on binary types include (true, false) and unary opera-
tions pred and succ, which define the previous and subsequent elements of the
set X.

Complex TD—arrays, records, sets, union, etc. The array M shows the set of
indices in the set of values.

M: I→Y and has the form of type Та = аrrаy Т(I) of ()T Y задается в виде:
Gα = <Хα, Ωα>,

() () () (){
() () ()()} { }

1 2 1 2

1 2

&

& , .

X x x X x X I x I x

Y x Y x Y X

α α α

α α

= ∀ ∈ ∀ ∈ ⇒ =

∪ ⊂ Ω = ≤

In GDT TD uses simple and complex TD, based on the concept of cardinality
and can be finite, accurate, infinite and approximate. A Datatype generator is an
operation on one or more TD to create a new TD as a set of criteria for the cha-
racteristics of the TD using; procedures and a set of operations in the final value
space to define a new TD. Aggregate datatype is a generated TD, each value of
which includes the names of the TD elements from the aggregate TD value space.

Operations of TD generation are carried out by means of operations with:
1) Zero arity to generate the values of this TD;
2) Unary operation (arity 1), which turns the TD value into a new value of the

same TD or boolean value;
3) Arity 2 that transform the pair of values of the TD in TD of the same value

or a boolean.
4) N-Arity, which converts an ordered n-group and TD values to a parametric

type, or aggregate.
In the value space there is an order relation (order), which is given by the sign

(≤) and satisfies the rules:

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 414 Journal of Software Engineering and Applications

1) For each pair of values (a, b) from the value space the following condition is
met a ≤ b or b ≤ a or both;

2) For any two values (a, b), if a ≤ b and b ≤ a, then a = b;
3) For any three values (a, b, c), if a ≤ b and b ≤ c, then a ≤ c.
The GDT <–> FDT conversion system are based on these operations, imple-

mented in [20] and displayed in Net. It presents value type and reference type.
Types-values are static types in STS (Common Types Systems); their values can
take up memory from 8 to 128 bytes. Reference types use pointers to the objects
they type, as well as mechanisms for storing in class library FCl (Framework
Class Library) and releasing memory. Reference types include: object type, in-
terface type, pointer type, etc. In 1990 IК NASU is commissioned by the State
USSR the processor for Fortran, Pl/1 and Assembler for ES OS that handles these
languages based on the language syntax setting in tabular form. The build mod-
ule calls other components of the translator to the programs of machine view (H.
M. Mishchenko. “About Assembly programming of language processors”—

Intellectualization of information and computing systems—K: IK NASU, 1990).

3. Disciplines of SE

In connection with the 40-year anniversary SE (2008) the author proposed a
classification of scientific disciplines in SE [16] [22]. Proposed discipline used in
the program Сuricula-13. Let us consider briefly their scientific basic.

Scientific discipline SE includes classic Sciences (theory of algorithms, set
theory, proof theory, mathematical logic, discrete mathematics); theory of pro-
gramming of the theory of abstract data, management science, etc. This discip-
line defines the basic concepts the objects and the formalism of the description
of the system components and data description [23] etc.

Engineering discipline SE includes methods of using technology rules and
procedures, processes, life cycle, methods of measuring and assessing the quality
of development PP. This discipline defines the set of engineering methods, tech-
niques, tools and standards focused on the production of the target PP. Basic
concepts of engineering SE include: core knowledge SWEBOK; the basic process
SE; infrastructure environment.

Discipline management SE is based on the theory of management of projects
and the IEEE Std.1490 PMBOK (Project Management Body of Knowledge); me-
thod CRM (Critical Path Method) for the graphic representation of works, oper-
ations and their execution time; method of network planning PERT (Program
Evaluation and Review Technique), etc. In the PMBOK defined processes life-
cycle of the project and the main areas of knowledge and processes of planning,
monitoring, management and completion.

Economic discipline SE. This discipline provides for the calculation of the dif-
ferent parties activities of developers in the implementation of the project and
identify the costs, time and economic indicators according to the requirements
of PP. Used methods: predicting the size of PP (FPA—Function Points Analyses,

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 415 Journal of Software Engineering and Applications

Feature Points, Mark II Function Points, 3D Function Points, etc.); the evalua-
tion effort for the development of PP by using models COCOMO and systems
(Angel, Slim, Seer-SEM, etc.), as well as the quality of PP.

Production discipline SE determines the production of PP and makes a profit.
In the area of SE mass produced products created by the famous firms Micro-
soft, IBM, Intel, and the factory programs, as well as the results of outsourcing
(upgrading a legacy inherited) bring on large profits. The production of PP is
based on the technological processes of manufacture of certain product types
using the theory of the design and usage of tool environments [16].

4. Programming Paradigm

Paradigm (from Greek παράδειγμα, “example, model, pattern”)—a set of fun-
damental scientific attitudes, the concepts and terms adopted and shared by the
scientific community. Provider continuity of development of science and scien-
tific creativity Thomas Kuhn called paradigms established systems of scientific
views, in which research and development [25] [26].

In SE emerged programming paradigm. It is a set of ideas, concepts, theories
and methods that determine the style of formal presentation of computer pro-
grams. This term R. M. Floyd defined in his work “The Paradigms of Program-
ming” (Communications of the ACM. 1969. Vol. 22 (8) pp. 455-460), E. Dijkstra
in the book “Discipline of programming” (M.: MIR, 1976) and D. Gris in the
book “Science of programming”, K. Holsted “Science programs”, 1984. They de-
fined it as a method of conceptualization and formal definition of programs and
systems. Some parts of the theory are implemented in the framework of applied
(functional, logical, automatic, etc.), theoretical (VDM, OOP, Z, B, OCM,
FODA, etc.), system (parallel, distributed, etc.) and commercial (Agile, SCRUM,
EX, etc.) programming [9] [16].

4.1. Scientific Foundations of Programming Paradigms

To introduce several programming paradigms developed formal apparatus in
theoretical and applied design of individual software resources for building
(configuration) in the software system. In [16] [25] describes the theoretical
foundations of the paradigm of object, component, service, aspect and generat-
ing programming.

Object design theory is built with the use of base notions of formal specifica-
tion, set theory and class theory of G. Booch, G. Frege triangle and the object
model (OM) CORBA, utilizing the following principles:

-all essences of the domain are objects;
-each object is a unique element;
-all objects are determined at a certain abstraction level and are ordered ac-

cording to their relations;
-object interoperability with the interfaces.
An object is singled out using object analysis with mathematical terms for de-

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 416 Journal of Software Engineering and Applications

scription and clarification of object methods in the OOP being created.
According to G. Booch, “object-oriented approach = objects + inheritance,

polymorphism, encapsulation”; OM also encompasses object classes and their
relations (aggregation, associations, specializations, instantiation so on), as well
as their behavior.

Object is a named part of actual reality with a certain abstraction level; a no-
tion structure according to Frege triangle (denotation, sign, and concept).

Each object Оi belongs to the set of objects ()1 2, , , nO O O O= ,
where Oi = Oi (Namei, Deni, Coni), Namei is a sign, Deni is a denotation, Coni

is an object concept, ()1 2, , ,i i i isCon P P P= is determined upon a set of predi-
cates Pil [25].

Axiom 1. The subject domain designed with objects is an object itself.
Axiom 2. The subject domain being designed may be an object within anoth-

er domain.
When designing the domain, each object gets at least one property or descrip-

tion, semantics allowing its unique authentication among the set of all objects
and to the set of predicates of properties and relations between objects.

Object property is defined on the set of objects belonging to the domain with
the unary predicate with return value depending on its external and internal
properties. Description is an aggregate of properties (in form of predicates) sub-
jected to the condition of acceptance of truth value by no more than one predi-
cate from these descriptions. Relation is a binary predicate that returns truth on
each pair of objects in the set. The basic types of mutual relations are as fol-
lows:

1) set—set;
2) element of a set—element of a set;
3) element of a set—set;
4) set—element of a set.
These relation types correspond to operations: generalization, specialization,

aggregation, association, classification and instantiation. Types relations 3), 4)
are subsumption, relation (IS-A) and part-whole relation (PART-OF), respec-
tively.

The implementation of the object paradigm is described below. Other para-
digms are discussed in [11] [12]. In this paradigm elements of software resources
are described in PL, and their interfaces in standard WSDL. The proposed for-
mal apparatus of the object-component method (COM) are programming para-
digm. It formalizes the resource Assembly into complex programs and systems
using the method of Assembly programming. The OCM provides a mechanism
logic-mathematic modeling of graph model object (OM) and FM (Model Fea-
ture). On these models made configuration resources into system or family sys-
tems.

4.2. The Paradigm of Object Programming

Object Model (OM) of the subject area (SD) is modeling on four levels [16] [25]:

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 417 Journal of Software Engineering and Applications

– Generalizing for determining ОМ SD base notions without considering of
their essence and properties;

– Structuring for ordering objects in the OM taking into account relationships
between them;

– Characterization for forming concepts of objects on the base of them proper-
ties and descriptions;

– Behavioral level for descriptions of conduct depending on events (such as
time).

In accordance with the generalizing level an object is considered a mathe-
matical notion, as a class from the point of view of von Neumann-Betrays-
Gödel set theory: ()0 1 2, , , , nO О O O O= , with О0 being an object in the subject
domain. A set of base functions is formed at this level, related to decomposition
or composition changes to object denotations and concepts, performed by in-
creasing or decreasing object quantity, as well as expansion or narrowing object
concepts. These changes are subjected to the set rules and terms that ensure cor-
rectness of function implementation.

For the set O the object relations hold:

() ()0 0 ii i O O∀ > ⇒ ∈ , (1)

The structural level defines such notions as class, class instance, abstract class,
etc. The set of objects is ordered and each of objects can be presented as a set or
an element of a certain set.

That is, expression (1) is transformed into

() ()0 0 i ji j i j O O∀ > ∃ ≥ ≠ ∧ ∈ , (2)

The objects are located at the vertices of the graph. The main vertex corres-
ponds to the name of the set O. Аt the next level there are members of this set.

In accordance with the characteristic level, for each of objects a correspond-
ing concept is formed. If ()1 2, , , nО О О О′ = is a set of objects SD and

()1 2, , , rP P P P′ = is a set of unary predicates related to properties of SD ob-
jects. Concept of the object Оі is a set of assertions, built on the basis of predi-
cates from P' that are true for the object. That is, the concept Coni = {Pik}, if a
condition Pk (Оі) = true, where Pik is the assertion for the object Оі according to
the predicate Pk. Following these rules, the properties of objects are determined
with the subsumption relation. Expression A = (O', P') determines the algebra
system of object concepts O' and predicates P' with operations:
– 0-ary operations that correspond to constants;
– Unary operations that correspond to the properties of objects;
– Binary operations that correspond to intercommunications between pairs of

objects.
Predicates must meet specific conditions:

– Number of predicates suffices the conceptual design of the subject domain
using its objects;

– Each predicate, its type and signature meets the essence of the corresponding

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 418 Journal of Software Engineering and Applications

object.
Axiom 1. Every object of the SD process has at least one feature or property,

which equates to the set of objects.
In obedience to the behavioral level, a sequence of object states and processes

is determined in order to reflect transitions between states. Intercommunica-
tions between objects are formed on the basis of binary predicates, which are re-
lated to the properties of SD objects, and are detailed to implement interopera-
bility between states of objects.

According to the concept described above, class is an object that reflects a cer-
tain set; instance of the class is an object belonging to a certain set, which is a class;
joint class is a set equal to the direct sum of several other sets; crossbred class is a
common part of several other sets; aggregated class is a subset of the cross product
of several other sets. If an object is an element of another object, it is determined
by the set. However, not every object is necessarily an element of another class. For
example, an object corresponding to the entire SD in the OM is not an element of
any other object in the model. Definition of objects is formulated under the condi-
tion: each object is a set or an element of a certain set. Object ordering is per-
formed taking into account affiliation by using sets of natural numbers.

Algebra for object-oriented analysis of the SD is

(), , ,O I A P′ ′ ′ ′Σ = , (3)

where ()1 2, , , nО О О О′ = is a set of objects; ()1 2, , , nІ І І I= is a set of in-
terfaces for О'; ()1 2, , , nA A A A′ = is a set of operations on elements of a set O;

()1 2, , , rP P P P= is a set of predicates that determine properties of object con-
cepts. Each of operations in A' possesses certain priority and arity, and also re-
lated to the corresponding acceptable descriptions of object concepts and opera-
tions from the set

A' = {decds, decdn, comds, comdn, conexp, connar}. That is, decds, decdn are
decomposition operations, comds, comdn are compositions, conexp, and conner
is narrowing [20] [25].

Theorem 1. Set of operations A' for the algebra on the objects О' is a system
of actions in relation to the functions of four-level object presentation of the
OM.

Operations of object analysis are:
– Specification of object, as a class, class instance, etc.;
– Operations above essences: 0-unary, unary, binary;
– Interrelation of generalization, specialization, aggregation, classification, in-

stantiation;
– Operations of object behavior together with communications between de-

scriptions and the time of their existence in the OM.
The SD model may be represented by an object graph G = {О, I, R}, defined

on the set of objects O, interfaces I and relations between objects R:
– Set of vertices O replicates one-to-one relationships between objects in the

SD;

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 419 Journal of Software Engineering and Applications

– Each vertex corresponds to at least one interface Ik ∈ I and relationships from
the set R according to certain rules.

– There exists at least one vertex with dual set-object status that reflects the en-
tire domain.

The set of objects-functions O is related to implementation methods for ob-
jects in the SD, which communicate between themselves via interface objects
from the set I. That is, vertices from G are objects of two types—functional ob-
jects O, and interface objects I (Figure 1).

Interface objects contain data description that is passed by RPC, RMI, ORB
requests with optional operations of data transformation to the proper format of
the environment containing the object implementation. The result of communi-
cation of a pair of objects in the graph (e.g., O'5 and O'7) is a new interface object
with the description of input (in) and output (out) parameters of a request or a
communication protocol.

Axiom 2. Graph G, complemented with interface objects, is well-organized
structurally (bottom-up) with regard to the control of fullness, surplus and re-
moval of duplicate elements.

Objects may have several interfaces that can inherit interfaces of other objects,
providing they provide services for the entire set of output interfaces.

The set of objects and interfaces of the graph is reflected by general or indi-
vidual properties and descriptions of the OM. Verification of properties of ob-
jects are provided by the specific operations (classification, specialization, ag-
gregation, etc.). Each operation is a pair wise comparison of the underlying ob-
ject properties with their external characteristics. They are reliable in case the
following condition holds: each underlying property is equivalent to the external
property of object. If this condition does not hold, an element is removed from
the set O and the graph.

Worked out formal mechanism of transition is from objects ОМ to compo-
nents and interfaces of CM (component model). Component programming was
defined by formal models (component, interface, component environment) and
the operations of external and internal component algebra with facilities of
transformation of unrelevantical TD.

Figure 1. A graph G on the set of objects and interfaces.

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 420 Journal of Software Engineering and Applications

4.3. The Paradigm of Component Programming

The concept of this paradigm was proposed in article [8] [26] and realized by
V.N. Grishchenko in project of the informatisation NANY and was described in
dissertation [15]. It was not defended it, he was died in 2009. This concept was
continued in other works [26] [27] [28] [29]. On this paradigms design the com-
ponent models (CM) of the system which include: model of component—Comp;
interface model; model of the component environment CE and CM.
The CM obtained the formal elements [15] [25]:

CM = (RC, In, Imp, Film), where RC—the basic elements from the set com-
ponents (C) and the OM; In—the interface of components with variation points;
ImC—implementation of the base component in the environment; Fim (⋅)—
functions for converting interface and data parameters in the interface signature.
OM and CM are verified on the correctness of the inclusion of components
Comp.

4.3.1. The Model of Component
MComp = (CName, CIn, CFact, CImp, CServ), where CName is the unique
name of the component; CIn = {CIni}—the set of interfaces of the component;
CFact—managing instance instances; CImp = {CImj} is the set of implementa-
tions of the component; CSer = {CServ}—a lot of system services. The set CIn =
CInI ∪ CInO—input CInI and output CInO interfaces.

4.3.2. The Interface Model
CIn = (InName, InFun, CIn, InSpec), where InName is the name of the inter-

face; InFun—interface functionality; CIn—interface for managing instances of
the component; InSpec—specification of the interface (descriptions of types,
constants, methods, etc.). The interface specifies the operation of managing in-
stances:

Cln = {Locate, Create, Remove}, where
Locate—search and determine the instance of the component;
Create—create an instance of the component;
Remove—removes the instance of the component.

4.3.3. Model of the Component Environment
CE = (Name Space, InRep, ImRep, CSer, CSerIm), where
NameSpace—set of environment component names;
InRep = {InRepi}—the repository of interfaces;
ImRep = {ImRepj}—repository of implementations;
CSer = {CSerk}—a set of system services;
CSerIm = {CSerImi}—a set of implementation of the services.
A component environment is a set of application servers where components,

containers, and instances that implement component functions are deployed.
Thus, based on the CM model, the components of the PS can be distributed

among the network nodes and interact with each other through the interface and

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 421 Journal of Software Engineering and Applications

messages.

4.3.4. The Object and Component Algebra
∑ = {ϕ1, ϕ2, ϕ3}, where
ϕ1 = {CSet, CESet, Ω1} is an exterior algebra;
ϕ2 = {CSet, CESet, Ω2} is an inner algebra;
ϕ3 = {Set, CESet, Ω3} is the evolution algebra;
ϕ4 = {Set, CESet, Ω3} is the assembling algebra.
Given algebras of operations on different elements of external, internal and

evolutionary type provide transformation and Assembly and replacement of old
with new ones.

4.3.5. Generating Programming (GP)
GP is a style of generating programs of different applications and their Assembly
in the target system or family in two areas: applied engineering and engineering
of the subject area [12]. The K. Chernetski model GDM (Generative Domain
Model) is based on problem space, solution space and configuration base. The
GDM model and the model of the characteristics of the MF indicate General
concepts and characteristics of the elements of the domain, their interrelation-
ships, as well as knowledge about the configuration of the system of reuse. For
their implementation in multiparadigms of GP can use different programming
styles: OOP, component, service, aspect, etc. In the production-based systems
from ready made components in GP was taken the concept of product lines of
the Institute SE USA (www.sei.com). For GP proposed the model transforma-
tion and configurations of system from ready-made components.

A transformation model is described in the DSL and contributes to the trans-
formation of the space problems in the solution space by the method of trans-
formation DSL-BOM component to their description in PL. The configuration
model is based on design rules and domain abstractions included in GDM. Con-
figuration model data is converted to concepts and their characteristics. The
transformation of MF descriptions is performed in ADL language and then to
the description of components in PL. The result is a configuration of system
members as a configuration file.

4.3.6. Paradigms of Service Programming
The following types of services are different [11] [27]:

-General services of system environments (e.g. naming, cataloging, etc.);
-object services that manage objects, classes, and services (for example, re-

quest dispatching, interface management, etc.);
-network services of standard OSI model, SOA models (Service-oriented Ar-

chitecture), SCA (Service-Component Architecture);
-ready resources (services, artifacts, reuses, assets, etc.);
-web-services Semantic-Web Internet.
These types of services are used in the modeling of information and software

systems from ready services resources of the Internet. To use them, it is neces-

https://doi.org/10.4236/jsea.2018.118025
http://www.sei.com/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 422 Journal of Software Engineering and Applications

sary to search for a suitable Internet service resource, test it and embed it in the
program for solving the problem in dynamic mode ([30] [32]).

In the CORBA system (1996) developed—object request broker (Object Re-
quest Broker—ORB) for communication between objects in different PL;

-general object services (Common Object Services—COS—facilities (Com-
mon Facilities—CF) providing (e.g., print, database, e-mail, etc.);

-the object of the application (Application Objects AO);
-client and server interface (stub, skeleton) via IDL.
Description of data transfer operations includes:
1) the name of the interface operation;
2) the list of parameters with arguments and parameters.
SOA (service-oriented architecture)—development of a component approach

based on the use of services with standardized interfaces. They can be distributed
across different network nodes. Their interface provides encapsulation of the
implementation details of each component. SOA provides a flexible way to com-
bine and reuse components to build complex distributed software systems and
enterprise software applications [28]. The systems are implemented as a set of
web-services integrated with standard Internet SOAP languages, WSDL W3C
(www.с3.org).

Web-services are a new promising architecture that provides distribution at
the Internet level [30]. Thanks to web-services, functions of any program in the
network can be accessed via the Internet, and the results of accessing them—using
PHP, ASP, JSP-scripts, JavaBeans, etc. An example of a web-service is the Pass-
port system on Hotmail, which allows implementing user authentication. Web
services are based on standards, open exchange protocols, data transfer in this
order of action:

-definition of the format of requests to the web service and its responses;
-any computer on the network makes a request to the web-service;
-the web service processes the request, performs the action, and then sends the

response.
The difference between web services and other technologies (e.g. named pipes,

RMI) is that they are based on open standards and are supported on all UNIX
and Windows platforms, etc.

A SOAP envelope contains a request to perform an action or a response. The
envelope and its contents are encoded in XML and sent via HTPP to the web
service. The problem with using web services is to find them. IBM, Microsoft
have come up with an initiative project for Universal Description, Discovery and
Integration (UDDI) to provide a common catalog of web services to enable all
companies to “publish” their web service. The SOA (Service-oriented Architec-
ture) model defines the system architecture from services, and the SCA (Ser-
vice-Component Architecture) model specifies the architecture from service
components.

These architectures are implemented by IBM Web Sphere Integration Devel-

https://doi.org/10.4236/jsea.2018.118025
http://www.%D1%813.org/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 423 Journal of Software Engineering and Applications

oper. This system enables integration of SCA services through the JAVA inter-
face model defined in the WSDL and JAVA interface class. J2EE sub modules
and artifacts are packaged with an SCA module, whose function is to start the
service and transfer data for integration [29].

Web services in the supports:
-SOAP Protocol to define the formats of the queries to network services

(http://www.w3.org/TR/soap12-part1/wsdl20/RDF/wsci);
-WSDL—language service for.NET environment data exchange and Net Re-

moting network services development;
-UDDI (Universal Description, Discovery and Integration) to register, de-

scribe, store and search the registry;
-BPMN is a graphical notation language for application and business

processes and BPEL—a language for describing business processes
(http://www.omg.org/spec/BPMN).

The ready-to-use services in the application are configured in the output file
for execution.

4.3.7. Aspect-Oriented Programming (AOP)
AOP is proposed in 1970. In the former USSR by A. L. Fuksman (Rostov Uni-
versity), as a technology of dispersed action or vertical lamination technology.
Accordingly, this technology vertical layer (slice) contains a set of dispersed ac-
tions, code fragments that implement a certain extensible function, and the pro-
gram development process is a set of operations to add and change these func-
tions. Any program consists of modules designed for several horizontal layers.
Any” extension “of the program results in a series of horizontal layer extensions
[20].

G. Kishales and C.H. Simon companies Intentional Software continue to de-
velop AOP. Each structural unit (component) of the system defines a procedure,
function, or object, forming a functional element in the system. This element is
localized and can be mapped to others. However, non-functional properties of
the system, such as response to errors, providing access to memory (dynamic
order-release), synchronization of parallel objects, etc., are usually “scattered”
across all elements of the system, “was crossing” the structure of the system. Im-
plementation of the properties of the aspect is carried out using:

-aspect language and linker (weaver) aspects in the application;
-connection points, determining the place in the program;
-slice—set of connection points according to the specified rule;
-fragment insertion—a set of instructions in the PL to integrate all points of

the cut.
The aspect, by setting some slice or fragment, is to be inserted into the points

of this slice.
Thus, the AOP offers different methods and techniques of splitting tasks

(concern crosscutting) into a number of functional components, as well as as-
pects that “cross” functional components and provides for their composition in

https://doi.org/10.4236/jsea.2018.118025
http://www.w3.org/TR/soap12-part1/wsdl20/RDF/wsci
http://www.omg.org/spec/BPMN

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 424 Journal of Software Engineering and Applications

order to obtain systems.
There are several implementations of AOP, for example, Xerox PARC AspectJ

(www.aspectj.org) in the Java language. The release of Aspect J. 1.1 is built into
the system, Eclipse, Sun ONE Studio and Borland J. Builder. IBM Research re-
leased a version of Hyper J. (www.alphaworks.ibm.com/tech/hyperj) and Cos-
mos (www.research.ibm.com/AEM/mdsoc.html) with hypertext support for
building requirements and diagrams. Java AOP paradigm is the basis of C++,
Squeak/ Smalltalk, Perl, Python, Ruby languages.

4.4. Processing Paradigm of Life Cycle Standard ISO/IEC 12207

The approach to automation ISO/IEC Life Cycle (LC) 12207-2007 is the ultimate
tool serial process of manufacturing of PS using three categories of processes
(Figure 2) [18] [19]:

1) The basic processes;
2) The support processes;
3) The organizational processes.
Development program starts with requirements, design elements of PS (mod-

ules, objects, components, etc.), integration (Assembly) of individual elements,
testing of individual elements and overall system; operation ready PP. The sup-
porting processes and organizational processes are used for quality management
PS and software process improvement LC.

ISO/IEC LC 2007 (Table 1) includes 17 processes, subprocesses 74 and 232
tasks (actions).

These processes are necessary and sufficient for the design and manufacture

Figure 2. The basic, support and organizational processes LC.

https://doi.org/10.4236/jsea.2018.118025
http://www.aspectj.org/
http://www.alphaworks.ibm.com/tech/hyperj
http://www.research.ibm.com/AEM/mdsoc.html

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 425 Journal of Software Engineering and Applications

Table 1. Process, subprocess and task of standard ISO/IEE 12207.

Class Process Action Task

Basic processes 5 35 135

Support processes 8 25 70

Organisational processes 4 14 27

All 17 74 232

of any system. Some system companies sold individual pieces, i.e. individual
variations of this standard or life cycle models (spiral, waterfall, iterative, etc.).
The concept of automation of the Life Cycle of the ISO/IEC method of ontology
is new and original. The basis of its implementation is the structure of processes
of LC (Figure 2) and their interaction (Table 1), as well as the Ontology lan-
guage for the conceptualization of individual variants of the process LC [18]
[19].

The concept of automation of LC of the ISO/IEC 12207 by ontology is new
and original. Formally, the LC model includes the processes P (process), actions
(Action) and tasks T (Task):

(), ,LC k m nM P A T= ,

where Pk = (P1k, P2k1, P3k2), P1k = 1 - 5 (the main processes of the LC), P2k1, k1 = 1 -
8 are additional processes LC, P3k2, k2 = 4—organizational processes; Am = (Akr,
Ak1l, Ak2j)—actions or tasks of the process. In them the tasks mean:

Akr, r = 1 - 35—actions on the main processes of the LC;
Akl, l = 1 - 25—actions on the processes of support of the LC;
Ak2j, j = 1 - 14—actions in the organizational processes of the LC;
Тn = (Тnк, Тnl, Тnj) - Тnк, к = 1 - 135—the tasks of the main processes LC;
Тnl, l = 1 - 70—the tasks of the support processes of the LC;
Tpj, j = 1 - 27—the tasks of the organizational processes of the LC.
An example of a description of the main processes of the LC (Figure 3) in

XML language is given below.

Figure 3. The description the main processes LC in the XML language.

Definition of processes of LC can be: the languages OWL (Web Ontology

Language), ODSD (Ontology-Driven Software Development), XML (Extensible

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 426 Journal of Software Engineering and Applications

Markup Language); systems modeling domain ODM (Organizational Domain
Modeling), FODA (Feature-Oriented Domain Analysis), DSSA (Domain-Specific
Software Architectures), DSL (Domain Specific Language), Eclipse DSL Tools vs.
Net, Protégé, etc. this also includes the language of BPMN process description
and life cycle the DSL to describe the semantics of the domains. Held ontological
description of the main processes in the DSL The approach to the automation of
the life cycle was presented at the conferences “Science and Information—2015”,
www.conference.thesai.org [19].

4.5. Method to the Creation of New Technologies

A technology for PP production amount of product lines and technologies. They
are created using the method of technological preparation development (TPR,
1987) [10]. This method has been tested in the project of the Institute of Cyber-
netics AIS “Jupiter” for automation of the Navy of the USSR (1982-1991). It has
developed six TL for creating and presents specific forms, documents and
processes of these AIS. In this TL was sold about 500 of data processing pro-
grams for different objects AIS. TL processes perform the operations on the
prepared resources (modules, components, data, etc.).

Work in the field of meta technologies TPR began to run through languag-
es UML, DSL, Workflows, (BPMN Basic Process Modeling Notation), etc.
These funds are used to create product lines (Product Lines/Product Family)
as the infrastructure for the production of PP from ready resources, reuses
[20] [21].

4.6. Factory Software-Based Industry Programs

Definition: Factory is an integrated architecture the Assembly line production
of PP from ready-made software components (modules, objects, services, as-
pects, etc.), typically decorated in PL, and their interfaces in the WSDL. Last
posted in system libraries and repositories [31] [32].

Analysis of the available factory programs (Grinfield, Bey, Lenz, etc.) and ex-
perience the creation of a specific student factory in KNU
(http://programsfactory.univ.kiev.ua) allowed us to formulate the following set
of necessary elements for the work of the factory programs:

1) prepared software resources (artifacts, modules, programs, systems, reuses,
assets, etc.);

2) interfaces—qualifiers ready resources in one of the languages IDL, API,
SIDL, WSDL;

3) TL, product line (Product Lines) production of PP;
4) the Assembly, Conveyor Line;
5) methods and techniques for the planning and execution of works on the

line on creation of system;
6) system-wide development environment for individual programs.
On such method to do the existing factories programs:
1) AppFab in the system of collective development VS.Net;

https://doi.org/10.4236/jsea.2018.118025
http://www.conference.thesai.org/
http://programsfactory.univ.kiev.ua/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 427 Journal of Software Engineering and Applications

2) AppFab IBM to create business systems;
3) AppFab in the CORBA system for the Assembly of heterogeneous software

resources;
4) Product Line SEI USA;
5) Factory streaming building software John. Grinfeld, G. Lenz, I. Bay etc.;
6) Factory continuous integration by M. Fowler; etc.
Some factories are represented on the website http://www.7dragons.ru/.

5. Modeling Variability Systems with Paradigms
5.1. The Essence of Modeling of Systems and Families

The concept of variability of the original represented in the model FM (Model
Feature) to Product Line based on the set of components reuse (CRR, Reuses),
which in PS may include the variant points [11] [20].

Variability is a property of the system to the extension, modification, adapta-
tion, or configuration for use in a particular context and to ensure its subsequent
evolution (ISO/IEC FDIS 24745-2009 E).

Model FM is formed in the process of development of the PP and includes
general functional and non-functional characteristics of items that can be used
by family (FPS) members of PS when you create different variants of PS or PP
on the points of variance.

The point of variance is a place in the system, which is used for the selection
of the PS option. This point is a collection of options attached to the kernel made
the system. In the production of the PS from CRU is created and the family PS.
The FM model is used in engineering subject field and engineering applications
for Assembly made resources.

Domain engineering provides the definition and implementation of common
artifacts-variable functions for the production of a new product variant.

Artifacts—the architecture, requirements, components, tests, etc.
Application engineering includes the definition of artifacts needed by the user,

and makes changes to the collection at the application level.
Theorem: The functional interaction between the two objects is correct, if the

first object completely provides the functions and data transfer that is required
by another object: In (fok) ⊆ Out (fol).

The objects of the graph G (Figure 2) form a model of the system under sys-
tem configuration. Elemental which can be changed in the graph are labeled by
points of the variance (variability) [10] [11] [22].

The point of variance is in one place in the model system PS, which selects the
variant of the system. A point of variance is handled by the configurator and al-
lows transforming the prepared system by replacing some of the components
used reuse, CRR by other more functional or correct.

Variability—a property of a product (system) to expand, change, adaptation,
or configuration for use in a particular context and ensure its subsequent evolu-
tion ISO/IEC FDIS 24765-2009 (E).

https://doi.org/10.4236/jsea.2018.118025
http://www.7dragons.ru/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 428 Journal of Software Engineering and Applications

5.2. Managing Variability of Systems

Model of variability PS − MFvar = (SV, AV), where
SV—submodel of variability of the artifacts in the structure of PS;
AV—submodel variability of the finished product PS.
The MFvar model ensures that the artifacts of the PS, lower costs and decrease

the cost of developing the system. Model of variability of PS—a set of FM mod-
els of the PS, set on the many artifacts, some points of variance for subsequent
changes individual elements [20] [25].

Managing variability PS is performed on the points of variance, variant arti-
facts of the PS, limitations and dependencies by using the predicates P defined
on the set of options of PS.

To control the variability method is used E. Deming, based on the functions F1
- F4:

F1—operation, action to ensure that the artefacts of the PS (Act);
F2 —the planning system FPS of the artifacts (Plan) for engineering subject

area and engineering applications;
F3—system monitoring and verification of state changes of the PS (Check);
F4—actualization (fulfillment) systems PS (Do).
Managing variability the PS with the requirements—R is:
1) the rationale for the function F1 (R1);
2) coordination of the implementation of artifacts in the processes of PS (R2);
3) implementation of the validation of the creation of PS (R3);
4) tracking relationships between the characteristics of the PS (R4).
Compliance requirements R1 - R4 functions F1 - F4 model of environment

process model process variability of the SPS is the basis for the formation and
implementation of various systems [21].

The configuration model PS [21]:

(), , , ,konf SD ps var inМ ОМ M М MF M= ,

where
Min—a model of interaction of individual elements of the created system.
Based on the model Мkonf are:
-slection of artifacts and resources of the PS in the base configuration of a

given system;
-allocation of common and variant characteristics of the PS in the model FM

and model of the PS;
-planning for multiple resource use for PS in the points of variability and their

fixation for their removal replacement;
-build resources in the PS and their adaptation to new conditions of environ-

ment;
-management options for PS with the replacement of individual functions in

the PS;
-manage the interaction of artifacts in a heterogeneous environment.

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 429 Journal of Software Engineering and Applications

5.3. Verification and Testing of the PS

For verification purposes the objects of systems use temporal logic (Linear
Temporal Logic (LTL) or a logic tree computation CTL (Computational Tree
Logic) [20] [25].

The method of deductive analysis LTL provides a logical output according to
the model, made by hand. It applies only to those facilities that are critical (e.g.
security of operation, or the protection of information).

Verification by model checking is only applicable to objects with a finite
number of States. The feature of the method of verification for the model is that
the verification is conducted automatically and do not need special knowledge
and time. The method of verification—mathematical formulation of require-
ments to create programs with help algorithms of formal verification require-
ments.

Testing work products (plans, test suites, test data) is based on the use of CRU
and finished products. Test products should be suitable for other PP and are part
of the reusable components of a family of FPS. For testing the PS and FPS re-
quirements use scenarios (Scenario-based test derivation), the method of analy-
sis of trees FCTA (Fault Contribution Tree Analysis) and complex PLUTO
(Product Lines Use case Test Optimization).

5.4. Evaluation of the Quality and Reliability of PS

The quality—the totality of the properties of PS that provide the ability to meet
established or anticipated needs, in accordance with a purpose. The key charac-
teristics of quality attributes are reliability and completeness as properties of the
PS to eliminate failures with hidden defects with this criterion and a quality
model, which relates the measures and metrics of the internal, external and op-
erational type. From the standpoint of completeness of the product is the main
indicator of quality are defects and failures [31] [32].

The main indicators of quality are defects and failures. This correspond such
model of quality Mqua:

1) internal measure D0 is the number of defects in each object PS;
2) external measure R(t) is reliability of operation of each object in PS for a

given time t without failure;
3) measure performance Qps is determined by the trouble-free functioning of

the PS.
The model of defects based on multiple quality factors, analysis of causal rela-

tionships between them, combining qualitative and quantitative assessments of
their impact on the density of defects. To calculate the reliability function uses a
special formula:

() () ()()()| expR t T m T t m T= − + − ,

where t—the operating time of PS without a failure when testing in a period of
time T;

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 430 Journal of Software Engineering and Applications

m(T) is a function of reliability growth, as the average number of defects PP
identified during its operation for time t.

The reliability of the software largely depends on the number remaining and
corrected errors in the development process. During operation, errors are also
detected and eliminated. If the bug fixes are not made new, or at least new bugs
introduced is less than clear, in the course of operation reliability increases.
The function of reliability growth m(t) is defined by the formula

() 0
0

0

1 expm t N t
N
λ

= − − ⋅
,

where
N0—the number of latent defects in PP at the beginning of system testing on

form:

0 0
KN

I
ρ

λ
ϕ
⋅

= ⋅
⋅

λ0—the failure rate of PP at the beginning of system testing, as defined by a
given formula;
ρ—intensity code execution (speed of processor);
K = 10−7—the ratio of defects (permanent) for model J. Musa;
I—number of source code instructions;
ϕ—code expansion ratio (the number of code instructions executed per origi-

nal instructions).
To assess the quality systems used the standard ISO/IEC 9000 (1-4) quality

model is form:
{ }, , ,quaM Q A M W= , where

{ }1 2, , , , 1, ,6iQ q q q i= = ,—various quality characteristics (Quality—Q);

{ }1 2, , , , 1, ,jA a a a j J= =
,—the set of attributes (Attributes—A), each of

which captures a separate property of the qi quality characteristics;
{ }1 2, , , , 1, ,kM m m m k K= = ,—the set of metrics (Metrics—M) each ele-

ment of the attribute aj for the measurement of this attribute.
{ }1 2, , , , 1, ,nW w w w n N= = are weight coefficients (Weights—W) for

metrics of the set M.
The quality standard identifies six basic quality characteristics: q1: functional-

ity; q2: reliability; q3: use, q4: efficiency; q5: maintainable; q6: portability. The
quality q1 - q6 are assessed by the formula:

6

1 1 1 1
1

j j j
j

q a m w
=

= ∑

On the basis of obtained quantitative characteristics of the final grade is cal-
culated by summing the values of individual indicators and their comparison
with the benchmark systems.

5.5. CASE—Instrumental Tools

As a means of realization of life cycle processes ISO/IEC 2007 elected the lan-

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 431 Journal of Software Engineering and Applications

guage Device and the DSL
Tool VS.Net etc. In them ontological description transformer to the XML

language, it is the implementation language of the marked features of the LC
domains, which define the communication and data exchange between them.
OCM realized on the website http://7dragons.ru/ru. Site database forms a repo-
sitory of ready resources, models PS, variability and interaction of system-wide
tools—Visual Studio, Eclipse, CORBA, WSphere [20] [33]:

1) Visual Studio. Net↔Eclipse defines the environment of the interaction of
individual elements in the C# language and interface. The model establishes the
relationship of the elements with a given environment via the config file.

2) CORBA↔JAVA↔MS. Net provides communication between these envi-
ronments with specified in these languages, the elements to access them from
other developers.

3) IBM Sphere↔Eclipse provides communication between programs in PL
these environments.

With the participation of the students was developed a program of processing
FDT and GDT, a variant of the ontology LC using the tools, DSL Tools vs. Net
and Protégé [16] etc. They are available on the website.

It is a link to a website of programs of KNU
http://programsfactory.univ.kiev.ua It accumulates the scientific artifacts of the
students of KNU. The website also includes courses in Java, C # vs. Net and
“Software engineering” for students of KNU and MIPT.

6. The Futute Technologies Internet and Nanotechnologies
6.1. The Future Internet Technologies [24]

1) The information objects (IO) that specifies the digital projection of real or
abstract objects that use Semantic Web Ontology interoperability interfaces. IO
through Web services began more than 10 years ago. Interaction semantics IO is
based on RDF and OWL language of ISO 15926 Internet 3.0. The next step of the
development of the Internet is Web 4.0, which allows network participants to
communicate, using intelligent agents.

2) A new stage in the development of enterprise solutions-cloud (PaaS, SaaS)
who spliced with Internet space and used to create Adaptive applications. Cloud
services interact through the Web page by using agents.

3) Internet stuff (Internet of Things, Smart IoT) indicates the Smart support
competing APPS using distributed micro services such as Hyper cat (mobile
communications); industrial Internet (Industrial), covering the new automation
concepts-smart energy, transportation, appliances, industry, and another.

6.2. Concept of Nanotechnologies

The idea of an Assembly of atoms in macro atoms special programs assemblies
proposed by R. Feynman (1959) in the form of a manipulator of an atom, which
are gravity, and the action of intermolecular Vander-Valesov force [24]. Can be

https://doi.org/10.4236/jsea.2018.118025
http://7dragons.ru/ru
http://programsfactory.univ.kiev.ua/

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 432 Journal of Software Engineering and Applications

an arbitrary number of such mechanisms (machines) submitted by the manipu-
lator of the elements, reduced to four and more times the copies of the “hands”
of the operator, which can tighten small bolts and nuts, drill a very small hole, to
perform the work in scale 1:4, 1:8, 1:16.

Nanotechnology is the technology of production of new materials and devices
with predetermined atomic architecture (E. Dressler).

An atom is 10−10 = 1 nanometer (nm), and the bacteria is 10−9 nm. Particles
from 1 to 100 nanometers are called nanoparticles. Some nanoparticles have the
property of sticking together with each other, which leads to the formation of
new agglomerates (in medicine, ceramics, metallurgy, etc.).

One of the greatest challenges facing nanotechnology is how to make the mo-
lecules group in a certain way and to organize themselves so to finally get a new
material, substance or device. For example, proteins can synthesize from few
proteins of DNK in complex structures with specific new properties.

6.3. Computer Nanotechnology

Today computer nanotechnology is actually already working with the smallest
elements, “atoms” similar to the thickness of the thread (transistors, chips, crys-
tals, etc.). For example, a video card from 3.5 million particles on single crystal,
multi-touch maps for retinal embedded in the eyeglasses, etc.

Computational geometry is a part of computer graphics and algebra. Used in
the practice of computing and control machines, numerical control etc. is also
used in robotics (motion planning and pattern recognition tasks), geographic IS
(geometric search, route planning), design chips, etc.

In the future, ready-made software elements will be developed in the direction
of nanotechnology by “reducing” to look even smaller particles with predeter-
mined functionality. Automation of communication, synthesis of such particles
will give a new small element, which will be used like a chip in a small device for
use in medicine, genetics, physics, etc.

7. Conclusion

The scientific, theoretical bases of the systems programming from modules, ob-
jects, components, services were presented. Defined by the theory of program-
ming different periods of building systems, developed by the author with the
participation of her students and postgraduates: theory of graph modular pro-
gramming with graph representation in the form of adjacency matrix for ma-
thematical relation of graph vertex attainability; implementation of complex
complexes and systems based on graph, in the vertices of which there are differ-
ent language modules (1970-1991); theory of program factories (2009) of mod-
ules and reuses, which has a great demand in different countries (Europe, India,
China, Taiwan, etc.); theory of graph object and component modeling (OCM)
with the help of logic and algebra-mathematical theory of formation of separate
variants of complex systems and ensuring the variability of such systems on the

https://doi.org/10.4236/jsea.2018.118025

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 433 Journal of Software Engineering and Applications

basis of the model of basic characteristics of MF (Feature Model) functional
elements of the simulated systems (1997-2016); development of the theory of
programming systems based on ontological and service-component models
(SOA, SCA) with security and quality systems. The author investigated the me-
chanisms of development of Internet Smart and Nanotechnology and formu-
lated the General provisions of the development of smart computers and the
concept of the transition of computer technology to nanotechnology.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Erchov, A.P. (1974) Introduction to the Theory of Programming. Science.

[2] Glushkov, V.M., Lavrishcheva, E.M., et al. (1975) APROP System. 136 p.

[3] Lavrischeva, E.M. (1978) Problems of Combining Different Language Modules in
the ES OS. No. 1, Programming.

[4] Grishchenko, V.N. and Lavrishcheva, E.M. On Creation of Interlanguage Interface
for ES OS. No. 1, USIM.

[5] Lavrischeva, E.M. and Grishchenko, V.N. (1982) Communication of Multi-Language
Modules in ES OS. Moscow, 127 p.

[6] Lavrischeva, E.M. (1988) Methods, Tools and Instruments of Assembly Program-
ming. 34 p.

[7] Lavrischeva, E.M. and Grishchenko V.N. (1991) Assembly Programming. 213 p.

[8] Lipaev V.V., Pozin, B.A. and Shtrik, A.A. (1992) Technology of Assembly Pro-
gramming. 272 p.

[9] Lavrischeva, E.M. (2006) Programming Methods. Theory, Engineering, Practice.
Nauk. Dumka, Kiev, 451 p.

[10] Lavrischeva, E.M. (1987) Basics of Staging of Development of the Applied Programs
ODS. Academy of Sciences, Ukrainian, 30 р.

[11] Lavrischeva, E.M. (2016) Assemblling Paradigms of Programming in Software En-
gineering. Journal of Software Engineering and Applications, 9, 296-317.
https://doi.org/10.4236/jsea.2016.96021

[12] Lavrischeva, E. (2013) Generative and Composition Programming: Aspects of De-
veloping Software System Families—Cybernetics and Systems Analysis. Vol. 49,
Springer, Berlin, 110-123.

[13] Booch, G. (1998) Object-Oriented Analysis. Binom, 560 p.

[14] Berger, T., She, S., Lotufo, R., Wąsowski, A. and Czarnecki, K. (2013) A Study of
Variability Models and Languages in the Systems Software Domain. IEEE Transac-
tions on Software Engineering, 39, 1611-1640. https://doi.org/10.1109/TSE.2013.34

[15] Grishchenko, V.N. (2007) Theoretical and Practical Applications of Compo-
nent-Oriented Programming. 34 p.

[16] Lavrischeva, E.M. and Grishchenko, V.N. (2009) Assembly Programming. Basics of
Software Systems Production. 371 p.

[17] Lavrischeva, E., Stenyashin, A. and Kolesnyk, A. (2014) Object-Component Devel-

https://doi.org/10.4236/jsea.2018.118025
https://doi.org/10.4236/jsea.2016.96021
https://doi.org/10.1109/TSE.2013.34

E. M. Lavrischeva

DOI: 10.4236/jsea.2018.118025 434 Journal of Software Engineering and Applications

opment of Application and Systems, Theory and Practice. Journal of Software En-
gineering and Applications, 7, 756-769. http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2014.79070

[18] Lavrischeva, E.M. (2015) Ontology of Domains. Ontological Description Software
Engineering Domain—The Standard Life Cycle. Journal of Software Engineering
and Applications, 8, 324-338. http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2015.87033

[19] Lavrischeva, E. (2015) Ontological Approach to the Formal Specification of the
Standard Life Cycle. Science and Information Conference—2015, London, UK,
28-30 July 2015, 965-972. http://saiconference.com/Conferences

[20] Lavrischeva, E.M. (2014) Software Engineering Computer Systems. Paradigms,
Technologies, CASE-Tools Programming. Nauk. Dumka, Kiev, 282 p.

[21] Lavrischeva, E.M. and Ryzhov A.G. (2016) Application of the Theory of Common
Data Types of ISO/IEC 12207 GDT to Big Data, “Actual Problems in Modern
Science and Ways of Their Solution”, 27 December. http://euroasia-science.ru

[22] Lavrischeva, E.M. (2008) Classification of Software Engineering Disciplines. Cyber-
netics and Systems Analysis, 44, 791-796.
https://doi.org/10.1007/s10559-008-9053-5

[23] Lavrischeva, E.M. (2015) Component Theory and a Collection of Technologies for
Development of Industrial Application of Ready Resources. Proceedings of the
4—Scientific Practical Conference “Actual Problems of System and Software Engi-
neering”, OPSPI 2015, 20-21 May 2015, 101-119.

[24] Lavrischeva, E.M. and Petrov, I.B. (2017) Ways of Development Computer Tech-
nologies to Perspective Nano. Future Technologies Conference (FTC) 2017, Van-
couver, Canada, 29-30 November 2017, 978-991.

[25] Lavrischeva, E.M. (2016) Theory of Object-Component Modeling Software Systems.
ISP, 48 p. http://www.ispras.ru/

[26] Gorodnia, L.V. (2017) Paradigms Programming: Analysis and сравнение. SORAN,
239 p.

[27] Lavrischeva, E.M. and Slabospitska O.L. (2015) Technology for Changing Software
Enginering and System Modeling. Proceedings of 12th Conference TAAPSD—2015,
Kiev, 23-26 November 2015, 118-127.

[28] Lavrischeva, E.M., Karpov, L.E. and Tomilin, A.N. (2017) Approaches to the Re-
presentation of Scientific Knowledge in the Internet Science. Sat. XIX All-Russian
Scientific Conference “Scientific Service on the Internet”, Novorossiysk, 18-23 Sep-
tember 2017, 310-326.

[29] Lavrischeva, E.M. (2016) Software Engineering. Programming Theory, MIPT,
Textbook, 48 p. and Programming Technology, MIPT, 52 p.

[30] Lavrischeva, E.M. (2016) Software Engineering. Basic Foundation of Software En-
gineering, MIPT, Textbook, 51 p.

[31] Lipaev, V.V. (1983) Software Quality, Finance and Statistics, 320 p.

[32] Andon, F.I., Koval, G.I., Korotun, T.M., et al. (2007) Foundation Engineering of
Quality PS. Akademperiodica, 680 p.

[33] Ostrovsky, A.I. (2011) An Approach to the Interoperability of Software Environ-
ments JAVA and MS. Net. The Problems of Programming. No. 2, 37-44.

https://doi.org/10.4236/jsea.2018.118025
http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2014.79070
http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2015.87033
http://saiconference.com/Conferences
http://euroasia-science.ru/
https://doi.org/10.1007/s10559-008-9053-5
http://www.ispras.ru/

	Scientific Basis of System Programming
	Abstract
	Keywords
	1. Introduction
	2. The Fundamental Basis of System Programming
	2.1. Basic Elements
	2.2. The Method of Programming Modular
	2.3. Assembly Method
	Processing Data Types of PL

	3. Disciplines of SE
	4. Programming Paradigm
	4.1. Scientific Foundations of Programming Paradigms
	4.2. The Paradigm of Object Programming
	4.3. The Paradigm of Component Programming
	4.3.1. The Model of Component
	4.3.2. The Interface Model
	4.3.3. Model of the Component Environment
	4.3.4. The Object and Component Algebra
	4.3.5. Generating Programming (GP)
	4.3.6. Paradigms of Service Programming
	4.3.7. Aspect-Oriented Programming (AOP)

	4.4. Processing Paradigm of Life Cycle Standard ISO/IEC 12207
	4.5. Method to the Creation of New Technologies
	4.6. Factory Software-Based Industry Programs

	5. Modeling Variability Systems with Paradigms
	5.1. The Essence of Modeling of Systems and Families
	5.2. Managing Variability of Systems
	5.3. Verification and Testing of the PS
	5.4. Evaluation of the Quality and Reliability of PS
	5.5. CASE—Instrumental Tools

	6. The Futute Technologies Internet and Nanotechnologies
	6.1. The Future Internet Technologies [24]
	6.2. Concept of Nanotechnologies
	6.3. Computer Nanotechnology

	7. Conclusion
	Conflicts of Interest
	References

