

www.iaset.us editor@iaset.us

THE SCIENTIFIC BASIS OF SOFTWARE ENGINEERING

E. M. Lavrischeva

Professor, Moscow Institute of Physics and Technology, Chief Scientific of ISP RAS, Russia

ABSTRACT

Define the scientifical concepts and fundamental basis of Software Engineering (SE). The scientifically concepts

are modules, objects, programs, systems and processes of design program systems. The fundamental basic of the SE are:

assembly method of modules; disciplines SE (scientific, engineering, economic, management, etc.); paradigms of

programming modules, objects, components, etc.; automatization of Life Cycle (ISO/IEC 12207); theory of technological

and production lines, factory programs and App Fabric; new logical-mathematical theory of object-component modeling

graph of object model (OM); verification of OM and MF (feature model) and testing ready elements of system and

evaluation reliability and quality of systems product. Tool support of scientific basis was represented on the website

http://7dragons.ru/ru.

KEYWORDS: Science, Concepts, Formalism of Modules, Assembly Method, Object, Component, Interface: IDL,

Logic-mathematical Theory, Life Cycle, Product Line, Model FM, Configuration, Verification, Testing, Reliability, Quality

Article History

Received: 08 Jun 2017 | Revised: 19 Jul 2018 | Accepted: 01 Aug 2018

1. INTRODUCTION

Since the advent of the SE (1968), many scholars and specialists of Computer Sciences began to create methods

and tools for designing programs and systems to solve tasks from different fields of knowledge (mathematics, physics,

biology, architecture, industry, etc.). The first book by B. Boehm [1] is devoted to the description techniques of design and

quality evaluation. In [2, 3] describes the methodology of designing and evaluation of reliability and quality systems. In

connection with the emergence of the OOP in [4, 5] presents a unified modeling language (UML, 1994) systems with use

case precedents and processes RUP. In Software Engineering Body of Knowledge (www.swebok.com, 2001, 2004, and

2014) the definition of the subject - Software Engineering. It is a system of methods, means and disciplines for the

planning, design, operation, and maintenance designed for industrial production. SE covers all aspects of creation from the

beginning of the formulation of requirements up to the development, maintenance, and decommissioning. In [6-9] the basic

concepts are formulated, the paradigm of the programming and Assembly of software ready elements in a system or family

of systems. The following are a scientific and formal framework of production systems of different objects, their

verification, and testing, and evaluation quality assembly systems [10, 11].

International Journal of Applied

and Natural Sciences (IJANS)

ISSN(P): 2319-4014; ISSN(E): 2319-4022

Vol. 7, Issue 5, Aug - Sep 2018; 15-32

© IASET

16 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

2. THE FUNDAMENTAL BASIS OF SE

2.1. Basic Concepts

The program is the object of development, which is run on the computer. A ready program is a software product

(PS) [4, 5]. Object design: module, program, system, family, etc.

A module is considered a software element that converts the plurality of source data X in a variety Y of the output

method of the display system. Modules are a pair S = (T, χ), where T – a model of the system; χ is the characteristic

function, defined on the set of vertices X of a graph of modules G.

The interface is the handler objects with each other to exchange data between them.

The development method is a method or systematic approach to achieving the goals which are set before creating

the object of development. The method of modular programming is the decomposition of the problem into separate

functions, each of which is a module and object, component, aspect, service and other paradigms programming.

Life cycle model PS – this is cascade, spiral, iterative, etc. On the basis of these models developed the first version

of the standard ISO/IEC Life Cycle 1996, and then 2007. This standard give has a set of software development processes.

The technological process is an interrelated sequence of operations performed during the development of the

object. The process is designed to transfer an object from one state to another until the final product [10].

Line technology (LT) and grocery (PL) specifies a set of development processes of some object functions that

convert the object to the ready program product (PP).

Tools (CASE-tool factory, a system-wide tool) is software or a methodical means to obtain the object in a PP.

2.2. Assembly Method

Assembly method based on the interface that connects the objects, modules and data exchange. Interface first

implemented in the system APROP from 1975 to 1982 in [6-9]. It can be inter-module, interlingual and technological

(1987) and became a fundamental concept in programming technologies and software engineering [6-10].

The intermodal interface is the contact modules to transmit and receive data between them. Interlingua interface

is a library function interface to transform non-equivalent data types of the PL for IBM OS-360. Developed interface

library (64 functions) which converts different data types (TD) in PL (ALGOL, COBOL, FORTRAN, PL/1, etc.). The

system was handed over in 52 organizations of the USSR for Assembly of multi-language modules and applications in OS

ES (1982).

The formal conversion of type data objects of the Assembly is performed using algebraic systems for each data

type Tα
t
: Gα

t
 = <Xα

t
 , Ωα

t
 >,

Where, Ωα
t
 - set of operations on t TD. For simple t= <b, c, t, r> and complex t=<a, z, u, e> TD modern PL built

classes of algebraic systems:

Σ1 = Ωα
b
 , Gα

c
 , Gα

i
 , Gα

r
},

Σ2 = {Gα
a
 , Gα

z
, G α

u
 , Gα

e
}.

The Scientific Basis of Software Engineering 17

www.iaset.us editor@iaset.us

Systems Σ1 and Σ2 the transformation TD t → q for the pair of languages Lt and Lq have the properties:

• Gα
t
 and Gβ

q
 – isomorphic (to q and t defined on the same set);

• Xα
t
 and Xβ

q
 are isomorphic if Ωα

t
 and Ωβ

q
 are different. If Ω = Ωα

t
 ∩ Ωβ

q
 is not empty, then there is a

isomorphism between Gα
t′
 = < Xα

t
 , Ω > и Gβ

q′
 = < Xβ

q
 , Ω >.

• Between the sets, Xα
t
 and Xβ

q
 may not be isomorphic matching, then build such a mapping between Xα

t
 and Xβ

q

that it is isomorphic.

Theorem 1: Let ϕ – displays the algebraic system Gα
с
 to Gβ

с
. In order to ϕ be an isomorphism, it is necessary and

sufficient to ϕ isomorphic reflected Xα
с
 and Xβ

с
, preserving linear order.

Assembly method and the library interface are also implemented in the complex PROTVA (V. V. Lipaev) and

became the basis for the creation of software for different computers MVK. These complexes have been awarded the State

prize of the Cabinet of Ministers of the USSR (1985).

The Assembly was based on the theory of conversion of the fundamental data types (FDT) and later the common

types of GDT. The FDT theory arose in the 70-ies of the last century in the works of Dijkstra, Hoare, Wirth, Ershov,

Agafonov etc. theory of general data types is defined GDT in ISO/IEC 11404 - 2006 (General Data Types), which allows

the generation of the GDT↔FDT.

In 1992-1996 appeared languages of the description of interfaces – MIL (Model Interface Language), API

(Application Program Interface) and IDL (Interface Definition Language). They are used in the configuration assemblies of

dissimilar programs in modern PL (C, C++, Basic, Java, Python, etc.).

The Theory of Modular of Programming

The module is the basic software element with properties [10]:

• The logical completeness of function;

• The independence of one module from the other;

• Replacement of individual module without disturbing the structure of the program;

• Call other modules and return data to the caller module.

The module converts the multiple input data X in a variety of output Y and is given as a mapping

M: X →Y.

Communication between Modules

• Relationship management (SR = K1 + K2);

• Connection according.

Modular graph structure G = (X, Y), where

X is a set of vertices, and G is a finite subset of the direct product X x X x Z on the set of arcs of the graph.

18 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

A modular structure is a pair S = (T, χ), where

T – a model of the modular structure; χ is the characteristic function defined on the set of vertices X of a graph of

modules graph G.

The value of the function χ is defined as:

χ(x) = 1 if the module with vertex x ∈X included in the PS;

χ(x) = 0 if the module with top x ∈X is not included in the PS and it's not referenced from other modules.

Definition 1

Two models of modular structures T1 = (Gl, Y1, F1) and T2 = (G2, Y2, F2) are identical, if G1 = G2, Y1 = Y2, F1 = F2.

Model T1 is isomorphic to T2, if G1 = G2 between the sets Y1 and Y2, there exists an isomorphism φ, and for any х ∈ X,

F2(x) =φ (f1(x)).

Definition 2

Two modular structures S1 = (T1, χ1) and S2 = (T2, χ2) are identical if T1 = T2, χ1 = χ2 and modular structures S1 and

S2 are isomorphic if T1 is isomorphic to T2 and χ1 = χ2.

The module is described in PL and has a description section of the passport, which specifies external and internal

parameters. To pass parameters to another module, use the Call (...). The parameters may be converted to the form of the

calling module and back in case of differences of their types. It was developed in the library of primitive functions convert

dissimilar data types PL [16]. This theory is suitable to the component. Object and component the theory of programming

discussed below.

3. DISCIPLINES OF SUBJECT SE

In connection with the 40 year anniversary SE (2008), the author proposed a classification of scientific disciplines

in SE the articles [13, 14, and 10]. Proposed discipline used in the program Сuricula-13. Let us consider briefly their

characteristics.

Scientific discipline SE includes classic Sciences (theory of algorithms, set theory, proof theory, mathematical

logic, discrete mathematics); theory of programming of the theory of abstract data, management science, etc. This

discipline defines the basic concepts of the objects and the formalism of the description of the system components and data

description [13, 14] etc.

Engineering discipline SE includes methods of using technology rules and procedures, processes, life cycle,

methods of measuring and assessing the quality of development PP. This discipline defines the set of engineering methods,

techniques, tools, and standards focused on the production of the target PP. Basic concepts of engineering SE include core

knowledge SWEBOK; the basic process SE; infrastructure environment.

Discipline management SE is based on the theory of management of projects and the IEEE Std.1490 PMBOK

(Project Management Body of Knowledge); method CRM (Critical Path Method) for the graphic representation of works,

operations and their execution time; method of network planning PERT (Program Evaluation and Review Technique), etc.

In the PMBOK defined processes lifecycle of the project and the main areas of knowledge and processes of planning,

The Scientific Basis of Software Engineering 19

www.iaset.us editor@iaset.us

monitoring, management, and completion.

Economic discipline SE. This discipline provides for the calculation of the different parties activities of developers

in the implementation of the project and identify the costs, time and economic indicators according to the requirements of

PP. Used methods: predicting the size of PP (FPA – Function Points Analyses, Feature Points, Mark II Function Points,

3D Function Points, etc.); the evaluation effort for the development of PP by using models COCOMO [1] and systems

(Angel, Slim, Seer-SEM, etc.), as well as the quality of PP.

Production discipline SE determines the production of PP and makes a profit. In the area of SE mass produced

products created by the famous firms Microsoft, IBM, Intel, and the factory programs, as well as the results of outsourcing

(upgrading a legacy inherited), bring on large profits. The production of PP is based on the technological processes of the

manufacture of certain product types using the theory of the design and usage of tool environments [12].

4. PROGRAMMING PARADIGM

4.1. Scientific Foundations of Programming Paradigms

To introduce several programming paradigms developed formal apparatus in theoretical and applied design of

individual software resources for building (configuration) in the software system. In [10-14] describes the theoretical

foundations of the paradigm of the object, component, service, aspect and generating programming.

Object design theory is built with the use of base notions of formal specification, set theory and class theory of G.

Booch, Frege triangle and OM CORBA, utilizing the following principles:

• All essences of the domain are objects;

• Each object is a unique element;

• All objects are determined at a certain abstraction level and are ordered according to their relations;

• Object interoperability with the interfaces.

An object is singled out using object analysis with mathematical terms for description and clarification of object

methods in the OOP being created.

According to G. Booch, «object-oriented approach = objects + inheritance, polymorphism, encapsulation»; OM

also encompasses object classes and their relations (aggregation, associations, specializations, instantiation so on), as well

as their behavior.

An object is a named part of actual reality with a certain abstraction level; a notion structure according to Frege

triangle (denotation, sign, and concept).

Each object Оi belongs to the set of objects O= (O1, O2. …, On),

where, Oi = Oi (Nai, Deni, Coni), Nai is a sign, Deni is a denotation, Coni is an object concept, Coni = (Pi1, Pi2,...,

Pis) is determined upon a set of predicates Pil [7-9].

Axiom 1: The subject domain designed with objects is an object itself.

Axiom 2: The subject domain being designed may be an object within another domain.

20 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

When designing the domain, each object gets at least one property or description, semantics allowing its unique

authentication among the set of all objects and to the set of predicates of properties and relations between objects.

The object property is defined on the set of objects belonging to the domain with the unary predicate with return

value depending on its external and internal properties. A description is an aggregate of properties (in form of predicates)

subjected to the condition of acceptance of truth value by no more than one predicate from these descriptions. The relation

is a binary predicate that returns truth on each pair of objects in the set. The basic types of mutual relations are as follows:

• Set – set;

• Element of a set – element of a set;

• Element of a set – set;

• Set – element of a set.

These relation types correspond to operations: generalization, specialization, aggregation, association,

classification, and instantiation. Types of relations 3), 4) are subsumption, relation (IS–A) and part-whole relation (PART–

OF), respectively.

The implementation of the object paradigm is described below. Other paradigms are discussed in [15, 16].

Made in these paradigms, elements of software resources are described in PL and their interfaces in standard

WSDL. The proposed formal apparatus of the object component programming paradigm. It formalizes the resource

Assembly into complex programs and systems using the method of Assembly programming. This method provides a

mechanism of interaction between resources of these paradigms in the new system or family. The theoretical components

include functional, agent, automaton, etc.

4.2. Technical Programming Paradigms SE

The Agile methodology is focused on the close collaboration of a team of developers and users. It is based on a

waterfall model lifecycle incremental and rapid response to changing demands on PP. The team works according to the

schedule and financing of the project.

eXtreme Programming (XP) implements the principle of "collective code ownership". It any member of the group

can change not only your code but also code another programmer. Each module is supplied with the autonomous test

(unit test) for regression testing of modules. Tests written by the programmers and they have the right to write tests for any

module. Thus, most of the errors are corrected at the stage of encoding, or when you view the code, or by dynamic testing.

SCRUM is Agile methodology project management firm Advanced Development Methods, Inc.,

used in organizations (Fuji-Xerox, Canon, Honda, NEC, Epson, Brother, 3M, Xerox and Hewlett - Packard etc.) are based

on an iterative Life Cycle model with well-defined development process, including requirements analysis, design,

programming, testing (http://agile.csc.ncsu.edu).

DSDM (Dynamic Systems Development Method) for rapid development of RAD (Rapid Application

Development) prototyping and ASD (Adaptive Software Development) for extreme projects and is based on the theory of

complex adaptive systems. It is a static development Cycle PS includes Planning — Design — Programming, and dynamic

Cycle of Reflection — sharing — Learning. FDD (Feature Driven Development) methodology focused on functionality

The Scientific Basis of Software Engineering 21

www.iaset.us editor@iaset.us

(www.nebulon.com) and is a model-driven process.

4.3. Processing Paradigm of Life Cycle Standard ISO/IEEE 12207

The approach to automation ISO/IEC Life Cycle 12207-2007 is the ultimate tool serial process of manufacturing

of PS using three categories of processes:

• The main processes (Figure 1);

• Support processes (Figure 2);

• Organizational processes (Figure 2).

In this standard the following list of processes, their implementation, and forms of representation results. Core

processes – these are processes of development, operation, and maintenance of PS (Figure 2).

Figure 1: Diagram of the Main Processes of Life Cycle of the PS

Development process starts with requirements, design elements of PS (modules, objects, components, etc.),

integration (Assembly) of individual elements, testing of individual elements and overall system; operation ready PP.

The supporting processes and organizational processes (Figure 2) are used for quality management PS and software

process improvement Life Cycle (LC).

Figure 2: The Scheme Support Processes

ISO/IEC Life Cycle 2007 (Tabl. 1) includes 17 processes, sub-processes 74 and 232 tasks (actions).

22 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

Table 1: Process, Sub Process and Task of Standard ISO/IEE 12207

Class Process Action Task

Basic processes 5 35 135

Support processes 8 25 70

Organisational processes 4 14 27

All 17 74 232

These processes are necessary and sufficient for the design and manufacture of any system. Some system

companies sold individual pieces, i.e. individual variations of this standard or life cycle models (spiral, waterfall, iterative,

etc.). The concept of automation of the Life Cycle of the ISO/IEC method of ontology is new and original. The basis of its

implementation is the structure of processes of LC (Figure 1, 2) and their interaction (table.1), as well as the Ontology

language for the conceptualization of individual variants of the process LC [23, 24].

Definition of processes of life cycle can be: the languages OWL (Web Ontology Language), ODSD

(Ontology-Driven Software Development), XML (Extensible Markup Language); systems modeling domain ODM

(Organizational Domain Modeling), FODA (Feature-Oriented Domain Analysis), DSSA (Domain-Specific Software

Architectures), DSL (Domain Specific Language), Eclipse DSL Tools VS.Net, Protégé, etc. this also includes the language

of BPMN process description and LC the DSL to describe the semantics of the domains. Held ontological description of

the main processes, support processes and organizational processes in the DSL and the description of these processes in

Protégé 2.3 in the XML format. The approach to the automation of the LC was presented at two conferences, including

“Science and Information - 2015” in London [24].

4.4. Method to the Creation of New Technologies

An technology for PP production amount of product lines and technologies. They are created using the method of

technological preparation development (TPD, 1987) [12]. This method has been tested in the project of the Institute of

Cybernetics AIS "Jupiter–470" for automation of the Navy of the USSR (1982-1991). It has developed six TL for creating

and presents specific forms, documents, and processes of these AIS. In this TL was sold about 500 of data processing

programs for different objects AIS. TL processes perform the operations on the prepared resources (modules, components,

data, etc.).

Work in the field of meta-technologies TPD began to run through languages UML, DSL, Workflows,

(BPMN Basic Process Modeling Notation), etc. These funds are used to create product lines (Product Lines/Product

Family) as the infrastructure for the production of PP from ready resources and reuse [19, 20].

4.5. Factory Software – based Industry Programs

Definición

A factory is an integrated architecture the Assembly line production of PP from ready-made software components

(modules, objects, services, aspects, etc.), typically decorated in PL, and their interfaces in the WSDL. Last posted in

system libraries and repositories [17, 18].

Analysis of the available factory programs (Grinfeld, Bey, Lenz, etc.) and experience the creation of a specific

student factory in KNU (http://programsfactory.univ.kiev.ua) allowed us to formulate the following set of necessary

elements for the work of the factory programs:

• Prepared software resources (artifacts, modules, programs, systems, reuses, assets, etc.);

The Scientific Basis of Software Engineering 23

www.iaset.us editor@iaset.us

• Interfaces - qualifiers ready resources in one of the languages IDL, API, SIDL, WSDL;

• TL, product line (Product Lines) production of PP;

• The Assembly, Conveyor Line;

• Methods and techniques for the planning and execution of works on the line on the creation of system;

• System-wide development environment for individual programs.

On such method to do the existing factories programs:

• AppFab in the system of collective development VS.Net;

• AppFab IBM to create business systems;

• AppFab in the CORBA system for the Assembly of heterogeneous software resources;

• Product Line SEI USA;

• Factory streaming building software John. Grinfeld, G. Lenz, etc;

• Factory continuous integration by M. Fowler; etc.

Some factories are represented on the website http://www.7dragons.ru/.

5. MODELING CHANGING SYSTEMS

5.1. The Essence of Modeling of Systems and Families

The concept of the variability of the original represented in the model FM (Model Feature) to Product Line based

on the set of components reuse (CRU, Reuses), which in PS may include the variant points [19, 20].

Variability is a property of the system to the extension, modification, adaptation, or configuration for use in a

particular context and to ensure its subsequent evolution (ISO/IEC FDIS 24745 -2009 E).

Model FM is formed in the process of development of the PP and includes general functional and non-functional

characteristics of items that can be used by family (FPS) members of PS when you create different variants of PS or PP on

the points of variance.

The point of variance is a place in the system, which is used for the selection of the PS option. This point is a

collection of options attached to the kernel made the system. In the production of the PS from CRU is created and the

family PS. The FM model is used in engineering subject field and engineering applications for Assembly made resources.

Domain engineering provides the definition and implementation of common artifacts-variable functions for the

production of a new product variant.

Artifacts – the architecture, requirements, components, tests, etc.

Application engineering includes the definition of artifacts needed by the user and makes changes to the collection

at the application level.

24 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

5.2. New Method Modeling of Systems and Families

One of the new methods of modeling of systems is theory object-component method (OCM) [21, 22].

This method provides a four-level logical-mathematical design of families of FPS using the function (Fo = fo1,..., fon) and

interface elements (Io= io1,..., iom) domain.

Functional elements of a domain form a set FO = (fO1, fO2, ..., fOn) and their interfaces – a lot of Io. Applies the

unary predicates from the set P'= (P1, P2,... Pr). These predicates establish the presence of the characteristic properties of

the elements of the FO. Functional object foi specifies a formal description of application functions PS, which provides the

solution of the problem specified subject area/domain. The object is given by a triple: the name, data types, and their

values. Front-end Io object specifies the formal description of the operations call the methods and data of functional entities

which are specified by the intermediary interactive functional objects.

Logical-mathematical modeling of FPS on the levels of functional and interface objects is reduced to the

construction of sub graph of levels and to the final formation of the graph [21]:

G = (O, I, R),

Where , O – the set of functional objects, I – the set of interface objects, R – the set of relations between objects

(Figure 3).

fo1

fo2 fo3 fo4

io5 io6

O5 O6

io7 io8

O7 O8

Figure 3: A Graph G on the Set of Functional and Interface Objects

The vertices of the graph G define the functional elements of the SPS – fО1, fО2, fО3, fО4, fО5, fo6, fО7, fo8 and

interface elements – iO′5, iO′6, iО′7, iО′8.

Functional elements of the graph fО1 – fО8 described in a programming language, and interface objects iO′5–iО′8

interface language IDL. The relationship between the functional objects, for example, Ok, Ol is provided by an interface

object from the plurality of input interfaces In.

Graph G it is possible to collect individual programs P1 – P6 using mathematical operations ∪, the relevant

activity link:

• P0 = (P1 ∪P2 ∪P3 ∪P4∪ P5);

• P1 = fО2 ∪ fО5 , link P1 = In iO5 (fО2 ∪ fО5);

• P2 = fО2 ∪ fО6, link P2 = In iO6 (fО2 ∪ fО8);

The Scientific Basis of Software Engineering 25

www.iaset.us editor@iaset.us

• P3 ;

• P4 = fО4 ∪ fО7, link P4 = In iO7 (fО4 ∪ fО7);

• P5 = fО4 ∪ fО8, link P4 = In iO8 (fО4∪ fО8).

These programs are part of substations and may include the variant points for change in the individual functional

elements of the model PS, respectively, in the graph model, G. Presents the transition from objects to components.

It defines the component model is adequate to the object in the code machine and a modified model of variability [25].

Theorem

The functional interaction between the two objects is correct if the first object completely provides the functions

and data transfer that is required by another object:In(fok) ⊆Out(fol).

The objects of the graph G form a model of the system under system configuration. Elemental which can be

changed in the graph is labeled by points of the variance (variability) [10, 11, 22].

The point of the variance in one place in the model system PS, which selects the variant of the system. A point of

variance is handled by the configurator and allows transforming the prepared system by replacing some of the components

used reuse, CRU by other more functional or correct.

Variability – a property of a product (system) to expand, change, adaptation, or configuration for use in a

particular context and ensure its subsequent evolution ISO/IEC FDIS 24765 - 2009 (E).

5.3. The Transition from the ОМ to the Component Model (MC)

The essence of OCM is to provide domain count of OM and transformation of function objects to software

components that are integrated, are configured in the PS components and interfaces and component operations of the

algebra, and is isomorphic to contribute to display different types of data components associated with each other [17].

Component formally has the form:

CImj = (ImNaj, ImFuncj, ImSpecj), where

ImNaj – the name identifier of the implementation component;

ImFuncj - functionality appropriate for a given implementation (as a set of method implementations);

ImSpecj – implementation, specification (description of conditions, settings, etc.).

The model of the component's interface has the form:

CIni = (InNai , InFuni , CIn, InSpeci), where

InNai – the name of the interface;

InFunci – functionality (methods) implemented by the given interface;

CIni – interface instance control component;

InSpeci – interface specification (the description of types, constants, other data members, method signatures, etc.).

Interface Ini from the formula interface model defines the conditions of management of class instances:

26 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

• Searching and identifying the required component – Locate;

• Create a component instance – Create;

• Removal of a component instance – Remove.

• Administration of components is CIni = {Locate, Create, Remove}.

For interaction between two components C1 and C2 are determined by the following necessary condition:

If, CIni1∈CInO1, then there must be CIn2∈CInI2 such that Sign (CIni1)= Sign(CIn2)&Provide(CIni1) ⊆CImj2

where Sign(.) means the signature of the appropriate interface.

Between object and component representations of programs, there is an ambiguity, which is generated by the fact

that a particular component can have implementations for multiple interfaces Isyst.

If each of the interfaces implemented by a separate component, then there is a single equivalent mapping between

object and component representations of the application structure.

To make changes in the CM model uses an component algebra - external, internal and evolutional algebras:

∑ = {ϕ1, ϕ2, ϕ3}, where

ϕ1= {CSet, CESet, Ω1} – exterior algebra,

ϕ2 = {CSet, CESet, Ω2} – interior algebra,

ϕ3 = {Set, CESet, Ω3} is the algebra of evolution of components.

The set of operations this algebra is given in [25].

5.4. Managing Variability of Systems

Model of variability PS - MFvar= (SV, AV), where

SV – submodel of the variability of the artifacts in the structure of PS;

AV - submodel variability of the finished product PS.

The MFvar model ensures that the artifacts of the PS, lower costs and decrease the cost of developing the system.

Model of the variability of FPS- a set of FM models of the PS, set on the many artifacts, some points of variance for

subsequent changes individual elements [22].

Managing variability FPS is performed on the points of variance, variant artifacts of the PS, limitations, and

dependencies by using the predicates P defined on the set of options of PS.

To control the variability method is used E. Deming, based on the functions F1 - F4:

F1 – operation, action to ensure that the artifacts of the FPS (Act);

F2 – the planning system FPS of the artifacts (Plan) for engineering subject area and engineering applications;

F3 – system monitoring and verification of state changes of the FPS (Check);

F4 – actualization (fulfillment) systems FPS (Do).

The Scientific Basis of Software Engineering 27

www.iaset.us editor@iaset.us

Managing variability the FPS with the requirements - R is:

• The rationale for the function F1 (R1);

• Coordination of the implementation of artifacts in the processes of FPS (R2);

• Implementation of the validation of the creation of FPS (R3);

• Tracking relationships between the characteristics of the PS and FPS (R4).

Compliance requirements R1 – R4 functions F1 – F4 model of the environment process model process variability of

the SPS is the basis for the formation and implementation of various systems [21].

The configuration model PS, –FPS [21]:

Мkonf = (ОМ, MSD , Мps, MFvar , Min), where

Min – a model of interaction of individual elements of the created system.

Based on the model Мkonf are:

• Selection of artifacts and resources of the PS in the base configuration of a given system;

• Allocation of common and variant characteristics of the PS in the model FM and model of the PS;

• Planning for multiple resource use for PS in the points of variability and their fixation for their removal

replacement;

• Build resources in the PS and their adaptation to new conditions of environment;

• Management options for PS with the replacement of individual functions in the PS;

• Manage the interaction of artifacts in a heterogeneous environment.

5.4. Verification and Testing of the PS and SPS

For verification purposes, the objects of systems use temporal logic (Linear Temporal Logic (LTL) or a logic tree

computation CTL (Computational Tree Logic) [10, 11].

The method of deductive analysis LTL provides a logical output according to the model, made by hand. It applies

only to those facilities that are critical (e.g. security of operation, or the protection of information).

Verification by model checking is only applicable to objects with a finite number of States. The feature of the

method of verification for the model is that the verification is conducted automatically and do not need special knowledge

and time. The method of verification- mathematical formulation of requirements to create programs with help algorithms

of formal verification requirements.

Testing work products (plans, test suites, test data) is based on the use of CRU and finished products. Test

products should be suitable for other PP and are part of the reusable components of a family of FPS. For testing the PS and

FPS requirements use scenarios (Scenario-based test derivation), the method of analysis of trees FCTA (Fault Contribution

Tree Analysis) and complex PLUTO (Product Lines Use case Test Optimization).

28 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

5.5. Evaluation of the Quality and Reliability of PS

The quality - the totality of the properties of PS that provide the ability to meet established or anticipated needs, in

accordance with a purpose. The key characteristics of quality attributes are reliability and completeness as properties of the

PS to eliminate failures with hidden defects with this criterion and a quality model, which relates the measures and metrics

of the internal, external and operational type. From the standpoint of completeness of the product is the main indicator of

quality is defects and failures [10].

The main indicators of quality are defects and failures. This corresponds to such model of quality Mqua:

• Internal measure D0 is the number of defects in each object PS;

• External measure R(t) – is the reliability of operation of each object in PS for a given time t without failure;

• Measure performance Qps is determined by the trouble-free functioning of the PS.

The model of defects based on multiple quality factors, analysis of causal relationships between them, combining

qualitative and quantitative assessments of their impact on the density of defects. To calculate the reliability function uses a

special formula:

,

Where, t - the operating time of PS without a failure when testing in a period of time T;

m (T) is a function of reliability growth, as the average number of defects PP identified during its operation for

time t.

The reliability of the software largely depends on the number remaining and corrected errors in the development

process. During operation, errors are also detected and eliminated. If the bug fixes are not made new, or at least new bugs

introduced is less than clear, in the course of operation reliability increases.

The function of reliability growth m(t) is defined by the formula

 , where

N0 – the number of latent defects in PP at the beginning of system testing on the form:

λ0 – the failure rate of PP at the beginning of system testing, as defined by a given formula;

ρ – a intensity code execution (speed of processor);

K =10
 -7

- the ratio of defects (permanent) for model J. Musa;

I – a number of source code instructions;

ϕ – a code expansion ratio (the number of code instructions executed per original instructions).

)))()((exp()|(TmtTmTtR −+−=

))exp(1()(
0

0

0 t
N

Ntm ⋅−−=
λ

ϕ
ρλ

⋅
⋅⋅=

I

K
N 00

The Scientific Basis of Software Engineering 29

www.iaset.us editor@iaset.us

To assess the quality systems used the standard ISO/IEC 9000 (1-4) quality model is form:

Mqua = {Q, A, M, W}, where

Q = {q1, q2, …, qi }, i = 1,..., 6, – various quality characteristics (Quality – Q);

A = {a1, a2,…, aj}, j = 1,..., J, – the set of attributes (Attributes – A), each of which captures a separate property of

the qi quality characteristics;

M = {m1, m2,..., mk}, k =1,..., K, – the set of metrics (Metrics - M) each element of the attribute aj for the

measurement of this attribute.

W = {w1, w2,...,wn}, n = 1,..., N are weight coefficients (Weights - W) for metrics of the set M.

The quality standard identifies six basic quality characteristics: q1: functionality; q2: reliability; q3: use, q4:

efficiency; q5: maintainable; q6: portability. The quality q1 – q6 are assessed by the formula:

On the basis of the obtained quantitative characteristics of the final grade is calculated by summing the values of

individual indicators and their comparison with the benchmark systems.

5.6. CASE –instrumental Tools

As a means of realization of life cycle processes, ISO/IEC 2007 elected the language Device and the DSL

Tool VS.Net etc. In them ontological description transformer to the XML language, which is the implementation

language of the marked features of the LC domains, which define the communication and data exchange between them.

OCM realized on the website http://7dragons.ru/ru. Site database forms a repository of ready resources, models

PS, variability, and interaction of system-wide tools - Visual Studio, Eclipse, CORBA, WSphere:

• Visual Studio.Net↔Eclipse defines the environment of the interaction of individual elements in the C# language

and interface. The model establishes the relationship of the elements with a given environment via the config file.

• CORBA↔JAVA↔MS.Net provides communication between these environments with specified in these

languages, the elements to access them from other developers.

• IBM Sphere↔Eclipse provides communication between programs in PL these environments.

With the participation of the students was developed a program of processing FDT and GDT, a variant of the

ontology LC using the tools, DSL Tools VS.Net and Protégé [22] etc. They are available on the website.

It is a link to a website of programs of KNU http://programsfactory.univ.kiev.ua. It accumulates the scientific

artifacts of the students of KNU. The website also includes courses in Java, C # VS.Net and "Software engineering" for

students of KNU and MIPT. The site was turned over 150,000 of the students and professors.

6. CONCLUSIONS

The paper presents the scientific concepts and the fundamentals of the subject of software engineering, presented

in the monograph figure 4 [10] and its copy figure 5 [11]. Describes the fundamental scientific concepts SE

(object, program, TL, tool, method, interface, etc.) and Assembly method based on interfaces. The described OCM,

jj

j

j wmaq 11

6

1

11 ∑
=

=

30 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

including logical-mathematical apparatus of systems design to synthesis, structural, and behavioral characteristic levels.

It is built graph of object model and model characteristics of the MF to control the variability of systems and their families

FPS.

The formal theoretical description of programming paradigms– object, component, service, aspect and generating

programming is suggested [10]. Show the standard descriptions of objects, interfaces, and Assembly method

(configuration) for obtaining the modified complex systems. Present a new approach to creating complex systems with the

use of OM graph and model MF. This is description of the idea of automation of processes of LC ISO/IEC 12207 by means

of ontology [24] in the Protégé environment of the site the ISP http://7dragons.ru/ru.

7. REFERENCES

1. Boehm B. W. Engineering design software. - M. Radio and communication. - 1986. - 510 p.

2. Lipaev V. V. the Reliability of the software of ACS, Energoizdat, 1981. (in Russian).

3. Lipaev V. V. Software Quality, Finance and statistics, 1983.-320p. (in Russian).

4. Jacobson Ivar. Object-Oriented Software Engineering: A Use Case Driven Approach, 1992.- ISBN 0- 201-

54435-0.

5. Pfleeger Shari Lawrence, Software engineering: theory and practice, London : Prentice-Hall, - 1996.- 676 р.

6. Lavrischeva E. M. Grishchenko V. N. The connection of multi-language modules in OS, – M.: Finance and

statistics, 1982.-137 pp. (in Russian).

7. Lavrischeva E.M. The problems of software engineering.-Knowledge. - K., 1991.-29c.

8. Lavrischeva E. M., Grishchenko V. N. The Assembly programming. – Kiev: Nauk. Dumka, 1991. – 213 c.

9. Lavrischeva E. M., Petrukhin V. A. Methods and means of software engineering security. – M.: MIPT- 2007. –

415 p. (in Russian).

10. Lavrischeva E. M. Software Engineering computer systems. Paradigm technology, CASE tools programming. K.:

Nauk. Dumka.- 2014.-285 p. (in Russian).

11. Prakrit Trivedi, Anil Kumar Dubey & Vipul Sharma, Experimental Report to Analyse Human Thoughts on

Software Engineering, International Journal of Computer Science Engineering and Information Technology

Research (IJCSEITR), Volume 2, Issue 4, November-December 2012, pp. 45-52

12. Lavrischeva E. M. Programming methods. Theory, Engineering, Practice.-K.: Nauk. dumka, 2006. -451 p. (in

Russian).

13. Lavrischeva E. M. Basics of staging of development of the applied programs ODS.- Preprint 87-5 ICyb.

Ukrainian, Academy of Sciences.-1987.-30 р, (in Russian)..

14. Software engineering as a scientific discipline and engineering //E. M. Lavrishcheva, 2008, Volume 44, Number

3, Pages 324-332.

15. Classification of software engineering disciplines. E. M. Lavrischeva 2008, Volume 44, Number 6, Pages

791-796.

The Scientific Basis of Software Engineering 31

www.iaset.us editor@iaset.us

16. Ekaterina M. Lavrischeva. Assemblling Paradigms of Programming in Software Engineering.- 2016, 9, 2016.-

p.296-317, http://www.scrip.org/journal/jsea, http://dx.do.org/10.4236/jsea.96021

17. Lavrischeva E. Generative and composition programming: aspects of developing software system families.-

Cybernetics and Systems Analysis, Springer Volume 49, Issue 1 (2013), Page 110-123.

18. Lavrischeva E. M. Theory and practice of software factories.- Cybernetics and a System Analysis.- No. 6, 2011.-

S. 145-158.

19. Theory and practice of software factories K. M. Lavrischeva, 2011, Volume 47, Number 6, Pages 961-972.

20. Pohl K., Böckle G., van der Linden F. J. Software Product Line Engineering: Foundations, Principles and

Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-28901-1.

21. Berger T., She S., Lotufo R., Wąsowski A., Czarnecki K. A study of variability models and languages in the

systems software domain. IEEE Transactions on Software Engineering, 39(12):1611-1640, 2013. DOI:

10.1109/TSE.2013.34.

22. Ekaterina Lavrischeva, Andrey Stenyashin, Andrii Kolesnyk. Object-Component Development of Application and

Systems. Theory and Practice /Journal of Software Engineering and Applications, 2014,

http://www.scirp.org/journal/jsea.

23. Lavrischeva E. M. Theory of object-component modeling software systems.- Preprint the ISP, 2016, 48 p.

www.ispras.ru/preprints/docs/prep_29_2016_pdf.

24. Lavrischeva E.M. Ontology of Domains. Ontological Description Sofware Engineering Domain— The Standard

Life Cycle, Journal of Software Engineering and Applications, July 24, 2015.

25. Lavrischeva Ekaterina. Ontological Approach to the Formal Specification of the Standard Life Cycle, “Science

and Information Conference-2015", Jule 28-30, London, UK,www.conference.thesai.org.- p.965-972.

26. E. M. Lavrischeva. Component theory and a collection of technologies for development of industrial application

of ready resources, proceedings of the 4 - scientific practical conference "Actual problems of system and software

engineering", OPSPI-2015, 20-may 21 2015, 101-119. (in Russian).

27. Lavrischeva E.M., Grischenko V.N. Assembling programming. Fundamental industry of program systems. –

Nauk. dumka, 2009.–p.371 (in Russia).

28. Andon F..I., Koval G.I., Rjrotun T.M. and etc. Foundation engineering of quality PS.- K.: Akademperiodica.-

2007.-680p. (in Russian).

32 E. M. Lavrischeva

Impact Factor (JCC): 5.0273 NAAS Rating 3.73

APPENDICES

Figure 4: (2014) Figure 5: (2016)

