
Tools Support for Linux Kernel Deductive
Verification Workflow

Denis Efremov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

efremov@ispras.ru

Nikita Komarov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

nkomarov@ispras.ru

Abstract—Errors in critically important systems may
become very expensive. If such systems must provide
confidentiality when working with some critically im-
portant data such as classified information or private
know-how, an error cost may become difficult to eval-
uate. For these systems, formal verification methods
should be used to prove they are error-free. In the
paper, a case of formal verification of such system –
a Linux kernel security module – is considered; the
chosen toolset, the verification process workflow are
reviewed, along with some auxiliary tools required for
this process and developed by the authors.

I. Introduction
With the growth of software systems complexity, new

requirements for their correctness and robustness emerge.
Errors in critically important systems may become very
expensive. For such systems, just a thorough compre-
hensive testing with maximum possible coverage is not
enough; the only way to ensure the system is error-free
is formal verification – mathematical proving of system
correctness and compliance with requirements.

One of the formal verification bases is Hoare logic [1].
Its central part is so-called, Hoare triple, describing how
an execution of code fragment changes the computation
state. Hoare triple looks this way:

{P}C{Q}

where P and Q are predicates and C is a command. P
is called precondition, Q is called postcondition. If the
precondition is true, then running the command makes
postcondition true too. So, the program is divided into
such fragments, and for each of them there is some
precondition and some postcondition. It can be proven
that, if the precondition holds, after the execution of this
code fragment, the postcondition holds too. Examining the
whole program in such a way, it can be proven that, if
the precondition for the whole program holds, after its
execution, the postcondition for the whole program holds.
Robert W. Floyd has also developed a similar to Hoare
logic method at the same time, applied to flowcharts [2].
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The seL4 microkernel [3] developers had a task of
performing the formal, machine-checked verification of the
seL4 microkernel. SeL4 is a microkernel of L4 family, and
when it was developed, one of the main requirements for it
were highest security and reliability possible. SeL4 is rela-
tively small (about 8700 lines of code in C language, plus
about 600 lines of code in assembly language). Therefore
formal approach to its verification could have been used,
that allowed to demonstrate design and prove C language
implementation correctness.

SeL4 developers’ approach to kernel development pro-
cess is remarkable. As a first step, abstract kernel spec-
ification is developed. Based on it, high-level kernel pro-
totype is developed, using a subset of Haskell functional
language. This prototype is automatically translated into
a executable specifications, and then compliance between
formal and executable specifications is proven. Executable
specification uses Isabelle/HOL prover language, which
the developers have chosen for kernel correctness proof.
As the next step the prototype was running on hardware
simulator. This allows to evaluate kernel’s design correct-
ness.

Then, based on the aforementioned Haskell executable
prototype, final kernel implementation is developed. C
language was used. Kernel developers don’t use Haskell
code itself, because it would require a Haskell runtime
environment for kernel to function. And this runtime
environment is bigger than C kernel implementation. Also,
because of using the low-level programming language,
some additional optimizations and performance tweaks
can be applied. After the development of the final kernel
implementation, its correctness and compliance with the
executable specification are proven.

There are, of course, some limitations to this approach.
In particular, correctness of the parts of the kernel imple-
mented in assembly language, which include some impor-
tant parts such as MMU, is not proven. Also, correctness
of compiler, boot loader and hardware is not proven either.

From some point of view, we are working on a quite
similar task now. Linux kernel security module based on
formal security model [4] and using standard Linux kernel
security interfaces (LSM, Linux Security Modules) [5] with



some extensions has been developed. This module is a
part of Astra Linux Special Edition distribution, which is
security-enabled and certified for working with confidential
data. The size of security module’s source code is about
4500 lines. The challenge is that the module was in an
active development state at the time when its verification
has started. The code wasn’t stabilized and was a subject
to changes, including not only bugs fixing, but also adding
some new features.

Because of the task’s importance, our team have de-
cided to use formal verification methods. So, the task
is as follows: to formally prove the correctness of Linux
kernel module implementation in C language, and to prove
the compliance of this implementation with the abstract
security model. The correctness of security model has
been verified separately. Also the multi-threaded nature of
Linux kernel environment should be taken into account. In
particular, this means to proof the absence of simultaneous
memory access problems such as race conditions.

The paper is organized as follows: in section II brief
description of instruments used for deductive verification
process is given; in section III some features of the target
module source code are described; in section IV verifi-
cation process workflow is considered; in section V some
additional tools which are developed by the authors and
useful in verification process are described.

II. Toolset
There are a number of deductive software verification

tools. All of them are used in a similar way: functions
are annotated with pre- and postconditions; each loop is
annotated with invariant that has to be preserved on each
iteration; one can also specify some lemmas that allow
tools to prove complicated statements. For functions that
aren’t proven, but are used in the code under analysis,
it is necessary to write pre- and postconditions only.
Developing specifications for macros is usually impossible
due to the fact that the tools work with the code already
preprocessed. Let’s consider some of such tools.

A. Verifast
Verifast [6] is a tool for verification of single- and multi-

threaded programs written in C or Java. This tool has
been developed in the Belgian Katholieke Universiteit
Leuven. It uses a modified Hoare logic, function annota-
tions are written in its own original language. To prove
the specification conditions correctness, Z3 SMT solver is
used. There is also an IDE with graphical user interface.
Unfortunately, Verifast is not free software. Its source code
is not open, which might cause some problems to the point
of inability to use the tool in certain situations, given the
task complexity and non-triviality.

B. Boogie
Boogie [7] is an intermediate language (formerly called

BoogiePL) and a tool for verification of programs devel-
oped by Microsoft Research. It is language-independent,

for now there is a translation support available for lan-
guages Spec#, C, Dafny, Eiffel and Java bytecode with
BML. The tool supports verification of multithreaded
programs [8]. Boogie also isn’t free, which might cause
problems similar to those described in paragraph II-A.

C. Frama-C + Why + Jessie
Jessie [16] is designed for deductive program verifica-

tion. It is a plugin for Frama-C, a platform for static
analysis of programs written in C language. Frama-C is
developed jointly by the two French organizations: CEA-
LIST (Software Reliability Laboratory) and INRIA-Saclay
(ProVal team, common with LRI-CNRS and Université
Paris-Sud 11). Jessie is written in OCaml language. Most
importantly, it is a free software, which allows one to fix
quickly its shortcomings revealed during the tool usage.
Specifications for Jessie are written in ACSL language [10].
ACSL gives the ability to develop specifications of different
levels, from more abstract to more specific. Jessie uses the
Why platform [9] for the purpose of verification conditions
translation to the format required by the specific SMT
solver. It supports a wide variety of output formats,
including Coq, PVS, Isabelle/HOL, Simplify, Alt-Ergo,
CVC3, CVC4, Z3 etc. To solve the problem, this particular
toolset has been chosen.

Unfortunately, just the formal verification tool isn’t
enough to solve the kernel module verification problem.
First of all, the tools lack some features needed to verificate
the module; for example, Jessie didn’t support function
pointers and variable-arguments functions at the time of
project start. Secondly, some other auxiliary tools are
needed to simplify the task and to establish a more efficient
collaboration between the specifications developers. For
example, it was found out that time required for Jessie to
start may become unacceptably long when working with
large source code chunks such as the security module with
all the Linux kernel headers it depends.

III. Target module source code analysis
Initially, the security module source code has been devel-

oped without any clear plans of its subsequent verification,
or even the conception of how this can be done. Therefore,
the code hasn’t been limited to any C language subset. The
module has been developed based on the optimal perfor-
mance, not easiness of verifiability. Thus the code uses
some GCC extensions of C standard actively. Moreover,
because the security module is based on the Linux kernel
code base, some of the code design pattern and language
extensions are imposed and not always possible to give up.

So, first of all, the security module source code has
been reviewed in order to identify all the features that
are impossible or very difficult to work with using the
verification tools. This often includes all the extensions
of the C language standard, and also a well-defined set of
language features [11]. This language features set may be
implied by the specific verification tools, but often they



are just restrictions on the possibility to prove the code
compliance with the specifications. Some coding standards
include all of these limitations in advance [13] [12].

All the identified features were analyzed in respect to
the possibility to avoid any usage of them in each case.
Unfortunately, it was not always possible because the
security module code is based on the Linux kernel code.
And if some of these features are found in the kernel header
files, the denial can be impossible at all. (It should be
noted that verification tools often just cannot parse some
unsupported language features and stop working when
encounter them.) In such cases, decisions were made to
add limited support of these features to verification tools.
In particular, such decisions have been made on function
pointers, variable-argument functions, asm goto, Bool
type support etc.

The results of this analysis of the security module source
code were reported to its developers, with the emphasis
on the parts that cannot be verified and need rewriting.
And the parts that need to be simplified, since their
proving is an almost impossible task, as well as some
recommendations on coding style.

Since the verification is performed not for the entire
module, but only for the part of it that is described by the
mathematical model [4], some patches have been added
to the project source code, introducing the preprocessor
directives to make the module conditionally compile. Ini-
tially the module source code has been split into several
subsystems. But no clear distinction between the part
that is based on formal model and the other parts that
provide additional functionality (such as logging or system
calls audit subsystems) was made. These patches make
the module source code easier to work with both for the
verification tools (they work with the preprocessed source
code) and the specifications developer. It should be also
noted that the deductive verification tools are designed
to work with code size of about tens of thousands of lines,
and any reduction of this code base is significant for them.
The security module consists of about 10 thousand lines
of code, but only half of them correspond to the part that
is based on formal model and requires verification.

As a next step, the authors analyzed the security module
source code from the verification works plan development
point of view. As the specifications are just pre- and
post-conditions for functions, the module functions were
analyzed with respect to the frequency of their use, their
call dependency, kernel functions used by them. Although
the kernel functions are not verified, preconditions and
postconditions still have to be developed for them.

Macros were also investigated. It is necessary to provide
some additional clarification. Verification tools work with
the preprocessed code only. Therefore, writing specifica-
tions for macros is impossible. However, macros can be
used in the bodies of specifications themselves, if they
do not violate their syntax. For example, such macros
are those replaced by the constants or references to the

structures fields. All the macros in project were classified
into those that can be used in the specifications bodies and
those that can’t. For the second type, a recommendation
was given to the developers to rewrite them as inline
functions.

To collect the aforementioned information on the func-
tions and macros of security module and kernel special
software was developed. Its detailed description is given
in the section V.

Function code can not be proven to comply to its
specifications until all the functions it calls are verified
too. Accordingly, the process of code verification starts
from the bottom up to the top of the call graph. We made
a map (Figure 1) of the module source code based on
the module functions call graph. A special program was
developed for this, a detailed description of which is given
in the section V.

The map shows the amount of work to be done, provides
an opportunity to develop the well-founded verification
plan and helps to coordinate the people involved in ver-
ification process. In addition, it has immediately allowed
to identify several errors in the conditional compilation
directives and to find some sections of code that are most
difficult to verify.

Based on the data that we got after the analysis of
the security module source code, all the module functions
were assigned one of 5 priority levels for specification.
These levels were elaborated based on the current and
planned language features support by instruments, so
that the functions that use some unsupported features
would be verified later, with respect to functionality and
safety significance of individual sections of code, effort and
functions dependencies.

IV. Verification process workflow

The process of kernel module source code deductive
verification is as follows. As a first step, the specification
for the function is developed. Secondly, the developer
attempts to prove correctness of this function. Then some
errors may be found in the specification and/or the source
code. After that, the specification and the source code
are reworked to the point when the specification can be
proven. It should be also noted that the specification
development, its editing and the proof are carried out in
a different programs.

Currently, the verification tools can not cope with the
full source code of the module (about 4500 lines of code)
along with all the required kernel header files (about 70000
lines of code), because of both their size and the presence
of number of language features that are unsupported for
now. We can state with certainty that in the future the
unsupported language features problem will be solved.
However, launching the tools on the full source code will
still take considerable time, and it greatly complicates
the specifications proof process, because their constant



refinement with external tools and, accordingly, frequent
restarts of proof tools.

To reduce these difficulties, the authors have developed
the following workflow of the verification process:

1) Fetching all the dependencies of the module/kernel
code for the function to be proven. This means
collecting all the data necessary to create a separate
object file, with the inclusion of definitions of all
functions necessary, not just their declarations.

2) Developing and proving the specifications. This work
is carried out with the code obtained on the step 1.

3) Transferring the specifications back to the security
module source code after they have been proven.

4) A full re-proof, carried out on the whole security
module source code. This, for example, is needed if
the specification for one of the functions fetched on
the first step has changed, so that the other functions
in the security module can still be proven. Also, this
is needed to make sure that the preconditions for the
proven functions are held at the points of their calls.

Previously, all the work was conducted manually. Later,
some instruments have been developed to perform the first
and the third steps of the workflow. The last step of the
workflow hasn’t been executed yet, because the verification
tools are now being adapted to run on the full security
module source code.

V. Tools support
A. A tool for source code map building

There is a number of tools that allow a developer to
simplify source code navigation. Some of these tools, such
as doxygen [15] and cscope [14], are also able to build
call graphs. However, in the case of our project, we are
faced with the fact that these tools don’t work correctly
with the source code of the kernel module, because it’s
a part of a bigger project. It is impossible to build a
call graph containing only module functions, but not
containing kernel functions, with them. The whole graph
including kernel functions would significantly complicate
the picture, because the number of nodes and edges in
this graph would prevent it to be displayed with clarity.
Furthermore, these tools are not able to display the entire
call graph at once, only in parts.

Because of the aforementioned tools weaknesses, it was
decided to develop a software for the construction of
function call graphs for Linux kernel modules. You can
see the graphical result of its work on Figure 1.

From the perspective of program algorithm, it may be
noted that the program works with preprocessed source
code. The first step is building an index of all the functions
in the module source code. The second is the analysis of
indexed functions names occurrence in functions bodies
and the constructing of the call graph. The third is setting
some additional attributes to graph vertices (such as
colors marking their belonging to the priority queues). The

fourth stage is the output of the built graph in the DOT
format. To build a graphical representation of the graph,
dot program from the graphviz package [17] is used. The
developed program imposes a restriction of the function
name uniqueness in the source code.

B. A tool to gather the statistics of Linux kernel functions
and macros usage

The second tool, that we use to simplify the coordi-
nation of verification efforts, project planning and man-
agement, is a mean for tracking the kernel functions
and macros used by security module. These dependencies
cannot be displayed on the map, as there are a number of
them and their display only decrease the map’s clearness.

Because the task is quite unusual, our team failed to
find the software which provides a turnkey solution. Thus
another software has been developed.

The software works with an unpreprocessed source code
of the kernel module. It scans the entire source code, that
falls under a template of function call. Then C language
keywords, the security module functions and macros are
removed from the collected data. The list of functions that
kernel exports is created by the kernel’s build system.
The functions that are not in the kernel’s export list,
but remain in the data after filtering, are considered as
static inline functions and are taken into account along
with the others. Kernel’s macros list is created using the
C preprocessor’s ability to dump all the macros definitions
that it encounters during its operation. The software’s final
output is a table of kernel functions and macros ordered
by the frequency of their calls. Also, the functions that
already have a specification developed are labeled in this
table.

The first two tools considered, one for working with
the module source code structure and another for its
external dependencies analysis, have been created as aids
for the verification process. The need to create them arises
from the fact that security module’s source code isn’t
stabilized yet and is under development. This development
also includes regular adaptation to the new Linux kernel
releases. The tools mentioned above allow the developers
to track and observe these changes, and to adapt the
already developed specifications in accordance with them.

C. Slicer
During the specifications development, it’s often needed

to review a large amount of code at once. Constant switch-
ing between different files creates a distraction for a specifi-
cations developer. However, a function, its code and data
dependencies are not always localized and located close
to each other. Additionally, verification tools performance
depend dramatically on the amount of code they are run
on, independently of whether there are specifications for
this code and even whether it’s really in use.

These considerations has encouraged the authors to
use a tool that would extract all the code and data
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Figure 1. Map sample

dependencies for the given function from both the security
module source code and the kernel header files. A study
of existing open source C code slicing tools such as [18]
and [19] has revealed that these instruments are not useful
when working with the Linux kernel source code because
of some non-standard extensions present in it. However, it
isn’t required for the task to analyze the possible paths of
the program execution. The main requirement is to keep
the original functions code structure, because its change
would significantly complicate the reverse specifications
transfer to the module source code.

The authors have developed a software that works
with an unpreprocessed code without performing its full
parsing. It extracts macros, structures, functions, typedefs
etc. definitions and declarations based on some heuristics.
It builds a global graph of these objects then by searching
each object’s identifier in the code of the other objects.
After the graph cycle resolution procedure, the code corre-
sponding to the graph vertices that are predecessors of the
particular function is output in sorted order. The result is
just one C source file with functions and several C header
files: one for kernel data, one for module data, and one for
the kernel specifications library. Information contained in
these files is enough for the compiler to build an object
file.

Despite the fact that the software is based on a number
of heuristics and the output files may include redundant
data in some cases (for example, if a function and a
structure have the same name, they would be output,
regardless of whether they are both used in the code),
the software lets one to get an adequate result within a
reasonable time.

D. A tool for the specifications transport
Code specifications are written as simple C comments

before function declarations or definitions. After the func-
tion specification has been developed, it is required to
transport it back to the full kernel module source code.
This allows other developers to use this specification for
their specifications development process.

We have created a software that transports the specifi-
cations from one code version to another. The software
processes the two source code collections with function
granularity, so its work doesn’t depend on which file
is which part of code located in. In the case of some
specifications are already present in the old code, they
are replaced with the new ones. The software recognizes
the differences between code versions caused by the con-
ditional compilation directives in the first version of the
code, and automatically takes into account the absence of
this code part in the second version. In the case when there
are some other changes in the second part of the code, they
are automatically transferred to the first. Additionally, the
patch is created in this case, which can then be sent to
the security module developers. When there is a conflict
caused by the too many differences between code versions,
which the program cannot resolve by itself, it starts an
external code merge software (meld, kdiff3) to resolve
them by hand.

This program is used by the authors not only as part of
the verification process workflow, but also when getting a
new release of the security module source code.

VI. Conclusion

The paper considers the organization of Linux module
deductive verification process. Verification is performed
in the conditions of continuing developing process of the
module’s code and in the absence of requirements to code
written in a formal way.

During the verification activities the authors had to face
restrictions of deductive verification tools and an inability
to completely follow certain standards of safe coding.

The success of the code verification depends on clear
organization and coordination of work. The authors have
developed an approach that allows to mitigate a short-
comings of deductive verification tools and facilitate the
development of specifications from the standpoint of ease
of reading and analyzing the structure of the code by the
developer.



Tool support necessity of worked out verification process
workflow and the absence of turnkey solutions led to the
development of additional tools. These tools have been
used successfully by the authors and bring the results in
the form of verification problem solving approach system-
atization and workflow stabilization.
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