
CPAchecker with Sequential Combination
of Explicit-Value Analyses

and Predicate Analyses

(Competition Contribution)

Stefan Löwe1, Mikhail Mandrykin2, and Philipp Wendler1

1 University of Passau, Germany
2 Institute for System Programming of Russian Academy of Science, Russia

Abstract. CPAchecker is a framework for software verification, built
on the foundations of Configurable Program Analysis (CPA). For
the SV-COMP’14, we file a CPAchecker configuration that runs up to
five analyses in sequence. The first two analyses of our approach utilize
the explicit-value domain for modeling the state space, while the remain-
ing analyses are based on predicate abstraction. In addition to that, a
bit-precise counterexample checker comes into action whenever an anal-
ysis finds a counterexample. The combination of conceptually different
analyses is key to the success of our verification approach, as the diversity
of verification tasks is taken into account.

1 Software Architecture

CPAchecker, which is built on the foundations of Configurable Program

Analysis (CPA), strives for high extensibility and reuse. As such, auxiliary anal-
yses, such as tracking the program counter, modeling the call stack, and keeping
track of function pointers, all of which is required for virtually any verification
tool, are implemented as independent CPAs. The same is true for the main anal-
yses, such as, e.g., the explicit-value analysis and the analysis based on predicate
abstraction, which are also available as decoupled CPAs within CPAchecker.

All these CPAs can be enabled and flexibly recombined on a per-demand basis
without the need of changing adjacent CPAs. Other algorithms, like CEGAR,
counterexample checks, parallel or sequential combinations of analyses, as the
one being filed to this year’s SV-COMP’14, can be plugged together by simply
passing the according configuration options to the CPAchecker framework.

CPAchecker, which is written in Java, uses the C parser of the Eclipse CDT
project3, and MathSAT54 for solving SMT formulae and interpolation queries.



Counterexample Check

ExplicitAnalysis
Simple

PredicateAnalysis
ABE-l

false

false

true

ExplicitAnalysis
with Interpolation

PredicateAnalysis
BitPrecise

true
true true true

false false false

unknown unknown

unknown

feasible

spurious

unknown
PredicateAnalysis

ABE-lf

unknown
true

false

spuriousspurious spuriousspurious

Fig. 1. Overview of the sequential combination used for reachability problems

2 Verification Approach

CPAchecker gets as input a specification and the source of a C program, which
is then transformed into a control flow automaton (CFA) of the input program.
During the analysis, this CFA is traversed, gradually building the abstract reach-
ability graph (ARG). The nodes of the ARG represent the reachable states of the
program, containing all relevant information, such as the program counter, the
call stack and the information collected by the main CPAs, like explicit variable
assignments or boolean combinations of predicates about program variables.

For reachability problems, we use a sequential combination [1] of up to five
analyses using explicit-value analysis and predicate abstraction. The general ap-
proach of our sequential combination is as follows. Once any analysis in the
sequence reports the verdict true, this result is returned. In case a counterexam-
ple is found and validated by a subsequent counterexample check, the verdict
false is returned. If the counterexample is found to be spurious, or when the
current analysis reaches a predefined time limit, the next analysis takes over.

The sequence starts with an explicit-value analysis without abstraction or
refinement for 20 seconds. The motivation here is, that many control-flow in-
tense programs can be solved with this approach in very little time. However,
this simple analysis easily falls prey to state-space explosion. This is why a more
sophisticated analysis of the same domain, including an abstract-refine loop [3],
is started in case the first one does not come up with a result. Next in line are
three analyses using predicate abstraction with adjustable block encoding [2].
The reason for switching to analyses that are conceptually different is motivated
by the fact, that different programs have different characteristics. The third and
fourth analyses model program variables as real variables and use only linear
arithmetic. The first of these two configurations computes predicate abstrac-
tions only at loop heads (ABE-l) and runs for at most ten minutes. The second
one additionally abstracts at function call and return sites (ABE-lf), and shows
different performance characteristics. The final analysis, a bit-precise predicate
analysis, is used if all previous analyses failed to provide a result (reasoning
about bit vectors is too expensive to use it on all programs). In addition, an
analysis similar to the last one, but lacking the abstract-refine loop, checks fi-
nite counterexamples found by any of the previously mentioned analyses. The

3 http://www.eclipse.org/cdt/
4 http://mathsat.fbk.eu/

http://www.eclipse.org/cdt/
http://mathsat.fbk.eu/


bounded model checker CBMC5 is used to check counterexamples of the last
analysis for an even higher confidence in the result. For checking memory safety
properties, we use a bounded analysis consisting of concrete memory graphs in
combination with an instance of the explicit-value analysis mentioned above.

3 Strengths and Weaknesses

Similarly to our last years submissions, though far more sophisticated, the key
idea of the submitted configuration is the combination of conceptually different
analyses. In addition, the predicate analysis now has support for bit vectors, and
also allows for more precise and efficient support for pointer aliasing by encod-
ing possibly aliased memory locations with uninterpreted functions. However,
CPAchecker lacks support for multi-threaded or recursive programs. Efficient
tracking of heap memory remains an issue, yet solvable, e.g., by summarization.

4 Setup and Configuration

CPAchecker is available at http://cpachecker.sosy-lab.org. The submitted
version is 1.2.11-svcomp14b. The command line for running CPAchecker is

scripts/cpa.sh -sv-comp14 -disable-java-assertions -heap 10000m -spec property.prp program.i

Please add the parameter -64 for C programs assuming a 64-bit environment.
For machines with less RAM, the amount of memory given to the Java VM
needs to be adjusted with the parameter -heap. CPAchecker will print the
verification result and the name of the output directory to the console. Additional
information (such as the error path) will be written to files in this directory.

5 Project and Contributors

CPAchecker is an open-source project led by Dirk Beyer from the Software
Systems Lab at the University of Passau. Several other research groups use and
contribute to CPAchecker, such as the Institute for System Programming of the
Russian Academy of Sciences, the University of Paderborn and the University
of Technology in Brno. We would like to thank all contributors for their work on
CPAchecker. The full list can be found at http://cpachecker.sosy-lab.org.

References

1. D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model
checking: A technique to pass information between verifiers. In Proc. FSE. ACM,
2012.

2. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

3. D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013.

5 http://www.cprover.org/cbmc

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org
http://www.cprover.org/cbmc

