
Collecting Influencers: a Comparative Study of
Online Network Crawlers

Mikhail Drobyshevskiy1,2, Denis Aivazov1,2, Denis Turdakov1,3,
Alexander Yatskov1, Maksim Varlamov1, and Danil Shayhelislamov2

1Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Moscow, Russia

3Lomonosov Moscow State University, Moscow, Russia
{drobyshevsky,aivazov,turdakov,yatskov,varlamov}@ispras.ru, shayhelislamov.ds@phystech.edu

Abstract—Online network crawling tasks require a lot of
efforts for the researchers to collect the data. One of them is
identification of important nodes, which has many applications
starting from viral marketing to the prevention of disease
spread. Various crawling algorithms has been suggested but their
efficiency is not studied well. In this paper we compared six
known crawlers on the task of collecting the fraction of the most
influential nodes of graph.

We analyzed crawlers behavior for four measures of node
influence: node degree, k-coreness, betweenness centrality, and
eccentricity. The experiments confirmed that greedy methods
perform the best in many settings, but the cases exist when they
are very inefficient.

Index Terms—Network crawling, network sampling, node
influence

I. INTRODUCTION

Today there is a growing interest in network data collecting
from online sources. Social networks, such as Facebook and
Twitter, often provide APIs which help researchers obtain the
data. However, several challenges arise here. A large scale
of real-world graphs requires a huge amount of resources to
crawl them due to bandwidth limits, many sites impose query
limitations, etc. Goals of network sampling could be different.
Beside collecting the whole graph itself, one is interested in
sampling a representative subgraph to use it instead of the
original one, estimating network parameters, or estimating
node/edge attributes [1].

In many applications it is not necessary to crawl all nodes of
a network but its most influential nodes only. Efficient identi-
fication of top-k influential nodes is important for detecting
key persons in social networks, preventing disease spread,
controlling computer worms, and so on. Node influence is
associated with its centrality measure in the graph. For in-
stance, node with high betweenness centrality is likely to have
a high impact on information spread in a social network or a
contagion process in a biological network.

A good network crawler should discover the highest central-
ity nodes with a minimal number of steps. Usually, a signifi-
cant fraction of target nodes can be collected in relatively few
iterations, especially when the degree distribution is skewed.
For example, 5% of nodes being sampled via random walk,
cover 80% of the k largest degree nodes [2].

The study was funded by RFBR according to research project 18-07-01211

Literature contains a number of crawling algorithms, while
their efficiency depends on multiple factors. The choice of
seed node, presence of “protected” users (whose connections
can be detected only by incoming links from other observed
nodes) [3], and network structure [4] significantly influence
the result performance of each method.

In this paper we compare several popular crawlers on the
task of collecting a target set of top-10% influential nodes of
the graph. The distinctive feature of our study is that we run
a crawler until it collects the whole graph, while crawlers are
usually analyzed under a limited budget of queries. Our main
contributions are the following ones.

1) The decision on the choice of crawling method signif-
icantly depends on the given budget. We observed that
while a graph is being crawled, the leading algorithm
can change several times.

2) Greedy methods, like the one guided by the maximal ob-
served degree (MOD), are better than others in collecting
the fraction of nodes with highest degrees, highest k-
coreness, and highest betweenness centrality. Nodes with
the least eccentricity, in comparison to other centralities,
are harder to find for existing crawlers.

3) We confirm that MOD is often the best choice for
network crawling, but there exist cases, when it loses
to all other algorithms. The same conclusion holds for
influential nodes crawling task.

In the next section we formalize the task and describe
our experimental methodology. Section III is devoted to the
experimental results and their explanation suggestions. Then
we provide a brief overview of related works in section IV
and, finally, give a conclusion in section V.

II. PROBLEM DEFINITION AND METHODOLOGY

A. Problem Definition

In our work, we consider a static unobserved undirected
network, represented with a graph G(V,E), where V is the
set of nodes and E is the set of edges. A crawler starts with
a seed node vseed ∈ V . Two sets, initially empty, are defined
and dynamically updated at each step. V ′c ⊆ V is a set of
already closed (queried) nodes. V ′o ⊆ V is a set of observed,
but not closed nodes. At each iteration, the crawler queries

the next node v ∈ V ′o , which becomes closed, and updates V ′o
with newly seen neighbours of v in G. Sampled graph Si =
(V ′, E′) at iteration i consists of all closed and observed nodes
V ′ = V ′c ∪ V ′o and all connections between them E′ ⊆ E. We
denote as deg(v, S) the degree of node v within graph S (since
S is a sample of V , deg(v, S) ≤ deg(v, V)) and as clust(v, S)
its clustering coefficient.

The goal of the crawler is to cover a target set of most
influential nodes V ∗ ⊆ V as soon as possible. We consider
four different measures of node influence: the degree, k-
coreness, betweenness centrality, and eccentricity.
• Node degree is the most straightforward measure of

importance as the number of friends, subscribers, con-
nections, citations, etc.

• Betweenness centrality characterizes how many paths in
graph go through the node. High betweenness means high
influence on information flows.

• Node k-coreness indicates that the node is a part of
a connected subgraph where all nodes have degree at
least k.

• Node eccentricity measures the maximal distance to any
other node in the graph. The lower the eccentricity, the
faster information/disease spreads from the node to the
rest of the graph.

We take 10% top-scored nodes of the graph as a target set
in all our experiments. Note that there are 4 different although
overlapping target sets, one per each centrality measure. For
example, Figure 3 (left) shows 3 target sets from slashdot
graph. The intersection of degree and k-coreness is significant,
while the eccentricity set has about a half in common with
them.

B. Crawlers

In our work, we considered 5 most popular crawling meth-
ods (RC, RW, DFS, BFS, MOD) and a recently proposed
DE-Crawler. Table I summarizes the used algorithms together
with their computational complexities per one iteration (in our
implementations). Random Crawler (RC) and Random Walk
(RW) algorithms each time go to a random node, selected
from the whole observed set V ′o , or from the newly observed
neighbours of the previously crawled node, respectively. RW is
known to be effective at discovering top-centrality nodes [2].
BFS and DFS implement two well-known search strategies.
BFS crawler is usually applied for network analysis [5],
although partial BFS crawls are biased towards high-degree
nodes and underestimate low-degree nodes [6].

MOD is a greedy method, based on a heuristic that a
node v with high observed degree deg(v, S) also has high
real degree deg(v,G). This proved to be efficient in terms of
node coverage [7].

DE-Crawler was recently suggested by K. Areekijseree and
S. Soundarajan [8] as a smart combination of RW and a
greedy algorithm. As it was shown in their previous work [4],
while MOD outperforms other methods, it gets stuck within
communities in graphs with high modularity. At the same
time, walking-based methods are good to move between dense

regions of the network. DE-Crawler algorithm consists of two
main stages: Densification and Expansion. These stages are
switched, depending on the result of comparison of certain
statistics. At each crawling step, V ′o is sorted by deg(v, S).
In the Expansion mode, the next node to crawl is randomly
selected from 80% of bottom elements. In the Densificatoin
mode, for the top 20% a score Φ(v) is calculated: Φ(v) =
deg(v,S)
〈deg(v,S)〉 (1 − clust(v, S)). The next node is the one with a
maximal score, which is motivated by the observation that
hubs have high degrees and low clustering coefficients [9].

C. Dataset
For the experiments, we collected a dataset of small and

medium-size networks from various domains. All graphs,
except DCAM, are available at http://networkrepository.com
or at The Koblenz Network Collection [10]. DCAM was
manually crawled from one community (vk.com/club1694) by
API and contains only open profiles. Since all considered
crawlers are designed to operate with connected graphs only,
we extracted a giant component from each graph and further
analyzed it instead of the whole graph. Short descriptions and
parameters of graphs can be found in Table II.

D. Method
We tested the crawlers from Table I on all graphs from

the dataset (Table II). As it was mentioned in section II-A, a
crawler starts with a randomly chosen seed node and traverses
the graph, updating V ′c and V ′o sets. It stops when the whole
graph is collected, i. e. S = G, V ′c = V , and V ′o = ∅. In
order to avoid bias of the seed choice, all results in the next
section were averaged over 8 different seeds uniformly chosen
from V .

To evaluate the crawling algorithms, we used a classical
measure, node coverage cnodes = |V ′|/|V |. We considered
two ways to measure the coverage of a target set. One can
count the coverage for all already known nodes, ctarget =
|V ′ ∩ V ∗|/|V ∗| or only for the closed ones: ctargetc = |V ′c ∩
V ∗|/|V ∗|. The motivation for the second approach is that
one is usually interested in how many influential nodes are
collected rather than seen.

The target set V ∗ is formed by the top p = 10% of nodes
sorted by one of four measures: node degree, betweenness
centrality, k-coreness and eccentricity. For eccentricity we took
the top nodes with the lowest value. For all cases we measured
the coverage c depending on the number of nodes crawled i,
iterating i from 1 to |V |.

III. EXPERIMENTS

For the experimental evaluation we implemented a frame-
work with all six crawler methods: RC, RW, DFS, BFS,
MOD, and DE. To the best of our knowledge, no public
implementation is available, therefore we used our own. The
computational complexities of one iteration of each algorithm
are presented in Table I.

In all methods at each step we observe neighbours of the
current node and add them to V ′o . This operation gives the
lower bound of complexity O(〈deg(v,G)〉).

http://networkrepository.com
vk.com/club1694

TABLE I
NETWORK CRAWLING ALGORITHMS WITH A SHORT DESCRIPTION AND COMPUTATION COMPLEXITY PER ONE ITERATION.

Name Method Node selection strategy 1 step complexity
RC Random Crawling At each step, selects a random node from Vo is selected. Does not depend on previously

crawled node.
O(〈deg(v,G)〉)

RW Random Walk Random neighbour of previously crawled node ' O(〈deg(v,G)〉)
DFS Depth First Search Traverses the graph in depth-first manner O(〈deg(v,G)〉)
BFS Breadth First Search Traverses the graph in breadth-first manner O(〈deg(v,G)〉)
MOD Maximum Observed De-

gree
At each step selects a node from V ′o with maximal degree O(log |V ′o |·〈deg(v, S)〉)

DE Densification-Expansion
crawler

Switches between RW (expansion phase) and MOD analogue (Densification phase)
strategies depending on statistics of the sampled graph [4].

O(|V ′o | · 〈deg(v, S)2〉)

TABLE II
DATASET OF UNDIRECTED NETWORKS. ALL PARAMETERS CORRESPOND TO THE GIANT COMPONENT USED IN EXPERIMENTS.

Name Description |V | |E| 〈deg(v,G)〉
hamsterster friendship graph of Hamsterster 2 000 16 097 16
DCAM community subgraph from VKontakte 2 752 68 741 50
facebook contains friendship data of Facebook users (2009) 63 392 816 886 26
slashdot reply network of technology website Slashdot 51 083 131 175 5.1
github membership network of the software development hosting site Github 120 865 439 858 7.3
dblp2010 co-authorship network 226 413 716 460 6.3

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.2

0.4

0.6

0.8

1.0
hamsterster

RC

BFS

RW

MOD

DFS

DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

DCAM

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

facebook

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

slashdot

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

github

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

dblp2010

F
ra

ct
io

n
 o

f n
od

es
 c

ov
er

e
d

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.10

0.08

0.06

0.04

0.02

0.00

Ga
p

be
tw

ee
n

th
e

le
ad

er

hamsterster

RC
BFS
RW
MOD
DFS
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

DCAM

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

facebook

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

slashdot

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

github

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

dblp2010

Fig. 1. Top: node coverage cnodes = |V ′|/|V |. Bottom: same results, the gap between current method and the best result at each point (i.e. the higher the
better) for node coverage.

Random Crawler just takes a random node from V ′o which
costs O(1). Random Walk crawler each time goes to a friend
of the current node, which requires O(1). However, it could
surf among already closed nodes for an uncertain time until
finds a node from V ′o .

BFS and DFS algorithms require to keep the queue and
stack, respectively. Getting a new node from those re-
quires O(1).

The MOD method at each step requires a node from V ′o with
the maximal degree. We used sorted lists in which every node
is sorted by its degree to speed up our implementation. One
step complexity is (2 ·deg(v, S)+1) · log |V ′o |. So choosing the
next node at each step became much more complex operation,
because deg(v, S) increases as size of S increases.

Finally, DE is the most computationally complex algorithm.

At each step, for each node in the top 20% by degree in |V ′o |,
it calculates statistics involving the clustering coefficient with
complexity deg(v, S)2. After that, it picks the node with the
highest clustering coefficient as the next node. To improve the
sorting step we also used sorted lists. The complexity to keep
that list sorted at each step is (2 · deg(v, S) + 1) ·O(log |V ′o |).
The statistics require to find the average degree in |V ′o | for
calculating coefficients that decide on the mode switching.
So, its total complexity is O(|V ′o |) · (〈deg(v, S)2〉 + 1) +
O(log |V ′o |) · (2 · deg(v, S) + 1) ≈ O(|V ′o | · 〈deg(v, S)2〉), and
it is much higher than that of all others.

A. Nodes coverage

We measured the node coverage cnodes = |V ′|/|V | for all 6
crawler methods on 6 graphs. Results are presented at Figure 1.
The X-axis corresponds to the fraction of crawled nodes, from

0.4 0.6 0.8 1.0
Fraction of nodes crawled

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 n

od
es

 sa
m

pl
ed

, |
V
′ |/

|V
|

DCAM

DFS
MOD
DE
BFS
RW
RC

Fig. 2. DCAM graph. Left: network structure. Right: node coverage with
variation for several seeds. Dotted liens correspond to individual seeds, bold
lines correspond to averaged values.

0.2 0.4 0.6 0.8 1.0
Fraction of nodes crawled

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 n

od
es

 sa
m

pl
ed

, |
V
′ |/

|V
|

slashdot

RC
RW
DFS
BFS
DE
MOD

Fig. 3. Slashdot graph. Left: Venn diagram for top centrality nodes sets.
Right: node coverage with variation for several seeds. Dotted liens correspond
to individual seeds, bold lines correspond to averaged values.

0 to the 1 (the whole graph). The Y-axis shows a fraction of
|V ′| to |V |. We also plot the gap between current method and
the best result at each point, i.e. the higher the better (bottom
plot at Figure 1). Such a visualisation could help to see which
method is the leader. The main result is that the leader changes
depending on the number of nodes crawled (budget size), for
all graphs. If the budget is limited to 5-10% of |V |, DE crawler
outperforms the others at hamsterster, DCAM, github, and
dblp2010. But when the task is to collect the majority of the
graph, DE crawler is not the optimal choice. For github and
slashdot that would be MOD, while for dblp2010 and facebook
— DFS is the best choice. Results on small graphs hamsterster
and DCAM are not so stable as on larger graphs: the leader
changes several times depending on the budget.

Another observation concerns crawling curves on DCAM
graph. When about 80-90% of nodes are crawled, BFS, RW,
and MOD curves demonstrate a hop (see Figure 2, right).
The results are averaged over 50 random seeds; the averaged
curve is plotted in bold, individual seeds are dotted lines.
The hopping behavior happens due to a specific structure of
DCAM network. It consists of two well separated communities
connected with a small bridge (Figure 2, left). MOD crawler is

known to get stuck within communities with high modularity,
while RW was reported to be able to transition between
them [4]. However, we see that in average RW also gets
stuck within the community. DE crawler has a smoother
curve and outperforms MOD, proving its ability to escape the
community. Finally, according to this DCAM experiment, RC
and DFS strategies are the best strategies for getting outside
a dense community.

1) Seed choice influence: Although an initial seed is ex-
pected to affect the crawling process, its influence is negligible
at larger graphs. For example, at DCAM graph with 2.7K
nodes, the seed choice could have a significant affect to crawler
performance (see variability of dotted curves at Figure 2,
right). But for slashdot graph with 51K nodes, results are
already little dependent on the seed choice (see Figure 3,
right). Nevertheless, it should be noted that for slashdot at
early crawling stage, when budget is comparable to the size
of DCAM, a similar high variability is observed. The same
holds for larger graphs from the dataset.

B. Influential nodes coverage

We measured the target set coverage for 6 crawler methods
on 6 graphs of our dataset. The results of the node coverage are
presented in Figure 1, the target set coverage for 4 measures
is shown at Figure 4 (top). We show only ctargetc measure
results since it reflects a more realistic picture of collecting
most influential nodes. The other reason is that for ctarget

measure, method lines goes too close to each other on the
plots to distinguish them.

The lower plot of Figure 4 shows the gap between current
method and the best result at each point, i.e. the higher the
better.

The first thing one can see is that the results vary a lot for
different measures at different graphs. RC often resembles a
straight line but is convex at bigger graphs. This means that
even such a simple strategy of randomly selecting one of the
observed nodes works better than if we would pick a random
node of the graph (which would give a straight line on the
plot).

1) Degree and k-coreness: For collecting top-degree nodes,
as one could expect, greedy algorithms MOD and DE are
better than the others. Comparing MOD and DE (see lower
plot of Figure 4), one can see that DE does not outperform
MOD. Moreover, MOD outperforms DE at slashdot, github,
and dblp2010, while DE is strongly better only at facebook.

Quite a similar picture one can see for k-cores centrality at
first 5 graphs. For both centralities, MOD and DE are leaders,
RC performs the worst, while RW, BFS, and DFS are in the
middle almost all the time.

A surprising behavior one can see at dblp2010, where
DE is much worse. We assume that the reasons are the
unusual topological structure (connected stars) of the dblp2010
graph and the default coefficients in DE statistics formulas.
Switching between densification and expansion modes did not
occur at the moment when it was intended. It is likely that a

0.0

0.2

0.4

0.6

0.8

1.0
de

gr
ee

s
hamsterster

RC
RW
BFS
DFS
MOD
DE

DCAM

RC
RW
BFS
DFS
MOD
DE

facebook

RC
RW
BFS
DFS
MOD
DE

slashdot

RC
RW
BFS
DFS
MOD
DE

github

RC
RW
BFS
DFS
MOD
DE

dblp2010

RC
RW
BFS
DFS
MOD
DE

0.0

0.2

0.4

0.6

0.8

1.0

k-
co

re
s RC

RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

0.0

0.2

0.4

0.6

0.8

1.0

ec
ce

nt
ric

ity RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.0

0.2

0.4

0.6

0.8

1.0

be
tw

ee
nn

es
s c

en
tra

lit
y

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

RC
RW
BFS
DFS
MOD
DE

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

RC
RW
BFS
DFS
MOD
DE

0.150

0.125

0.100

0.075

0.050

0.025

0.000

de
gr

ee
s

hamsterster DCAM facebook slashdot github dblp2010

0.150

0.125

0.100

0.075

0.050

0.025

0.000

k-
co

re
s

0.150

0.125

0.100

0.075

0.050

0.025

0.000

ec
ce

nt
ric

ity

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.150

0.125

0.100

0.075

0.050

0.025

0.000

be
tw

ee
nn

es
s c

en
tra

lit
y

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

0.00 0.25 0.50 0.75 1.00
Fraction of nodes crawled

Fig. 4. Target set coverage ctargetc = |V ′c ∩ V ∗|/|V ∗| depending on the fraction of nodes crawled. The lower plot shows the gap between current method
and the best result at each point (i.e. the higher the better).

RC RW BFS DFSMOD DE
0.5

0.6

0.7

0.8

0.9

AU
C

va
lu

e
hamsterster

degrees
k-cores
eccentricity
betweenness centrality
nodes

RC RW BFS DFSMOD DE

DCAM

RC RW BFS DFSMOD DE

facebook

RC RW BFS DFSMOD DE

slashdot

RC RW BFS DFSMOD DE

github

RC RW BFS DFSMOD DE

dblp2010

RC RW BFS DFS MOD DE
0

5

10

15

le
ad

er
 c

ou
nt

nodes
degrees
k-cores
eccentricity
betweenness

Aggregated

Fig. 5. AUC values computed for node coverage cnodes and target set coverage ctargetc = |V ′c ∩ V ∗|/|V ∗|. Right: winners aggregated over the graphs.
Colored bars’ heights denote how many times this crawler was the best one at specific measures.

more accurate tuning of these coefficients is needed to make
DE-crawler behave as expected by its authors.

2) Eccentricity: A different result we observed for eccen-
tricity measure. For slashdot, github, and dblp2010, the BFS
strategy significantly outperforms the others. Moreover, MOD
loses its leading position after 10-20% of steps and then loses
all other methods.

Interestingly, its coverage curve is not smooth and have
several turning points. We believe MOD eventually gets
stuck within communities composed of vertices with high
eccentricity. For any vertex, difference of its eccentricity and
eccentricities of neighbouring vertices does not exceed one.
Therefore, if a vertex has high eccentricity, its neighbours also
have high eccentricity, and vice versa, if a vertex belongs to
target set of vertices with lowest eccentricity, its neighbours
probably belong there too. Thus there are communities with
lots of vertices from target set and there are communities with
none of them. When MOD gets stuck in community with high
eccentricity, its coverage curve goes flat. Finally, for these
three graphs the DFS algorithm also works bad, even worse
than RC for most of the time.

3) Aggregated results: We also computed area under curve
(AUC) for the results mentioned before, in order to compare
crawlers performance independently of budget (Figure 5, left).
One can see that in most cases low eccentricity nodes are
detected worse than other centralities. Results for top degree
nodes and top k-core nodes correlate well, since these mea-
sures are related. This is also consistent with Venn diagram
(Figure 3, left) showing a significant overlap between the
corresponding sets of nodes.

We aggregated AUC results over all graphs, counting how
many times each crawler was the best one for a specific
measure (Figure 5, right). MOD appeared to get the highest
score of 16, two times more than DE. MOD is also the
best for k-core nodes collecting for all 6 graphs. BFS is
good at lowest eccentricity nodes crawling, possibly due to
very bad results of MOD and DE on slashdot, github, and
dblp2010 graphs. However, this observation needs a more
detailed analysis. Finally, note that results on node coverage
are the most uncertain: 5 of 6 methods were the winner at
least once.

IV. RELATED WORK

There are many studies in literature on the network crawling
problem. For a detailed review, please refer to a survey [1].

Ye Shaozhi and co-authors in [3] investigate the network
crawling problem on four social networks: Orkut, Youtube,
Live Journal and Flickr. They analyze several crawlers de-
pending on seed choice, network structure, and presence of
protected profiles. Among their findings are the following
ones. A small number of steps is enough to obtain a large
part of the target graph: 10% of nodes being crawled provide
49–74% of nodes of the graph. Node/link coverage does not
depend much on the choice of seeds: by choosing high degree
seeds the improvement did not exceed 5%. Greedy algorithms,
like MOD, achieve high node/link coverage faster, but are less
robust than BFS.

Several works aim at sampling top centrality nodes. Yeon-
sup Lim et al. in their work [2] try to estimate nodes with
top-k centrality, namely degree, betweenness, and closeness.
Experiments on various networks show that RW crawler
quickly discovers a major fraction of the top-degree nodes: 5%
of the sampled nodes contain over 80% of the top-10. Node
degree correlates well with other centralities and thus could
be used as an approximation for them. For betweenness and
closeness measures, RW strategy outperforms more complex
strategies. Two kinds of error are introduced, sampling (col-
lection) error and identification error. A sampling error means
that a node from the top-k is missing in the sample, while an
identification error occurs when the correct node is sampled
but not recognized as such. The authors discover that sampling
error is higher when the network has slightly skewed degree
distribution. When the degree centrality has low correlation to
betweenness and closeness in a network, identification error
become larger.

A challenging task could be to detect top-k centrality nodes
in a known large graph, for example, in a crawled sample.
Since the calculation of betweenness and closeness centralities
requires search for all-pairs shortest paths, which complexity
is O(|V ||E|) for an undirected graph, their exact computation
could be too expensive. A series of works employ compressive
sensing approach to detect top centrality nodes, e.g. [11]–[14].
The idea is to use a part of the known graph for estima-
tions based on compressive sensing theory. K. Avrachenkov,
N. Litvak, and coauthors suggested a sublinear algorithm to
finding list of nodes with maximal degree [15]. A random
walk based approach allows to approximately find such nodes
faster than in O(|V |) iterations.

V. CONCLUSION

We tested six network crawlers on several graphs from
various domains. 5 crawlers are well known, RC, RW, BFS,
DFS, MOD, and 1 more DE-crawler was proposed recently.
We run the algorithms until they collect the whole graph and
measured the coverage of a target set of top-10% influential
nodes. We obtained the following results.

There is no superior crawling method neither for classical
nodes coverage measure, nor for influential nodes coverage.
Furthermore, the leading algorithm for a particular graph can
change several times depending on the fraction of graph nodes
is collected. MOD, DE, RW, BFS, and DFS methods all have
been the leader for several times in our experiments. This is
in contrast with result obtained by running crawlers with a
limited budget, e.g. [4], [8]. Our results on a whole graph
imply that the leading crawler do change depending on the
budget.

Greedy strategy MOD is often the optimal one, but not
always, which is consistent with known results from literature.
This is also true for collecting of influential nodes. For
example, at slashdot, github, and dblp2010 graphs, MOD
outperforms the others at lowest eccentricity nodes crawling
at early stages (until 10-25% of nodes of graph are collected).
But further it loses to all other considered methods. Surpris-
ingly, BFS showed the best coverage of lowest eccentricity
nodes.

The previous conclusion also holds for DE crawler. More-
over, experiments do not evidence that DE outperforms MOD,
there are cases when it loses to many other methods. Taking
into consideration its high computational complexity, it is not
currently a good choice. Probably, a more accurate parameters
tuning could improve its performance.

Concerning the task of collecting centrality measures, MOD
is the best one for k-coreness. MOD and DE are better than
the other 4 methods in collecting top degree and betweenness
centrality nodes. As for lowest eccentricity nodes, the best
method could not be reliably defined. All 6 crawlers detect
this kind of nodes worse (relatively slower) than the other
types of influential nodes.

In one experiment with DCAM graph consisting of two well
separated communities, we observed that RC and DFS are less
prone to getting stuck within highly modular communities,
than RW, MOD, DE, and BFS.

The influence of the seed choice is not crucial for comparing
crawlers, when graph size is more than 50K nodes. This
confirms the results of Ye Shaozhi et al [3].

REFERENCES

[1] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 8, no. 2, p. 7, 2014.

[2] Y.-s. Lim, D. S. Menasché, B. Ribeiro, D. Towsley, and P. Basu, “Online
estimating the k central nodes of a network,” in 2011 IEEE Network
Science Workshop. IEEE, 2011, pp. 118–122.

[3] S. Ye, J. Lang, and F. Wu, “Crawling online social graphs,” in 2010 12th
International Asia-Pacific Web Conference. IEEE, 2010, pp. 236–242.

[4] K. Areekijseree, R. Laishram, and S. Soundarajan, “Guidelines for
online network crawling: A study of data collection approaches and
network properties,” in Proceedings of the 10th ACM Conference on
Web Science. ACM, 2018, pp. 57–66.

[5] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proceed-
ings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 29–42.

[6] S. H. Lee, P.-J. Kim, and H. Jeong, “Statistical properties of sampled
networks,” Physical review E, vol. 73, no. 1, p. 016102, 2006.

[7] K. Avrachenkov, P. Basu, G. Neglia, B. Ribeiro, and D. Towsley,
“Pay few, influence most: Online myopic network covering,” in 2014
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2014, pp. 813–818.

[8] K. Areekijseree and S. Soundarajan, “De-crawler: A densification-
expansion algorithm for online data collection,” in 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE, 2018, pp. 164–169.

[9] M. Bloznelis et al., “Degree and clustering coefficient in sparse random
intersection graphs,” The Annals of Applied Probability, vol. 23, no. 3,
pp. 1254–1289, 2013.

[10] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd International Conference on World Wide Web. ACM, 2013,
pp. 1343–1350.

[11] H. Mahyar, “Detection of top-k central nodes in social networks: a
compressive sensing approach,” in Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining 2015. ACM, 2015, pp. 902–909.

[12] H. Mahyar, R. Hasheminezhad, E. Ghalebi, A. Nazemian, R. Grosu,
A. Movaghar, and H. R. Rabiee, “Identifying central nodes for informa-
tion flow in social networks using compressive sensing,” Social Network
Analysis and Mining, vol. 8, no. 1, p. 33, 2018.

[13] ——, “Compressive sensing of high betweenness centrality nodes in
networks,” Physica A: Statistical Mechanics and its Applications, vol.
497, pp. 166–184, 2018.

[14] H. Mahyar, R. Hasheminezhad, and H. E. Stanley, “Compressive close-
ness in networks,” arXiv preprint arXiv:1906.08335, 2019.

[15] K. Avrachenkov, N. Litvak, M. Sokol, and D. Towsley, “Quick detection
of nodes with large degrees,” Internet Mathematics, vol. 10, no. 1-2, pp.
1–19, 2014.

	Introduction
	Problem definition and methodology
	Problem Definition
	Crawlers
	Dataset
	Method

	Experiments
	Nodes coverage
	Seed choice influence

	Influential nodes coverage
	Degree and k-coreness
	Eccentricity
	Aggregated results

	Related work
	Conclusion
	References

