
Catalyst: Combining Co-training and Active
Learning for Lifelong Classification

Maxim A. Ryndin
Ivannikov Institute for System Programming of the RAS

Moscow, Russia
ORCID: 0000-0002-7504-3975

Denis Y. Turdakov
Ivannikov Institute for System Programming of the RAS

Lomonosov Moscow State University
Moscow, Russia

ORCID: 0000-0001-8745-0984
Sergey D. Kuznetsov

Ivannikov Institute for System Programming of the RAS
Lomonosov Moscow State University

Moscow Institute of Physics and Technology (State University)
National Research University Higher School of Economics

Plekhanov Russian University of Economics
Moscow, Russia

ORCID: 0000-0002-8257-028X

Abstract—Modern supervised algorithms assume that the
dataset used for training has the same distributions as the data to
be processed. However, the real data is permanently changing.
This leads to the gradual degradation of supervised machine
learning algorithms in production systems and increases the cost
of the maintaining.

To solve this problem, we are focusing on domain adaptation
of machine learning algorithms in lifelong manner. We assume
that real unlabelled data come in continuously. For this setting
we propose a method for detecting changes in data distributions,
as well as updating supervised algorithms.

The idea behind the method is to process a portion of the
data and create a new labelled dataset for training a supervised
model. The trained model becomes a part of the ensemble used
for selecting a strategy to deal with new examples: assign the
label automatically using co-training or manually with the aid
of active learning. This method is independent of the specific
architecture of the model and could be used with any modern
supervised algorithms, including artificial neural networks.

Our research also confirms two findings. First, adding small
portion of data with reliable labels to a self-labelled dataset
improves model’s performance, even if this amount is small to
build a model from scratch. It is also shown that accumulating
domain knowledge by continuously adding new trained models to
ensemble used for labelling, reduces the amount of labelled data
required while maintaining the high performance of the adapted
model.

Index Terms—co-training, active learning, lifelong learning,
feature drift, concept drift

I. INTRODUCTION

The current dominant machine learning paradigm assumes
that training and testing are performed on data obtained from
the same distribution. However, in the real world, distributions
of features and labels can change over time: slowly due to
natural evolution of a source (for example, new slang in social
networks) or drastically upon the occurrence of big events.
These processes are known as feature and concept drifts [1].
If developers do not take this factor into account in industrial

applications, it will lead to a gradual degradation of the entire
system.

For example, such model degradation was observed during
SentiRuEval2016 [2] competition devoted to the assessment
of sentiment of Russian-language tweets about banks. Public
and private parts of the dataset were collected with time gap of
several months during Russian financial crisis. Events at that
time led to language changes in target domain and feature
drift happened. As a result, all participants obtained high gap
in performance on training and test parts of the dataset.

Such situation is often found in production systems that
use supervised techniques for natural language processing. The
main reason is that language is constantly evolving and drift
processes are natural for new texts. Usually the problem is
solved by retraining the model on new data. But first someone
has to detect the problem and then obtain labelled data for
training. It is worth mentioning that data labelling is the most
expensive and time consuming stage.

The main idea for solution of the discussed problem is to
use unlabeled data for continuous correction of the model
throughout its operation. In this work we study lifelong
machine learning setup [3], which means that unlabeled data
is received by portions one after the other, for example, every
day. However, it is very expensive or even not possible to
assign labels manually to unlabeled examples every time they
come. Therefore, we propose to combine several techniques
that allow to significantly reduce a cost of the supervised
model support in production environment.

We use domain adaptation [4] techniques that automatically
improve a model using unlabeled data. Intuition dictates that if
the distribution of data changes slowly, we can gradually adapt
our model to these changes without human intervention. In
particular, co-training technique may be used. It applies two or
more independent models to the same data and automatically
assigns labels to the examples if classifiers are confident of

it. However, domain adaptation algorithms can not cope with
concept drift and fast feature changes. Thus, in any case, we
have to manually label the data for complex cases. To reduce
the number of examples for manual markup, we use active
learning technique [5]. Active learning tries to find examples
that can improve the models in the best way.

Main contribution of this paper is a method for identifying
good examples for automatic and manual labelling in order
to maintain model performance while reducing the cost of
manual labelling. In contrast to existing works, this method
could also, in a low cost, generate large training datasets
that could be used to train neural networks. Neural networks
are currently the most popular supervised models because of
their high accuracy and generalisation performance. However,
a lot of data is usually required for such models to start
perform well. The evaluation of the proposed method shows
that it helps to solve this problem as well. We show that
the performance of recurrent neural network trained on data
obtained using our method reaches nearly in-domain level
whereas the number of manually labelled examples turns out
to be small.

II. RELATED WORK

Domain adaptation problem is often formulated as fol-
lows: given labelled data from source domain (Xs, ys) and
unlabelled data from target domain Xt, to build a model
predicting yt better than a model using only Xs and ys.
For the problem to be non-trivial Xs and Xt have different
distributions, when ys and yt are supposed to have the same.
Several techniques for neural networks show promising results
such as domain adversarial training [6], self-training [7] and
co-training [8]. Main idea of self-training and co-training is
expanding training dataset with self-labelled examples. Only
examples in which the model is confident enough are added to
training dataset. If Xt and Xs have “close” distributions, a lot
of extra training examples will be labelled and classification
surface will automatically move to real, that can be learnt from
(Xt, yt). There are several limits of this approach – it can not
fight concept drift and fast feature drift.

The main idea of active learning algorithms [9] is to let
the trained model find itself best examples for training. Model
retrains several times and on each iteration a little number
of training examples for next iteration is chosen. It’s hard to
apply this technique to neural networks training because
• neural networks often need huge training dataset to rich

peak performance,
• retraining neural network several dozens times can be

very time-consuming,
• there are not that many theoretical understanding of best

sampling strategies for non-linear models.
One of the most frequently used strategies to sample

examples for labelling is uncertainty sampling both in co-
training and active learning. Key difference is that co-training
algorithms search for examples that model is most confident
about [10] when active learning algorithms on the contrary
prefer the least confident [11].

Machine learning paradigm that is focused on accumulating
knowledge over time to keep models performing well is known
as lifelong [3] learning. It is worth mentioning that lifelong
learning often uses techniques similar to multitask [12] and
transfer [13] learning paradigms, but it pursues other goals.
Works focused on lifelong classification problems often uses
“classical” machine learning algorithms. In particular, Näıve
Bayesian Classification [14] is widely studied and used in
lifelong literature. It is proved that the performance of such
models is lower than the performance of nonlinear models,
and from a point of view of practice, the issue of developing
lifelong methods for nonlinear models is more important,
which, however, is little studied.

We propose an algorithm that combines ideas of self-
labelling “easy” examples and finding and human labelling
most useful “hard” examples. We suggest to use this algorithm
in lifelong manner, so let us first describe the model of the
environment.

III. ENVIRONMENT MODEL

We assume that we get new data at discrete time points ti.
At the start point t0, we have training data (X0, y0). In next
time points ti, i > 0 we get only data Xi without labels and
distribution of Xi can differ from distribution of Xi−1. Time
points are distributed in a way that |Xi| ≈ |X0|, ∀i > 0, that
is, the data come in batches of the approximately same size.

On each step, we can build a new model MA
i using

algorithm A and all previously available data:

MA
i = A({Xτ}iτ=0, y0). (1)

The “ideal” model for ith time stamp is M ′i = A(Xi, yi) –
one that can be built if we know all the labels. Out goal is to
build such algorithm A that

perf(M0) < pref(MA
i) ≤ perf(M ′i), (2)

where perf is one of quality metrics.

IV. PROPOSED METHOD

A. Algorithm

On the step t0, we get labelled data (X0, y0) and build
M0 using selected machine learning algorithm. The next
timestamp we already have a model M0, but its performance is
not ideal due to domain shift. However, we can use this model
to generate training data for another model, that fits new data
distribution better. For this purpose we combine co-training
and active learning approaches.

On the each step i the method
• selects examples X̂i ⊂ Xi for labelling using previous

models,
• chooses between automatic and manual labelling.

The method uses combination of confidence and agreement of
previous models for decision making. This allows to process
all data in one pass through Xi and train Mi only once, which
is more time efficient than active learning iterative training.

After labelling X̂i we get a training set (X̂i, ŷi) that is used
to build a new model Mi. This model has new information of

Fig. 1. Scheme of the method

current data distribution (Xi, yi) and is useful to self-label
examples on next step i+ 1. We suggest to add models built
on each step to group of models that perform co-training
labelling.

We divide all examples from Xi into three groups:
1) High confident group – we are likely to trust self-

labelling for examples in this group, but these examples
seem to be not specific for current data distribution.

2) Low confident group – our model does not seem to see
such examples before, they are more likely to need to
be labelled manually.

3) Medium confident group – examples in this group seems
to be specific for current data distribution and we should
decide if we can trust self-labelling.

It’s natural to assume that in the most cases domain
distributions are changing slowly. Therefore we will usually
have much more examples in high confident group than in
low confident one. But in the case of fast domain shift we
will see the opposite situation. To balance the number of
“hard” and “easy” examples to be labelled, each example is
added to training set with probability opposite to confidence.
Probabilistic approach of forming training set can be treated
as forgetting mechanism that allows us to build models that
are more specific to current distribution of data.

B. Formal Definitions and Sampling Strategy

Let’s make some definitions and describe algorithm for-
mally. We assume labelling expert to have fixed labelling price
and make no mistakes. We will call him O.

We define set of fallible oracles F . On each ith step, this
set contains all previously built models: Fi = {Mτ}i−1τ=0. This
oracles are free, but they can make mistakes.

We assume that output of our classifiers is probabilistic and
we can think the probability of a mistake to be proportional

to confidence. For simplicity, we will focus on binary classifi-
cation problem, further reasoning can be naturally generalised
for multiclass classification.
pj = {pj0 . . . p

j
i−1} = {M0(xj) . . .Mi−1(xj)} is a proba-

bility of example xj ∈ Xi belongs to the class “1”. We define
mean confidence as a distance from class decision boundary
(0.5 in binary case):

Cj = E(|pjk − 0.5|). (3)

Vector of classes predicted by each fallible oracle is ỹj =
{ỹj0 . . . ỹ

j
i−1} = {1(pjk > 0.5)}0≤k≤i−1

We suggest using not only confidence but also agreement as
additional metric to make decision how to label given example.
We define agreement as

Aj =
Aj0 −A

j
1

Aj0 +Aj1
, (4)

where Aj0, A
j
1 are number of fallible oracles voted for class

“0” or “1” respectively: Ajl =
∑

ỹjk∈ỹj
1(ỹjk = l), l ∈ {1, 0}.

Note that sign of Aj is used to distinguish the main class,
therefore we don’t use the modulo.

We will also need mean confidence for each class

Cjl = Ek|ỹjk=l(|p
j
k − 0.5|), l ∈ {1, 0} (5)

and dominating class mean confidence

Cjdom = Cj0 , if Aj > 0, Cj1 otherwise. (6)

θ1, θ2, θ3 are algorithms hyperparameters, defining agree-
ment and confidence thresholds which are used in Algorithms
1, 2, 3 correspondingly.

On ith step, we form training set (X̂i, ŷi), X̂ ⊂ Xi using
following “Sample and Label” Algorithm 1.

Algorithm 1: “Sample and Label”

1: X̂=[], ŷ=[]
2: for xj ← Xi do
3: calculate pj , ỹj

4: calculate Cj , Cj0 , C
j
1 , C

j
dom, A

j

5: if Bernoulli(Cj) == 0 then
6: X̂ = X̂

⋃
xj

7: if |Aj | ≤ θ1 then
8: ŷ = ŷ

⋃
Llow(xj , O,Aj , Cj0 , C

j
1)

9: else
10: ŷ = ŷ

⋃
Lhigh(xj , O,Aj , Cjdom)

11: end if
12: end if
13: end for
14: return X̂, ŷ

Sampling by confidence is performed in line 5. We prefer
specific examples for labelling. The lower the confidence, the
higher the chances to get into the training set.

Then algorithm selects labelling strategy using agreement
between previous models in lines 7-11. We propose two
labelling strategies for low and high agreements.

After N iterations of the Algorithm 1 we will have N mod-
els. Each of them potentially has information of different data
distribution. By accumulating models we accumulate more and
more knowledge about possible changes in data. Therefore,
chances to label more examples automatically increase.

If the ensemble of models has low agreement for a given
example, then this example is more likely to be specific for
current time point and models guess randomly. In this situation
our rules to decide which way to label example should be more
strict. These rules are presented in the Algorithm 2.

Algorithm 2: “Llow: Low Agreement Labelling”

1: if Aj ≥ 0 and Cj0 ≥ θ2 and Cj1 < θ2 then
2: return 0
3: else if Aj ≤ 0 and Cj0 < θ2 and Cj1 ≥ θ2 then
4: return 1
5: else
6: return O(xj)
7: end if

Algorithm 2 labels an example automatically if it was
specific for part of time points and non-specific for other (lines
1-4). In this case, the mean confidence will be high in one
group of the models and low in the other. Otherwise we label
example manually (line 6).

If agreement is high then example seems to be less domain-
specific and we can make rules less strict. This rules are
represented in the Algorithm 3.

The algorithm 3 does not require dominant and non-
dominant classes to have different level of confidence.

Also we use different confidence thresholds to have more
control and intuitively θ2 > θ3.

Algorithm 3: “Lhigh: High Agreement Labelling”

1: if Cjdom ≥ θ3 then
2: if Aj > 0 then
3: return 0
4: else
5: return 1
6: end if
7: else
8: return O(xj)
9: end if

As mentioned earlier this algorithm can be generalised for
multiclass classification problem. Without deep details one
need make following changes to algorithm:
• Single agreement value should be replaced with set of

one-vs-all agreements value for each class, except one.
• Agreement modulo in algorithm 1 should be replaced

with agreement’s vector norm.
• Algorithms 2 and 3 receive additional branches for each

class.

V. EVALUATION

A. Dataset

Amazon review data1 is a classical textual dataset used
for evaluation of domain adaptation algorithms. Researches
commonly use small preprocessed subset but it has several
disadvantages. It is not publicly available on official web-
cite, it is very small for modern deep models and it has
pre-extracted features, which makes unable to use modern
language model features. That’s why we decided to use the
whole dataset for our experiments following common patterns
in preprocessing.

We choose popular domains – Books (B, 8898041 reviews),
Electronics (E, 1689188 reviews), Kitchen (K, 551682 re-
views).

Task was transformed to binary classification task by fol-
lowing rule: if the label is greater than 3, example gains label
“1”, it gains label “0” otherwise (following the scheme from
domain adaptation literature [15]).

Mean sentence length was calculated and it turned to
be equal about 100 words long. All sentences were cut to
100 words. After vectorization (described in next subsection)
shorter sequences were padded with zero vectors to have 100
elements.

To emulate our environment model we “put” one of domain
in time point. We use data from one of domains to train M0

and two other to test our algorithm in a sequence.

B. Model

As mentioned we developed the method aiming to use it
with non-linear models. Our method only requires output of
classifier to have probabilistic output.

1https://jmcauley.ucsd.edu/data/amazon/

TABLE I
AMAZON REVIEW, SINGLE FALLIBLE ORACLE

Source Target Accuracy,
proposed method

Accuracy,
self-training

Accuracy,
active learning Budget

Accuracy,
no adaptation
(lower bound)

Accuracy,
indomain
(upper bound)

B E 90.7 ± 0.2 88.4± 0.3 63.2± 0.4 0.064± 0.002 88.6± 0.1 91.2± 0.2
K 89.9 ± 0.4 86.6± 0.2 78.3± 0.2 0.056± 0.001 86.5± 0.2 91.3± 0.2

E B 90.1 ± 0.2 86.1± 0.2 84.5± 0.1 0.048± 0.001 87.0± 0.1 90.9± 0.1
K 90.2 ± 0.3 88.9± 0.3 78.1± 0.2 0.055± 0.002 89.1± 0.1 91.3± 0.2

K E 91.1 ± 0.4 88.5± 0.3 63.4± 0.3 0.066± 0.003 88.9± 0.3 91.2± 0.2
B 89.3 ± 0.2 86.3± 0.3 84.7± 0.1 0.049± 0.001 84.8± 0.1 90.9± 0.1

TABLE II
AMAZON REVIEW, SEVERAL FALLIBLE ORACLE

Sources Target Accuracy,
proposed method

Accuracy,
co-training

Accuracy,
active learning Budget

E, B K 89.6 ± 0.1 88.9± 0.2 72.7± 0.3 0.023± 0.001
K, B E 90.1 ± 0.2 88.8± 0.3 59.8± 0.3 0.034± 0.002
E, K B 88.7 ± 0.2 88.1± 0.4 76.5± 0.2 0.025± 0.002

To keep balance between model power and training speed,
we decided to use LSTM [16] neural network over language
model vectors. We use triangular learning rate schedule de-
scribed in [17] for training.

We use fasttext [18], [19] language model because text
in chosen dataset is not formal and brief analysis showed
presence of spelling errors . It has available pretrained2 models
and does not suffer from out-of-vocabulary problem. Fasttext
feature vector is 300-dimensional.

As a classifier over fasstext features, we use a network
with two hidden LSTM layers with ReLU activations and one
output neuron with sigmoid activation for classification.

C. Experiments

We compare the proposed algorithm with pure co-training
and active learning, which form the basis of our approach.
Accuracy is used as a quality metrics.

Accuracy =

∑
True positive+

∑
True negative∑

Total population

Due to the probabilistic nature of the proposed algorithm, it
can give slightly different results on each run. Namely, it has
following sources of randomness:
• neural network weight initialisation seed;
• seed for Bernoulli random variable;
• train and validation split.

We round performance results over 15 iterations to neutralise
random effects and report mean and variance.

First we evaluate developed algorithm in domain adaptation
manner: we use only model trained on source domain as an
oracle for self-labelling target domain. Results are presented
in Table 1. Accuracy of the proposed method exceeds pure co-
training and active learning approaches. Note that co-training
algorithm simplifies to self-training in such setup (case of one
oracle).

2https://fasttext.cc/docs/en/english-vectors.html

To compare with active learning, we first find budget that
our algorithm needs to achieve peak performance and then
evaluate active learning algorithm with given budget. We use
least confidence sampling strategy: sequentially select and
assign a label to examples, for which the model has the
lowest confidence. The proposed algorithm selects slightly
different number of examples to be labelled manually because
of randomness. We freeze this number on each iteration and
report average active learning performance over set of this
budgets.

We also show accuracy of the model applied to target
domain without adaptation and trained on in-domain dataset
as lower and upper bounds of expected performance.

The percentage of examples that remained for markup
(either manually or automatically) after sampling was between
35% and 40% for all experiments. Rate of wrong labelled
examples was 4% ± 1% among all examples selected to be
labelled by a model.

Secondly we evaluate proposed algorithm in lifelong man-
ner. Results are presented in Table 2. We train the model on
the labelled data from the first source domain. Then we build
training set for the second source domain using first model as
fallible oracle and train second model on this new dataset. On
the third step we assign labels for all data in target domain
using both models combined with our method and report the
results. We show only one of two possible sequences of source
domains because reordering produces similar results up to
variance.

In this set of experiments we compare proposed algorithm
with co-training and active sampling with the same budget.
For co-training we use models trained on each domain inde-
pendently and having in domain performance. It shows rather
good results, slightly lower than our method.

For active learning we use the same scheme as in the first
set of experiments. But it shows the worse result due to lower
budget required to achieve peak performance for our algo-
rithm. This budget has decreased two times on average while

sampling and wrong labelling ration remains approximately
the same.

VI. CONCLUSION AND DISCUSSION

We proposed the method, which
• combines ideas of co-training and active learning to

efficiently adapt to environment changes;
• accumulates knowledge of previous time points to de-

crease labelling cost;
• can be used for lifelong classification.
Experiments show that idea of adding small number of

validly labelled examples to self-labelled data improves per-
formance of a model even if the amount of such examples is
not enough to build a model from scratch. The second series of
experiments confirms the hypothesis that the accumulating of
domain knowledge using previously built models reduces the
cost for training of the following models without significant
drop in the performance.

The proposed method provides the basis for building an au-
tomated classification system. To improve the method, several
important problems need to be solved.

First, current method stores every new model and after
each iteration our algorithm gets slower and more resource-
consuming. For real lifelong usage we need to develop a
mechanisms to clean fallible oracle set or algorithm that will
decide if it is worth adding given model to this set.

Second, the proposed algorithm uses several heuristics for
sampling. These heuristics can be improved by utilising data-
driven approach, for instance, using ensemble learning tech-
niques.

VII. FUNDING

This work was supported by RFBR Grant 20-07-00561 A.

REFERENCES

[1] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, p. 58, 2004.

[2] N. Loukachevitch and Y. V. Rubtsova, “Sentirueval-2016: overcoming
time gap and data sparsity in tweet sentiment analysis,” in Computational
Linguistics and Intellectual Technologies, pp. 416–426, 2016.

[3] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–207,
2018.

[4] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain
adaptation,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 11, no. 5, pp. 1–46, 2020.

[5] B. Settles, “Active learning literature survey,” tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[6] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[7] Y. He and D. Zhou, “Self-training from labeled features for senti-
ment analysis,” Information Processing & Management, vol. 47, no. 4,
pp. 606–616, 2011.

[8] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference on
Computational learning theory, pp. 92–100, 1998.

[9] R. Gilyazev and D. Y. Turdakov, “Active learning and crowdsourcing:
A survey of optimization methods for data labeling,” Programming and
Computer Software, vol. 44, no. 6, pp. 476–491, 2018.

[10] P. Kang, D. Kim, and S. Cho, “Semi-supervised support vector regres-
sion based on self-training with label uncertainty: An application to
virtual metrology in semiconductor manufacturing,” Expert Systems with
Applications, vol. 51, pp. 85–106, 2016.

[11] J. Zhu, H. Wang, B. K. Tsou, and M. Ma, “Active learning with sampling
by uncertainty and density for data annotations,” IEEE Transactions on
audio, speech, and language processing, vol. 18, no. 6, pp. 1323–1331,
2009.

[12] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2017.

[13] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[14] Z. Chen, N. Ma, and B. Liu, “Lifelong learning for sentiment classifi-
cation,” arXiv preprint arXiv:1801.02808, 2018.

[15] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising
autoencoders for domain adaptation,” arXiv preprint arXiv:1206.4683,
2012.

[16] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time
lag problems,” in Advances in neural information processing systems,
pp. 473–479, 1997.

[17] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[19] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

