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Abstract—The paper presents an intermediate language which
is intended to serve as a target analyzable language for ver-
ification of real-world production GNU C programs (Linux
kernel modules). The language represents an extension of the
existing intermediate language used by the JESSIE plugin for
the FRAMA-C static analysis framework. It is compatible with
the C semantics of arrays, initially supports hierarchical (prefix)
pointer casts and discriminated unions, and extended with limited
support for low-level pointer casts. The approaches to translation
of the original C code into the intermediate language and
translation of the intermediate language into the input language
of the Why3 deductive verification platform are explained by
examples. The examples illustrate the expressive power of the
extended intermediate language and efficiency of the resulting
axiomatic representation.

Keywords—deductive verification, memory model, C program-
ming language semantics, discriminated unions, hierarchical
pointer casts, low-level pointer casts

I. INTRODUCTION

There are many techniques and tools for static verification
of C source code. Among them are deduction techniques. The
deduction techniques are based on translating of the original
C source code supplied with specifications of the properties
being verified into a set of logical formulas whose validity
is equivalent to the validity of the original program with
respect to the specified properties. These logical formulas
a.k.a. verification conditions (VCs) or proof obligations can be
proved valid with theorem provers, either completely automatic
(SAT, SMT solvers, saturation-based provers) or involving
some user interaction (proof assistants). Thus any deductive
verification tool for C that aims fully automatic verification
should somehow translate the semantics of the original code
and provided specifications into a set of verification conditions
that the existing automatic theorem provers are capable to
discharge.

There are, however, intrinsic features of the C programming
language that significantly complicate such translation. First,
C is an imperative language and thus the implicit program
state should be somehow modeled in the resulting logical
formulas. It can be modeled in several ways which usually
involve theory of arrays for representing the state of program
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memory. Second, C is a low-level language with generally un-
typed semantics, which influences the choice of an appropriate
memory model in at least two contradictory ways.

On the one hand, C allows low-level type casts and
reinterpretations of the same chunk of memory in many
almost arbitrary ways. This motivates the choice of an untyped
memory model based on a single or several arrays of 8-bit
vectors precisely simulating the memory of a real computer.
On the other hand, C also potentially allows almost arbitrary
pointer aliasing. But while low-level pointer casts are quite
often used in practice, at least in some common cases such
as buffering or byte reordering, pointer aliasing is almost
always restricted in a way that there is no unaligned pointers
(i.e. pointers of some type that point to an address inside an
object of that type) and objects in memory are disjoint (they
can be embedded, but otherwise they don’t intersect). This
encourages effective encodings of pointer aligning and object
disjointness, which apart from specific logics (usually variants
of separation logic [8]) often implies separate representation
of differently-typed or knowingly disjoint memory locations
by different arrays (a.k.a. the Burstall-Bornat model [21], [24],
[25], e.g. one array per type, structure field or memory region).
These arrays usually have logical value types corresponding
to the original source program types they represent. Thus the
essentially typed C memory model arises.

As a result, there exist C deductive verification tools
implementing either an untyped or a typed memory model.
In particular, the SIMPL [4] tool used in L4 [5] micro-kernel
verification uses the untyped memory model while the VCC
verifier (being used to verify the Microsoft Hypervisor) [6],
[7] uses the typed one.

The JESSIE plugin [2] for the FRAMA-C static analysis
framework [1] uses the typed memory model similar to that
of VCC with several significant modifications.

First, the JESSIE memory model supports memory pro-
tection, including allocation and deallocation operations for
dynamic (flexible) arrays of arbitrary length. The model was
developed with intent to both ease the burden put on the the-
orem provers by the additional memory safety VCs generated
for each memory access as well as to reduce the significant
specification overhead put on the verification engineer by
the need to provide additional memory safety specifications.
For these purposes the model uses the combinations of the
theories of linear integer arithmetic (LIA) with uninterpreted



functions (UF) much more intensively than the theories of
quantifiers and arrays. The model also reduces the number
of variables used in the resulting conjunctions of inequalities.
This both makes the resulting VCs easier for the theorem
provers and potentially allows for simpler and more effective
automatic annotation inference. JESSIE implements so-called
local encoding of memory blocks to facilitate pointer validity
checks in presence of pointer arithmetic.

Second, JESSIE maps structure/union fields to separately
updatable arrays (memories) [21], [23], which significantly
helps with anti-aliasing, discriminated unions1 and prefix
(a.k.a. hierarchical) casts between pointers to structures2 [23].
Some researchers claim that hierarchical casts and discrimi-
nated unions together constitute about 99% of pointer casts in
the majority of real-world C programs [9].

Both features make the JESSIE memory model suitable for
many real world C codebases, but some important fragments
in operating system kernel source code remain disregarded by
the model. Unlike the model used in VCC, the JESSIE memory
model lacks support for operations on bit-fields and data type
reinterpretation. These features are vital for verification of
Linux kernel modules, in particular the ones implementing file
systems and network protocols where a lot of low-level encod-
ing/decoding operations involve reinterpretations of memory
chunks between arrays of bytes and arrays of structures back
and forth.

The original thesis [2] describing the methods underlining
the current implementation of the JESSIE tool suggests ex-
ploiting region inference [10]–[12] techniques together with
a combination of high-level mathematical and low-level bit-
wise memory models, each one restricted to the corresponding
subset of inferred memory regions. So the memory of the
program is divided into several disjoint parts a.k.a. regions i.e.
sets of memory locations such that any two pointers aliased
necessarily belong to the same region. This allows several
different memory models to coexist in the same verification
framework and to be still used independently for reasoning
about properties of different memory regions.

The weak point of this approach lies in the principles
behind the state-of-the art automated theorem provers. They
usually implement each of supported logical theories sepa-
rately [13] and establish the interaction between the theories
by propagating disjunctions of predicates among which only
equalities are properly interpreted by all the theories involved.
This implies that typically logical predicates or functions in-
volving application of several theories at once, e.g. conversion
of a mathematical integer to a fixed-length bit-vector or vice
versa, are either entirely absent from the natively supported
set of particular solver’s features or their support is very
limited and inefficient. With such restrictions all the interaction
between the involved low-level and high-level memory models
expressed in compound inter-theory predicates lays upon the
verification engineer (both in terms of providing specifications
of such predicates and manually proving the VCs significantly
dependent on their meaning). Besides the fact that the presence
of pointer aliasing can propagate bit-wise regions quite far

1Discriminated unions are unions whose field addresses are not taken and
in which only the last field written should be subsequently read.

2Up- and downcasts (or prefix casts) are casts between two structure types,
one of the structures being composed of the fields forming a prefix of the
fields comprising the other structure.

causing a significant part of memory locations to be encoded
as bit-vectors that are in general significantly more complex
to reason about. Another ubiquitous case of spreading the
bit-wise encoding across the program is pointer arithmetic.
Whenever a pointer is added an offset expressed as a bit-
vector, the offsets added to this pointer in all other places are
preferably encoded as bit-vectors as well. In addition to that,
bit-vectors are currently unsupported by the latest version of
the WHY3 [3] verification platform targeted by the JESSIE
tool and the implementation of the bit-vector regions support
in JESSIE itself is still mostly raw and incomplete.

Another shortcoming of the original JESSIE memory model
is that its treatment of pointer shift operation turned out to be
incompatible with the corresponding C counterpart in presence
of prefix cast support presented in the thesis [2]. While in C
shifting a pointer into an array of derived structures becomes
wrong after casting the pointer to the type of the parent
structure, the original JESSIE intermediate language semantics
totally ignores this restriction and thus significantly limits the
amount of programs correctly translatable into the intermediate
language.

So the decision finally came to modify and extend the
existing basic high-level and efficient JESSIE memory model.
In order to make the further presentation of the memory
model and its extension easy, we don’t preset the full JESSIE
intermediate language, its syntax, typing rules and semantics,
that are fairly redundant, complicated and not at all minimal.
More thorough presentation of the full language can be found
in [2]. We rather present the intermediate language, as well
as the original and the suggested new memory models in
a significantly reduced (simplified) form. The simplified in-
termediate language still allows us to emphasize the basic
aspects of the full language and show how it can be extended
with partial support for low-level memory access (pointer type
reinterpretation), covering the most important use cases such
as encoding/decoding operations and conversions between
different byte orderings.

The paper first introduces the simplified intermediate lan-
guage, a small toy analogue to the real JESSIE intermediate
language (with its original memory model, as described in [2]),
and then the extended simplified intermediate language, which
extends the simplified language (and its memory model) with
intent to provide enough support for some low-level pointer
casts, while maintaining all previous advantages of the model.
So the extension part of the presented language and its memory
model corresponds to our contribution in regard to the full
JESSIE intermediate language (and the respective implemen-
tations). The suggested approach is extensible to structures
with bit-fields and interacts well with improvements made in
the existing implementation of the Jessie plugin, i.e. bounded
pointers, multiple inheritance hierarchies, and region inference.

II. THE SIMPLIFIED INTERMEDIATE LANGUAGE

A. Abstract syntax

The JESSIE translator is the tool that stands in the middle of
the verification toolchain working sequentially in the following
order: FRAMA-C frontend – JESSIE plugin – JESSIE translator
– WHY3 IDE. The translator accepts the input program as a
single file in its own specific input representation, the JESSIE
intermediate language, which contains all the translation units



integer term:
tn ::= v integer variable

| n integer value
| ∗ non-determinate integer value
| tn ? tn integer binary operation
| acc(tp, f) dereference (memory access)
| psub(tp, tp) pointer subtraction

pointer term:
tp ::= p pointer variable

| null null pointer
| alloc(t, tn) allocation
| acc(tp, f) dereference (memory access)
| shift(tp, t, tn) array indexing (pointer shift)

term:
tnp ::= tn | tp integer or pointer term

predicate:
p̄ ::= tn ./ tn integer binary relation
| peq(tp, tp) pointer equality
∗| omin(tp) ./ tn minimal offset
∗| omax(tp) ./ tn maximal offset
∗| tag(tp) = t tag precisely equals
∗| tag(tp) � t tag is upper bounded by
| p̄ ♦ p̄ logical connective

operation:
o := v ← tn variable assignment
| p← tp pointer assignment
| upd(tp, f, tnp) field update
| free(tp) deallocation
∗| assume p̄ assumption
∗| assert p̄ assertion

operation sequence:
s ::= o operation
| o; s sequencing

Fig. 1. Abstract syntax of the simplified intermediate language

of the original program merged together along with the spec-
ifications provided by the user.

The JESSIE intermediate language is quite sophisticated
and not at all minimal since it’s designed to simplify the
translation of the original C program into it preserving as much
of the program’s initial structure as possible while performing
a number of important transformations primarily concerning
simplification of the program’s memory layout. So in the paper
we aren’t going to introduce the JESSIE intermediate language
itself, but rather use its dramatically simplified counterpart
capturing the basic capabilities of the full language that refer to
its memory model. The abstract syntax [19] of this simplified
intermediate language is presented in Figure 1.

In this figure the following notation is assumed:

• v stands for an integer variable;
• n ∈ Z is an integer value;
• ∗ designates the non-determinate integer value. This

facility is included in the language in order to simulate
function calls, in particular their memory footprint.
Non-determinate value can be substituted with an
arbitrary integer value during evaluation, but it natu-
rally acquires precise semantics when the language is
analyzed using a deductive reasoning technique such
as weakest precondition calculus [14], [15]

• ? stands for any binary operation on integer values;
• p stands for a pointer variable;
• f ∈ F is a unique structure field or union field label

from a finite set F of such labels;
• t ∈ T is a unique tag of a structure, a union or a field

of a union from a finite set of tags T. The finite sets
of labels and tags share no common elements;

• ./ stands for any binary relation on integer values;
• ♦ stands for any binary logical connective;
• The predicates omin(tp) ./ tn, omax(tp) ./ tn,

tag(tp) = t, tag(tp) � t and operators assume p̄
and assert p̄ (they are marked with a star) only apply
for the analyzable part of the language, so they have
no influence on its evaluation and so don’t have any
evaluation semantics.

All terms, predicates and operators involving pointers to
unions or structures are provided in Figure 1 with the corre-
sponding short explanations on the right (in italics).

We additionally make the following assumptions about the
sets F and T:

• The function τ̄ : F → T is defined for every element
f ∈ F. It maps composite (structure or union) field
labels to the tags of the corresponding composites.

• The function τ : F→ T differs from the function τ̄ on
and only on the fields of unions. It maps union fields
(i.e. their labels) into their own tags rather than the
tags of the corresponding unions.

• The unary relation (predicate) ν ⊆ F divides all fields
belonging to F into two disjoint subsets of integer
(satisfying ν(f)) and pointer (satisfying ¬ν(f)) fields.

• The partial order [16] (reflexive, antisymmetric, tran-
sitive) relation �⊆ T × T is defined on the set T.
With respect to this relation partially ordered set T
constitutes a bounded join-semilattice [16] with top
element >. The relation � corresponds to inheritance
(prefix) relation between structures which extends also
to unions and union fields so that (1) if the fields of
any structure with tag t1 form a prefix of the fields of
any structure with tag t2, we have t2 � t1, and (2) for
the fields of unions we have τ(f) = t =⇒ t � τ̄(f).
So finally we obtain τ(f) � τ̄(f) for any f ∈ F.

Now in order to explain the choice of features presented in
the simplified intermediate language we consider how a sample
annotated C program with a union, automatic (i.e. stack) and
dynamic memory allocation and a flexible array member can
be translated into the simplified intermediate language in order
to verify the postcondition of the function main().

The sample C program is as follows (see Figure 2 below):



1 # i n c l u d e < s t d l i b . h>
2
3 s t r u c t p a r e n t {
4 i n t i d ;
5 } ;
6
7 union d a t a {
8 char c ;
9 i n t n ;

10 } ;
11
12 s t r u c t c h i l d {
13 s t r u c t p a r e n t p ;
14 union d a t a d a t a ;
15 char f l e x [ ] ;
16 } ;
17
18 /∗@ requires \ o f f s e t min ( f l e x ) ≤ 0 &&
19 @ \ o f f s e t max ( f l e x ) ≥ 0;
20 @ requires
21 @ \ t y p e o f ( f l e x [ 0 ] ) C \ t y p e ( char ∗ ) ;
22 @ assigns f l e x [ 0 ] ;
23 @ ensures f l e x [ 0 ] ≥ 0;
24 @∗ /
25 void i n i t f l e x ( char ∗ f l e x )
26 {
27 f l e x [ 0 ] = 0 ;
28 }
29
30 / /@ ensures \ r e s u l t ≡ 0;
31 i n t main ( )
32 {
33 s t r u c t c h i l d ch [ 2 ] ;
34 ch [ 0 ] . p . i d = 0 ;
35 s t r u c t p a r e n t ∗pp =
36 ( s t r u c t p a r e n t ∗ ) &ch ;
37 ( ( s t r u c t c h i l d ∗ ) pp ) [ 1 ] . p . i d = 1 ;
38 ( ( s t r u c t c h i l d ∗ ) pp ) [ 1 ] . d a t a . c = ’ c ’ ;
39 pp =
40 ma l l oc ( s i z e o f ch [ 0 ] +
41 2 ∗ s i z e o f ( char ) ) ;
42
43 i n i t f l e x ( ( ( s t r u c t c h i l d ∗ ) pp ) -> f l e x ) ;
44 re turn
45 ( ( s t r u c t c h i l d ∗ ) pp ) -> f l e x [ 1 ] - 1 ;
46 }

Fig. 2. The sample C program

The simplified intermediate language doesn’t support em-
bedding. In the example program there are three cases of
embedding, namely:

• each structure with tag parent is embedded into
each structure with tag child as the first field with
label p;

• each union with tag data is embedded into each
structure with tag child as the field data (of the
same name);

• each structure with tag child has a final flexible
array member labeled flex. Flexible array members

33 ch← alloc(tchild, 2);

33 upd
(
ch,fchild.data,alloc(tdata, 1)

)
;

33 upd(ch, fchild.flex,null);

33 upd
(
shift(ch, tchild, 1),fchild.data,alloc(tdata, 1)

)
;

33 upd
(
shift(ch, tchild, 1),fchild.flex,null

)
;

34 upd(ch, fparent.id, 0);

35 pp← ch;

37 upd
(
shift(pp, tchild, 1),fparent.id,1

)
;

38 upd
(
acc
(
shift(pp, tchild, 1),fchild.data

)
,fdata.c,99

)
;

39 pp← alloc(tchild, 1);

41 upd
(
pp,fchild.flex,alloc(tchar, 2)

)
;

43 assert omin
(
acc(pp, fchild.flex)

)
≤ 0 ∧

omax
(
acc(pp, fchild.flex)

)
≥ 0;

43 assert tag
(
acc(pp, fchild.flex)

)
� tchar;

43 upd
(
acc(pp, fchild.flex),fchar.m, ∗

)
;

43 assume acc
(
acc(pp, fchild.flex),fchar.m

)
≥ 0;

44 result←

44 acc
(
shift

(
acc(pp, fchild.flex),tchar,1

)
,fchar.m

)
− 1;

33 free
(
acc(ch, fchild.flex)

)
;

33 free
(
acc(ch, fchild.data)

)
;

33 free
(
acc
(
shift(ch, tchild, 1),fchild.flex

))
;

33 free
(
acc
(
shift(ch, tchild, 1),fchild.data

))
;

33 free(ch);

30 assert result = 0

Fig. 3. The sample program translated into the simplified intermediate
language

are in fact embedded arrays of variable length, so this
case can also be treated as an embedding of an array
into a structure.

The last two cases of embedding can be automatically
translated into indirectly-accessed and explicitly allocated and
deallocated union and array respectively (a flexible array mem-
ber of default zero size can be translated into a null pointer).
Any array in JESSIE (as well as in our intermediate language)
is always an array of structures. Therefore to represent the
flexible array member of type char[] we introduce a dummy
structure tag char with one field m of type char.

In the first case of embedding, however, the better option
is to take advantage of the prefix cast support in the inter-
mediate language by embedding the field of structures with
tag parent into the structures with tag child in place of
the first field parent. After this transformation parent and
child structures become hierarchically related so that fields
of structure parent form a prefix of the fields of structure
child. Prefix casts can be entirely omitted in the simplified



intermediate language (but not in the full JESSIE language),
so the assignment with cast in lines 35-36 can be translated
into the pointer assignment operator (←). Finally, the stack
allocation of an array of structures in line 33 can be translated
likewise the embedded fields into an explicitly allocated and
deallocated array of structures.

The original sample program is annotated with ACSL [17],
[18] specifications in lines 18-23 and line 30. The predicates
used in the annotations of the sample program correspond
directly to the predicates (omin, omax, tag = and tag �)
presented in the abstract syntax of the intermediate language.
So for now we translate the function call in line 43 into
two assertions (assert operators) corresponding to the ACSL
requires clauses (in lines 18-21) and an update with a
non-deterministic value (upd operator) corresponding to the
assigns clause (in line 22) followed by the assumption of the
init flex function postcondition specified by the ensures
clause (in line 23), which is translated into corresponding
assume operator. The postcondition of the function main
(line 30) is translated into the final assert operator. We
explain the meaning of the omin, omax and tag predicates
in the next section after introduction of the pointer and memory
model of the simplified intermediate language.

To finish the translation of the sample program into the
intermediate language we need to establish the required sets
T and F along with the functions τ : F → T and τ̄ : F → T,
the predicate ν ⊆ F and the partial order �⊆ T × T. The
finite set of tags T for the sample program consists of its
structure, union and union field tags (including the dummy
tag for structure char):

T = {tparent,tdata,tdata.c,tdata.n,tchild,tchar}.
The finite set of fields F arises naturally after combining the
first field p of structure child and the only field id of
structure parent into a single field id of the base structure
(parent). We must also recall the dummy field m of the
dummy structure char and make the resulting fields unique
by prefixing the indexes with the corresponding structure/union
names:
F =

{fparent.id, fdata.c, fdata.n, fchild.data, fchild.flex, fchar.m}.
The partial order � establishes the inheritance relation between
the structures parent and child and between the union
data and its fields c and n. It also includes its least upper
bound >:
�= {(tchild, tparent), (tdata.c, tdata), (tdata.n, tdata),

(tparent,>), (tchar,>), (tdata,>)}∗.
The remaining functions τ and τ̄ and the predicate ν are
defined straightforwardly by their corresponding definitions:
τ = {fparent.id 7→ tparent,fdata.c 7→ tdata.c,fdata.n 7→ tdata.n,

fchild.data 7→ tchild,fchild.flex 7→ tchild,fchar.m 7→ tchar}
τ̄ = τ [fdata.c 7→ tdata,fdata.n 7→ tdata]

ν = {fparent.id,fdata.c,fdata.n,fchar.m}
Allocation and pointer shift operations (alloc and shift)

of the intermediate language require explicit structure or union
tags. The reasons for this are explained further in the next
section. In general, this requirement conforms to the limitations
of the underlying memory model, but in the case of the

0 1 0 0 1 2

li lj lk

lm 

a a+1 a+2

...

ln

offset

Fig. 4. Byte-level block memory model

example program the required explicit tags are easily recover-
able (the tag in the shift operation is recoverable in general
by static typing). We also note here that actual full JESSIE
intermediate language distinguishes between different integer
types by modeling them with bounded mathematical integers.
However, in our considerations we omit this typing along with
the necessary bounds checks for the sake of simplicity.

So we finally obtain the program in the simplified inter-
mediate language presented in Figure 3.

B. Memory model

According to its original description [2], the JESSIE mem-
ory model is based on byte-level block memory model, which
is intended to model memory protection. In this model pointers
are represented with triples (α, l, o), where α represents the ab-
solute address of a pointer i.e. the value that can be potentially
obtained by casting the pointer to the appropriate integral type
(suppose an unsigned one for clarity), l is a unique label of a
memory block, which is ascribed to a pointer at the point of
allocation and remains invariant under pointer shifts, and o is
the offset of a pointer from the beginning of its memory block
l. The model assumes that pointers that belong to different
memory blocks are always unequal, since this property is
ensured by the uniqueness of the block labels. However, the
absolute addresses of two pointers from two different memory
blocks can be equal to each other, including the cases with one
or two invalidated pointers belonging to deallocated memory
blocks (as shown in picture 4).

Each memory block is ascribed with its current length
denoted by A[l] and varying during evaluation. A pointer is
considered valid if and only if its offset satisfies the relations
0 ≤ o < A[l]. Only valid pointers can be dereferenced so
that a program can only read from or write into the memory
accessible through valid pointers. No distinction is made by the
model between read-only and writable memory, static, stack
or heap-allocated memory or between user-space and kernel-
space memory. Pointer subtraction is only allowed between
pointers to the same memory block and pointer comparison for
equality is also allowed between two arbitrary valid pointers
(where the model semantics matches that one of C).

However, the memory model presented above is not com-
patible with both its support for hierarchical pointer casts and
the semantics of pointer shifts in the C language.

Let’s consider the valid pointer ch of type struct
child * in line 33 of the example program (Figure 2,
recall that ch is retyped into a pointer after transformation,
see Figure 3) pointing to the array of child structures of
length 2. Let’s assume it’s modeled by the pointer p =
(α, l, 0), A[l] = 2. Then the pointer pp of type struct



parent * initialized in line 35 with the pointer ch is mod-
eled by the same pointer p. Here we get a contradiction: while
in the original program the expression pp[2] represents a
valid (though misaligned) pointer somewhere into the structure
pointed by ch, in the model we get shift(p, tparent, 2) =
(α′, l, o′), where o′ = 0 + 2 = 2 = A[l], while a valid pointer
should satisfy the relation o′ < A[l].

For that reason we prevent misaligned pointers in our
memory model by extending it with another attribute as-
cribed to pointers themselves i.e. pointer tag label denoted by
T[(α, l, o)]. A tag label corresponds to the precise runtime type
of a structure or a union field addressed by a pointer at the
current point of the program evaluation. These labels are only
changed as a result of allocation, deallocation or union field
assignment operators (a.k.a strong updates). So they remain
invariant under hierarchical pointer casts that thus can be made
entirely transparent. Pointer shifting, on the contrary, must be
guarded by check of the corresponding pointer tag to prevent
alignment violation. So that’s the reason why the pointer type
tags are made explicit in the pointer shift operation of the
intermediate language.

The transparency of hierarchical pointer casts determines
the need of runtime checks at pointer dereferences. These
checks are avoided in the implementation, where explicit
pointers casts are made mandatory by static typing and runtime
checks for hierarchical pointer casts are introduced.

The absence of misaligned pointers allows high-level mem-
ory representation with a separately updatable array of memory
per each structure/union field [21], [23] as long as we refuse
to maintain the original C language semantics in presence of
non-hierarchical pointer casts.

The abstract syntax of the simplified intermediate language
introduced in the previous section doesn’t provide any pointer-
to-integer conversion functions, so from here onwards we omit
the absolute addresses α when referring to pointers (as their
absolute addresses thus have no effect on the evaluation).

C. Semantics

The simplified intermediate language (just as the original
JESSIE) is supposed to be executed on an imaginary non-
deterministic machine. All possible executions of a program
on such an imaginary machine are restricted by the assump-
tion operators (assume) obtained by translating the ACSL
annotations provided by the user. Then the resulting set of all
possible executions is analyzed by generating and discharging
the verification conditions corresponding to the preconditions
of the operations involved in the evaluation process as well as
the assertion operators (assert) obtained from the provided
annotations.

So the simplified intermediate language is devised with
intent to have easily analyzable semantics rather than easily
executable one (hence the point of translating the original
C code into it). The semantics of the intermediate language
provides the VC generator and thus also the theorem prover
with efficient representation for most of the memory separation
conditions by translating all memory read and write operations
into select and store operations on distinct (logical) arrays, one
array per a structure/union field [21], [23]. This is reflected in
the semantics where we represent heap memory by the map

M : F→Mn ∪Mp, where
∀ M[f ] ∈Mn.M[f ] : F→ Z and

∀ M[f ] ∈Mp.M[f ] : F→ P, where

P = {(l, o) | l ∈ L, o ∈ Z}
is the set of pointers and L ' N∪{0} is the infinite numerable
set of distinct memory block labels (we can also directly use
the set N ∪ {0} for labels).

However, the representation of mappings A and T in the
semantics is not quite efficient for further analysis. To make
their representation significantly more efficient the JESSIE tool
implementation applies a number of important optimizations
(at the stage of JESSIE-to-WHY3ML [20] translation) that we
describe further.

The initial state of the imaginary machine is restricted by
the following constraints:

A[lnull] = 0, ∀p ∈ P.T[p] = >.
Any possible execution of the example program (Figure 3)

started from this initial state does not get stuck [19] and its
final state can be expressed by the following set of conditions:
A ⊇

{
lch 7→ 0, lch[0].data 7→ 0, lch[1].data 7→ 0,

lmalloc() 7→ 1, lmalloc()→flex 7→ 2
}

T ⊇
{

(lch, ..) 7→ tchild, (lch[0].data, 0) 7→ tdata.c,

(lch[0].data, ..− 1, 1..) 7→ tdata (lch[1].data, ..) 7→ tdata,

(lmalloc(), ..) 7→ tchild, (lmalloc()→flex, ..) 7→ tchar
}

M ⊇
{
fparent.id 7→

{
(lch, 0) 7→ 0, (lch, 1) 7→ 1, ...

}
,

fchild.data 7→
{

(lch, 0) 7→ (lch[0].data, 0),

(lch, 1) 7→ (lch[1].data, 0), ...
}
,

fdata.c 7→
{

(lch[0].data, 0) 7→ 99, ...
}

fchild.flex 7→
{

(lch, 0) 7→ (lnull, 0),

(lch, 1) 7→ (lnull, 0),

(lmalloc(), 0) 7→ (lmalloc()→flex, 0), ...
}}

To verify the example program with respect to the user-
provided annotations we first apply two most important opti-
mizations implemented in JESSIE: local encoding of pointers
in order to optimize the encoding of the map A and separation
between pointers to unions and structures in order to optimize
the encoding of the map T.

First, we notice that we can only consider mappings in
the map A for blocks that are accessible through pointers,
as other mappings don’t influence evaluation. Then we can
replace the map A : L → Z with the map A′ : P → Z such
that ∀(l, o) ∈ P.A′[(l, o)] = A[l]. Next we can notice that now
all the three mappings A, T and M are defined on the set P.
Thus we can hide the internal structure of pointers as pairs
behind an abstract type by introducing a function o : P→ Z :
∀(l, o) ∈ P. o((l, o)) = o. Then by substituting for any pointer
p the function o(p) and the map A′[p] with two functions
omin(A, p) = −o(p) and omax(A, p) = A′[p] − o[p] − 1
we obtain the local encoding for pointers. This encoding is
called local because for analyzing a function that performs



some operations on pointers (e.g. shift, psub, acc, upd)
it’s more efficient to operate with inequalities on the minimal
and maximal offsets of pointers than the identical inequalities
on their offsets and block lengths (e.g. omax(A, p) ≥ 0 vs.
A[p] − o(p) − 1 ≥ 0). This encoding first appeared in the
CADUCEUS deductive verification tool [21], [22] and is also
used in JESSIE, where the functions omin and omax are
encoded as uninterpreted functions of two arguments with the
appropriate set of axioms.

Second, we notice that as we only allow moderated
unions3, pointers to structures are never aliased with point-
ers to unions. But for pointers to structures the following
invariant is always maintained: ∀p ∈ P.∀i ∈ Z.T[p] =
T[shift(p,T[p], i)]. This suggests replacing the map T with
a function tag(T , p) ≡ T[p] for pointers to structures and a
map Tu similar to the original T for unions. Then the function
tag(T , p) is encoded as an uninterpreted function of two
arguments with several necessary axioms. This significantly
reduces function preconditions since instead of requiring ap-
propriate tag for each element of the range of pointers accessed
by a function we can only require it for just one arbitrary
pointer into the same array.

Now after applying these two optimizations we can analyze
the sample program in the simplified intermediate language
(see Figure 3) with respect to annotations represented by the
assert and assume operators. The semantics of predicates
involving functions omin, omax and tag is now clear since
it exactly corresponds with the semantics of the uninterpreted
functions omin, omax and tag. As a result we can refine the
final state of the program (based on the assume operator)
by adding the constraint M[fchar.m][pmalloc()] ≥ 0. The first
two assertions in the program can be proven valid while the
last one can be easily refuted by a counterexample where
M [fchar.m][pmalloc()[1]] 6= 1.

III. THE EXTENDED SIMPLIFIED INTERMEDIATE
LANGUAGE

A. Motivation and abstract syntax
While we were able to successfully verify the sample inter-

mediate program in Figure 3, thus also offering a reasonable
(although not quite rigorous) judgment about the correctness
of the original C program in Figure 2 with respect to user-
provided annotations, many real C code examples involving
lower-level memory manipulation are not expressible in the
simplified intermediate language we presented. One example
of such program can be obtained by modifying functions
init flex and main of the original program in the fol-
lowing way:

1 /∗@ requires \ o f f s e t min ( f l e x ) ≤ 0 &&
2 @ \ o f f s e t max ( f l e x ) ≥ 0;
3 @ requires \ t y p e o f ( f l e x [ 0 ] ) C
4 @ \ t y p e ( struct p a r e n t ∗ ) ;
5 @ assigns f l e x ->i d ;
6 @ ensures f l e x ->i d ≡ 256;
7 @∗ /
8 void i n i t f l e x ( s t r u c t p a r e n t ∗ f l e x )
9 {

10 f l e x ->i d = 256 ;
11 }

3A moderated union in C is a union whose field addresses are not taken.

1 / / main ( ) { . . .
2 pp =
3 ma l l oc ( s i z e o f ch [ 0 ] +
4 5 ∗ s i z e o f ( char ) ) ;
5
6 i n i t f l e x ( ( s t r u c t p a r e n t ∗ )
7 ( ( s t r u c t c h i l d ∗ ) pp ) -> f l e x ) ;
8 ( ( s t r u c t c h i l d ∗ ) pp ) -> f l e x [ 4 ] = ’ c ’ ;

So in order to get this modified program verified we suggest
extending the simplified intermediate language with two new
capabilities — memory reinterpretation and memory block
ripping.

The intuitive meaning of the former capability is transform-
ing a memory block allocated for one structure or union type
into a memory block for another such type provided that (1)
both structure/union types do not have pointer fields and that
either (2a) the size of the source type is a multiple of the size
of the destination one (splitting inside a memory block) or that
(2b) besides the reverse of this multiplicity (now the size of the
destination type is a multiple), the size of the original block
is also a multiple of the size of the destination type (joining
inside a memory block).

Being able to do this alone, however, is still insufficient
in case of our modified program as it involves reinterpretation
of a memory block of size 5 from type char (retyped to
struct char) to type struct parent which is neither
a case of splitting (because the size of type char is less
than the size of type struct parent and obviously is
not a multiple of it) nor a case of joining (because 5 is
not a multiple of sizeof (struct parent), which is
typically 4). Here we can apply the latter capability, whose
intuitive meaning is in splitting the original memory block
just before the reinterpretation into two continuous parts —
an accessible and a ghost one and then joining these parts
back together after the necessary memory reinterpretations are
done and the types of the parts match again.

The rationale behind the second capability is suggested by
the ability to have ghost pointer variables that can address
(point to) some obscure memory blocks, inaccessible by the
original program, though almost indistinct from the ordinary
blocks in the translated intermediate language program. We use
the term “memory block ripping” rather than “memory block
splitting” because the latter term is rather associated with the
corresponding kind of memory reinterpretation operation. The
term “ripping” also suggests the essence of the operation that
is ripping the temporarily redundant part of a memory block
into a separate ghost memory block accessible through a ghost
variable and then “mending” this part back again in order to
restore the full capacity of the original memory block.

With this intuitive considerations in mind we can translate
the modified C program into the extended intermediate lan-
guage presented in Figures 1 and 5 (the most interesting part
of the resulting intermediate program is shown in Figure 6).

The extension introduces a new function cast, which is,
though, not mandatory to syntactically place a pointer to one
composite type in place where a pointer to another arbitrary
one is semantically required. The corresponding restriction
can not be enforced in the extended simplified intermediate
language due to its untyped semantics. But the use of the
function is mandatory for the resulting program not to get



tp ::= ...

| cast(tp, t, t) pointer reinterpretation cast
∗| rip(tp, tp) memory block ripping

o := ...
∗| rmem(tp, t, t) memory block splitting/joining
∗| mend(tp, tp) memory block mending

Fig. 5. Extension of the simplified intermediate language abstract syntax

stuck at some of the subsequent pointer access operations
(acc, psub, shift, upd or free). Here the typing rules of
C considerably help by disallowing the corresponding implicit
low-level pointer casts in the original code.

The function rip and the operations mend and rmem
correspond to the proposed memory “ripping/mending” and
“splitting/joining” operations. The function rip accepts two
arguments – a pointer into the destined memory block, usually
subject for further joining, and a greater pointer into the
same memory block pointing at the offset, where the “odd”
(temporarily unnecessary, but hindering the join) part of the
block starts. The result of the function is a (ghost) pointer to
the start of a new memory block, representing the detached
ending part of the original block. This pointer is intended to
be saved in a ghost variable for future use in the corresponding
mend operator. The pointer into the original memory block
(the first argument) remains unchanged by the function. This
pointer then can be used in the following rmem operator,
which is analogous to cast except it reinterprets (modifies)
the memory block and pointer attributes (the A and T maps)

2 upd
(
pp,fchild.flex,alloc(tchar, 5)

)
;

∗ g ← rip
(
acc(pp, fchild.flex),

shift
(
acc(pp, fchild.flex),tchar.m,4

))
;

∗ rmem
(
acc(pp, fchild.flex),tchar,tparent

)
;

6 assert omin
(
cast

(
acc(pp, fchild.flex),tchar,tparent

))
≤ 0 ∧

omax
(
cast

(
acc(pp, fchild.flex),tchar,tparent

))
≥ 0;

6 assert tag
(
cast

(
acc(pp, fchild.flex),tchar,tparent

))
� tparent;

6 upd
(
cast

(
acc(pp, fchild.flex),tchar,tparent

)
,fparent.id, ∗

)
;

6 assume

6 acc
(
cast

(
acc(pp, fchild.flex),tchar,tparent

)
,fparent.id

)
= 256;

∗ rmem
(
cast

(
acc(pp, fchild.flex),tchar,tparent

)
,tparent,tchar

)
;

∗ mend
(
acc(pp, fchild.flex),g

)
;

8 upd
(
shift

(
acc(pp, fchild.flex),tchar.m,4

)
,99
)

;

Fig. 6. Translation of the modified fragment into the extended intermediate
language

as a side effect rather than modifying the pointer. After the
reinterpretation the pointer obtained from the cast function
becomes a pointer into the new valid memory block and can be
used for whatever needed. The original memory block, mean-
while, stays temporarily (or even permanently) invalidated. The
subsequent another rmem operator can be used to swap back
the validity of the two blocks while simultaneously updating
the corresponding memory along with the block and pointer
attributes. Finally, the mend operator can be used to “stick
back” the original block from its accessible (and possibly
modified) and ghost parts. The resulting translation of the lines
1-6 from the modified fragment (see above) of the original
program (Figure 2) is shown in Figure 6. Here we use the
ghost pointer g to temporarily address the ripped part of the
dynamically allocated memory block in the program.

So we extended the intermediate language presented in
Figure 1 with two additional functions, cast and rip, and two
operators, rmem and mend. The function cast expresses
non-hierarchical (reinterpretation) pointer casts, the operation
rmem represents both possible memory block reinterpretation
operations — block joining and splitting, and the function
rip and the operation mend correspond to memory ripping
and mending respectively. With the help of these four new
constructions we can express the intention of the modified
sample program in the extended intermediate language as
shown in Figure 6.

B. Extended memory model
The functions cast and rip and the operations rmem

and mend acquire precise semantics in the context of the
appropriately extended memory model.

To introduce the corresponding semantics we first need to
extend the memory model presented above with block reinter-
pretation and ripping. To support memory reinterpretation we
introduce a new model function ϕ : T×T→ Z. The function
is defined on ordered pairs of tags in the following way:

• if
◦ the tags t1 and t2 are structure, union or union

field tags;
◦ the size st1 of the first structure or union with

tag t1 is a multiple of the size of the second
one (st2 );

◦ both of the tags correspond to either union
fields or structures/unions without pointer
fields, and

◦ there is a logical predicate
rmemt1,t2(M,T, l, l′,m) representing
the high-level semantics of the low-level (i.e.
bit-wise) equality between the values of the
fields of a structure/union or a union field
with tag t1 and the fields of a structure/union
or a union field with tag t2. This predicate
can be defined only as needed, e.g. for casts
to and from dummy char structures, and left
undefined for more complicated cases such as
casts between structures with different field
alignments.

then ϕ(t1, t2) = st1 ÷ st2 ;
• if, instead of the second condition, the size if the

second structure or union field (st2 ) is a multiple of
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Fig. 7. Extended byte-level block memory model
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Fig. 8. Unique labels in the extended byte-level block memory model

the size of the first one (st1 ) and the three remaining
conditions are met, then ϕ(t1, t2) = −(st2 ÷ st1);

• ϕ(t1, t2) = 0, otherwise.

Another new model function π : L × T → L, is defined
on pairs of block labels and destination tags as illustrated by
Figures 8 and 7.

Here we use the isomorphism between the sets L and
N ∪ {0}. We supplement unique block labels with tags from
T. For allocation (alloc) operations these label tags must
be equal to the tags used in the corresponding operations
assigning the labels to their corresponding memory blocks.
So a unique label lit (or li,t) with tag t can be assigned
only to a memory block allocated for an array of structures
or unions with the same tag t (a single structure/union is a
special case of array). The labels are also grouped so that
for each label li,t the is a right-adjacent ghost label l′i,t
and a collection of reinterpretation labels {li,t | t ∈ T},
where any two labels li,t 6= lj,t′ , i 6= j ∧ t 6= t′. Then the
function π maps a label li,t to its corresponding reinterpretation
label li,t′ so that π(li,t, t

′) = li,t′ . The reinterpretation labels
are distinguished from their original counterparts only in the
precondition of the alloc operation, so in all other cases there’s
no difference between a memory bock obtained initially by
actual allocation and a block reinterpreted from another one
with a different tag by using the rmem operation. A minimal
predicate (binary relation) β ⊆ L×T such that β(li.t, t) holds
for any li,t ∈ L is used in the alloc operation to ensure that a
freshly assigned label li,t belongs to a new distinct group (and
so has the corresponding right-adjacent ghost label l′i,t and all
the necessary reinterpretation labels li,t′ ). The last function we
introduce, ρ : L → L maps a label li,t to its corresponding
right-adjacent ghost label l′i,t and is used in the rip function
and the mend operation.

With the three new functions ϕ, π and ρ and a predicate
β we can formalize the semantics of the new functions
cast and rip and the operations rmem and mend. The
semantics is intended to preserve the invariant that exactly the

memory addressed by valid pointers in the original program
can be accessed in the corresponding intermediate language
program. This is indeed true for our sample program if we
also include memory accessible through the ghost pointer g.
Besides the evaluation semantics, the operation rmem also
has additional implicit semantics at the VC generation stage.
The operation has a postcondition rmemt1,t2(M,T, l, l′, A[l])
that is treated as an assume operator inserted just after the
rmem operation.

For the modification of the example program translated into
the extended intermediate language as shown in Figure 6 we
define the functions ϕ, π and ρ and the predicate β in the
following way:

ϕ(tchar, tparent) = −4, ϕ(tparent, tchild) = 4,

ϕ(t, t′) = 0, {t, t′} * {tparent, tchild},

π(lmalloc()→flex,tchar
, tparent) = lmalloc()→flex,tparent

,

π(lmalloc()→flex,tparent
, tchar) = lmalloc()→flex,tchar

,

ρ(lmalloc()→flex,tchar
) = l′malloc()→flex,tchar

,

β ⊆
{

(lch,tchild
, tchild), (lch[0].data,tdata

, tdata),

(lch[1].data,tdata
, tdata), (lmalloc(),tchild

, tchild),

(lmalloc()→flex,tchar
, tchar)

}
The final state of the maps A, T and M at the end of any
possible evaluation of the intermediate language program in
Figure 6, if restricted by the given assume operators and
the rmem operation postcondition, can be expressed by the
following constraints:
A ⊇

{
lch,tchild

7→ 0, lch[0].data,tdata
7→ 0, lch[1].data,tdata

7→ 0,

lmalloc(),tchild
7→ 1, lmalloc()→flex,tchar

7→ 5
}

T ⊇
{

(lch,tchild
, ..) 7→ tchild, (lch[0].data,tdata

, 0) 7→ tdata.c,

(lch[0].data,tdata
, ..− 1, 1..) 7→ tdata,

(lch[1].data,tdata
, ..) 7→ tdata, (lmalloc(),tchild

, ..) 7→ tchild,

(lmalloc()→flex,tchar
, ..) 7→ tchar, (l′maloc()→flex,tchar

, ..) 7→ tchar,

(lmalloc()→flex,tparent
, ..) 7→ tparent

}
M ⊇

{
fparent.id 7→

{
(lch,tchild

, 0) 7→ 0, (lch,tchild
, 1) 7→ 1,

(lmalloc→flex,tparent , 0) 7→ 256, ...
}
,

fchild.data 7→
{

(lch,tchild
, 0) 7→ (lch[0].data,tdata

, 0),

(lch,tchild
, 1) 7→ (lch[1].data,tdata

, 0), ...
}
,

fdata.c 7→
{

(lch[0].data,tdata
, 0) 7→ 99, ...

}
fchild.flex 7→

{
(lch,tchild

, 0) 7→ (lnull, 0),

(lch,tchar
, 1) 7→ (lnull, 0),

(lmalloc(),tchild
, 0) 7→ (lmalloc()→flex,tchar

, 0), ...
}
,

fchar.m 7→
{

(lmalloc()→flex,tchar
, 0) 7→ 0,

(lmalloc()→flex,tchar
, 1) 7→ 1, ...

}}

These constraints prove the final assertion of the inter-
mediate language program (Figure 6) valid. So the extension
of the intermediate language with block reinterpretation and
ripping allows one to prove the validity of some programs



involving low-level memory access. However, the semantics
of the extended simplified intermediate language allows only
ripping of the rightmost part of a memory block (with largest
addresses), although in real-world kernel-space C code storing
two or more structures of arbitrary size in one memory block
is quite a common practice, which cannot be expressed in
the intermediate language with the semantics defined this
way. Fortunately, the local pointer encoding described in the
previous section (that is used for the resulting axiomatic spec-
ification of the program eventually generated by JESSIE) lets
us weaken the precondition of the memory ripping operation
(rip) by eliminating the constraint o1 < o2 (introducing an-
other inference rule for o2 < o1) and thus allowing for ripping
either the rightmost or the leftmost part of a memory block
once at a time. After such transformation, the intermediate
language semantics becomes powerful enough to express the
majority of real-world lower-level memory operations such as
encoding/decoding operations and byte re-orderings frequently
encountered, for instance, in file system and network device
drivers.

IV. CONCLUSION AND FUTURE WORK

In the paper we presented the simplified JESSIE intermedi-
ate language with simultaneous support for hierarchical pointer
casts and discriminated unions. Its semantics is compatible
with the semantics of the C programming language, partic-
ularly with regard to modeling array accesses in presence of
hierarchical pointer casts. The language presented served both
as a concise summary of the concepts underlying the original
JESSIE intermediate language [2] and as a starting point for its
further extension. We presented the extensions of the language
that allow to express low-level pointer casts for some pointers
to structures or unions without pointer fields. From practical
perspective these contributions together allow significantly
broader class of real-world C kernel-space code samples to
be translated into the intermediate language in order to be
analyzed and verified. Here a significant work for cleaning
up the current (modified) JESSIE plugin implementation and
deductive verification of some considerable kernel-space C
codebase with it remains to be finished before we can present
some meaningful results. Currently, the implementation of
support for the presented rmem operation in mostly finished,
so that we can already prove fragments involving byte reorder-
ings, but not yet encoding/decoding operations (in general).
From theoretical point of view, meanwhile, there remains
many important directions for future work. On the one part, a
rigorous formalization of the correspondence between the in-
termediate language semantics and that of the C programming
language (at least in some limited form) is still to be done. On
the other part, the formalization of the correspondence between
the intermediate language and its axiomatic representation
eventually generated by the tool implementation is also a
subject for further research.
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