
Formal Verification of OS Security Model with
Alloy and Event-B

P. N. Devyanin1, A. V. Khoroshilov2, V. V. Kuliamin2, A. K. Petrenko2, and
I. V. Shchepetkov2

1 Educational and Methodical Community of Information Security, Moscow, Russia
peter devyanin@hotmail.com

2 Institute for System Programming, Russian Academy of Sciences, Moscow, Russia
{khoroshilov,kuliamin,petrenko,shchepetkov}@ispras.ru

Abstract. The paper presents a work-in-progress on formal verification
of operating system security model, which integrates control of confi-
dentiality and integrity levels with role-based access control. The main
goal is to formalize completely the security model and to prove its con-
sistency and conformance to basic correctness requirements concerning
keeping levels of integrity and confidentiality. Additional goal is to per-
form data flow analysis of the model to check whether it can preserve
security in the face of certain attacks. Alloy and Event-B were used for
formalization and verification of the model. Alloy was applied to provide
quick constraint-based checking and uncover various issues concerning
inconsistency or incompleteness of the model. Event-B was applied for
full-scale deductive verification. Both tools worked well on first steps of
model development, while after certain complexity was reached Alloy
began to demonstrate some scalability issues.

1 Introduction

Complexity of practical security models used in the industrial and government
systems makes their analysis a hard work. A well-known, but not well adopted
yet, approach to decrease the effort needed for such an analysis is usage of
formal modeling with a variety of features supported by modern tools like model
checking, constraint checking, deductive verification, etc.

In this paper we present a work-in-progress on formal analysis of mandatory
entity-role model security of access control and information flows of Linux-based
operating system (MROSL DP) [1], which includes lattice-based mandatory ac-
cess control (MAC), mandatory integrity control (MIC), and role-based access
control (RBAC) mechanisms [2] and is intended to be implemented inside Linux
as a specific Linux Security Module (LSM) [3]. The analysis performed is to
check model consistency and conformance to basic correctness requirements -
ability to prevent break of integrity and confidentiality levels of data and pro-
cesses. In addition a kind of data-flow analysis is executed to prove that the
model is able to preserve security in the face of certain attacks, namely, to keep



high-integrity data and processes untouched even if an attacker gets full control
over some low-integrity processes.

Alloy [4] and Event-B [5] (Rodin [6]) are used for formalization of the model
and for its analysis and verification. Alloy was applied to provide constraint-
based checking of operation contracts and to uncover various issues concerning
inconsistency or incompleteness of the model. Event-B was applied for full-scale
deductive verification of the model correctness.

Further sections of the paper describe some details of the security model
analyzed, provide the statistics of tool usage, summarize the results obtained,
and depict further development of the project.

2 Main Features of the Model

The model under analysis MROSL DP [1] describes security mechanisms of
Linux-based operating system in terms of user accounts (representing users), en-
tities (representing data objects under control - files, directories, sockets, shared
memory pieces, etc.), sessions (representing processes working with data), and
roles (representing arrays of rights on usage or modification of data objects).

Each session has the corresponding user account on behalf of which it works.
A session has a set of roles assigned to it and a set of accesses to various entities
(which it reads or writes), both these sets can be modified. Entities can be
grouped into other entities (containers) and form a Unix-like filesystem (with
containers-directories and hard links making possible for an entity to belong
to several containers). Roles also form a filesystem-like structure, where roles-
containers are used to group the rights of all the included roles.

The main security mechanisms presented in the model are the following.

– RBAC. Each operation performed by a session should be empowered by a
corresponding right included in some of the current roles of the session.

– MIC. Each entity, session, or role has integrity level - high or low. Modifi-
cation of high-integrity entities or roles by low-integrity sessions or through
low-integrity roles is prohibited.

– MAC. Each entity, session, or role has security label. Security is described by
two attributes - a level of ordered confidentiality (unclassified, confidential,
etc.) and a set of unordered categories (e.g., whether the corresponding in-
formation concerns financial department or research department). Security
labels are partially ordered according to order of levels and inclusion of cat-
egory sets. Read access to an entity is possible only for sessions (or through
roles) having greater-or-equal security labels. Write access is possible only
for sessions (or through roles) having exactly the same security labels.

The model defines 34 operations in form of contracts - preconditions and
postconditions. Operations include actions on creation, reading, or modification
of user accounts, sessions, entities, roles, rights of roles, accesses of a session. For
the purpose of data-flow analysis of attacks additional 10 operations are defined,



which describes control capture of a session and information flows by memory
or time between sessions and entities.

The model also includes a variety of specific details, like shared containers,
container clearance required (CCR) attributes of containers (integrity or con-
fidentiality ignorance flags), write-only entities (like /dev/null), administrative
roles used to operate with other roles, and so on. Space restrictions prevent us
from discussing them here, but these details are responsible for a large part of
model’s complexity.

3 Formalization and Verification Process and its Results

Alloy and Event-B are used for model formalization. Both formalizations are
close and consist of type definitions for basic model concepts (user accounts,
sessions, entities, roles, rights, accesses), state data structure, basic invariants
representing well-definedness of data objects (wd-invariants), invariants repre-
senting correctness of a state or conformance to basic requirements presented in
the list in the previous section (c-invariants), and operation contracts.

For now data-flow-related constraints and operations are not yet recorded
in the tool-supported formal models, so the further information is provided for
incomplete models.

Some statistics on models elements and size is presented in the Table 1. Lines
of code numbers shown are rounded to tens.

Alloy model Event-B model

Number Lines of code Number Lines of code

Type definitions 20 100 9 1
State variables 25 40 43 1
wd-invariants 17 300 76 200
c-invariants 31 230 31 120
Operation contracts 32 2200 32 1300
Total 2900 1650

Table 1. Models’ composition and size.

Let I(s) denote that all invariants hold in the state s, for each operation
one have precondition pre(s) and postcondition post(s, s′), the latter depending
on pre-call state s and post-call state s′. We try to ensure that the statement
I(s)∧ pre(s)∧ post(s, s′) ⇒ I(s′) holds for all operations specified. Alloy is used
for quick finding omissions of necessary constraints in operation contracts or
invariants by means of constraint checking, which can find small counterexamples
for wrong statements. Several omissions and inconsistencies were found in the
original model with the help of Alloy. Rodin with corresponding plugins was used
to prove formally all the same statements in Event-B model. Rodin generates
from 30 to 90 assertions for an operation, from which up to 25% require human
intervention to prove. In total proof of about 15% of generated assertions need
human aid.



When the number of invariants in the model exceeded 20, Alloy stopped to
generate counterexamples for wrong statements. Sometimes we met this problem
before, but then it can be resolved by increasing the number of top-level objects.
Since more than 20 invariants are used, this doesn’t help or just causes mem-
ory overflow. We haven’t managed to use ProB [7] tool for constraint checking,
mostly due to model complexity.

The following issues of Event-B make the work harder: lack of possibility to
use auxiliary predicates in contracts, and lack of possibility to introduce some
abbreviations, which can help to ease the notation rigidity, for example, to use
more suitable notation for second and third elements of triples. This can be
implemented with lambda-expressions, but they hinder automated proofs. Ad-
ditional problem for possible work splitting is provided by the structure of proof
log stored. Since it is represented as XML, its size in our example is about 200
MB, and usually a little change in the proof of some assertion strangely result in
many changes in the XML-file stored. So it is hard to split the proof elaboration
between several persons, since merging significantly changed big files is hard.

4 Conclusion and Future Work

The presented in the paper work on formalization and verification of the security
model of Linux-like OS is not finished yet, but the results obtained already
can be used to make some conclusions. First, the project as usual shows that
formalization of requirements helps to uncover some bugs that can become more
serious on the implementation phase. Second, the project demonstrates that
sometimes tools supporting formal analysis of models are not scalable enough
for industrial use, but other suitable tools can be usually found.

On the next steps of the project we are going to finalize model formalization
and verification with the help of Event-B. Then, the security mechanisms mod-
eled are to be implemented as an LSM and the implementation code is to be
verified on conformance to the model with the help of Why [8] platform.

References

1. P. N. Devyanin. The models of security of computer systems: access control and
information flows. Hot line - Telecom, Moscow, 2013 (in Russian).

2. M. Bishop. Computer security: art and science. Pearson Education Inc., Boston,
2002.

3. C. Wright, C. Cowan, S. Smalley, J. Morris, G. Kroah-Hartman. Linux Secu-
rity Modules: General Security Support for the Linux Kernel. Proc. of the 11-th
USENIX Security Symposium, pp. 17-31, 2002.

4. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

5. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

6. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer, 12(6):447-466, 2010.



7. M. Leuschel, M. Butler. ProB: A Model Checker for B. Proc. of FME 2003, LNCS
2805:855-874, Springer, 2003.

8. F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich. Why3: Shepherd Your Herd
of Provers. Proc. of Boogie 2011: 1-st Intl Workshop on Intermediate Verification
Languages, pp. 53-64, 2011.


