
Make Social Networks Clean Again: Graph Embedding and
Stacking Classifiers for Bot Detection

Kirill Skorniakov
Ivannikov Institute for System
Programming of the Russian

Academy of Sciences,
Moscow Institute of Physics and
Technology (State University)

Moscow, Russia
kirill.skorniakov@ispras.ru

Denis Turdakov
Ivannikov Institute for System
Programming of the Russian

Academy of Sciences,
National Research University Higher

School of Economics
Moscow, Russia

turdakov@ispras.ru

Andrey Zhabotinsky
Ivannikov Institute for System
Programming of the Russian

Academy of Sciences,
Lomonosov Moscow State University

Moscow, Russia
zhabotinsky@ispras.ru

ABSTRACT
The paper introduces a novel approach to the detection of social
bots using ensembling of classifiers. We also studied the impact
of different feature sets and demonstrated the power of graph em-
bedding which is underused by the existing methods. The main
contribution of this work is a creating of a stacking based ensem-
ble, which effectively exploits text and graph features. Empirical
evaluation proved the effectiveness of the proposed method for
bots detection and showed improvement in comparison to existing
solutions by 4-9 points of AUC.

CCS CONCEPTS
• Information systems→ Social networks;

KEYWORDS
social network, ensemble, bot detection, graph embedding, stacking

1 INTRODUCTION
Online social networks (OSNs) are an important part of life for
many people. More than 2 billion people use social network services.
Unfortunately, online social networks like many other technologies
provide opportunities for illegal and undesirable activities. Thus
OSNs can be used to spread spam, phishing links, fake news. In
addition, there are many malefactors and fraudsters who extort
money from users or engage in illegal advertising. They disturb
and defraud upstanding users. That is why the administration of
social networks tries to find and block their profiles.

Effective automatic methods are required to search for bots on
the scale of the entire social network. Many papers addressed this
problem in recent years [1, 8, 10, 13, 18]. Most of them are based on
supervised machine learning and produce valuable results. Authors
use features extracted from information about particular profile
available in most OSNs such as the publication of posts and com-
ments, the formation of non-directional (friendship) and directed
(subscription) links. As far as we know, there are no works that
use the global network structure for this purpose. In this paper, we
correct this omission with the aid of graph embedding.

Copyright ©2018 for this paper held by its authors. Copying permitted for private and
academic purposes.
RDSM2018, October 2018, Turin, Italy
© 2018

Any development of a supervised classifier for bot detection
meets several difficulties. First of all, it’s hard to determine the
definition of a “bot” and receive a labeled dataset. Another problem
is the creation of a qualitative classifier that can effectively use
and combine text, graph and other types of data. In this work, we
explore and utilize the existing solutions for the first problem and
focus on improving solutions for the second problem.

Many good algorithms that use different feature extraction meth-
ods were developed recently. It seems reasonable to combine them
in order to achieve state-of-the-art result and stacking of algorithms
can help achieve a quality gain in this task.

To summarize, we make the following contributions:

• Weapplied graph embedding techniques to extract additional
features from the entire network;

• We also created an efficient stacking based bot classifier,
which combines graph and text information.

The rest of the paper is organized as follows. In Section 2 we
describe existing solutions. Section 3 is devoted to our stacking-
based classifier. Section 4 presents our experiments. At the Section
5 we summarize and conclude.

2 RELATEDWORK
2.1 Bot Detection Labels
An important issue is to collect a labeled dataset to detect bots using
machine learning algorithms The main difficulties arise from the
definition of the concept of a bot. However, despite the ambiguity
of the definition, there are ways to obtain a rather precise labeling
of bot dataset.

According to [10] all labeling techniques can be categorized into
three groups. They are:

• Manual annotation;
• Lists of suspended users – users blocked by the social net-
work administration;

• Honeypots [8] – bots created by researches to lure other
bots.

We use the second approach because it requires the least human
resources for the markup and utilizes an underlying information
about the rules used by social network administration which is
unobtainable to external researchers (for example, the number of
complaints about the user).



RDSM2018, October 2018, Turin, Italy K. Skorniakov et al.

2.2 Bot Detection Features
A wide range of various features can be extracted from a social
network and used for bot detection. Based on [1, 10, 13, 18] we can
group these features in the following way:

• Text features which include the number of hashtags, links,
geo-tags, words from spam list, statistics of posts sentiment
and topics;

• User-profile features usually imply the username, the num-
ber of friends, subscribes, photos, audios, retweets;

• Time features include statistics of user online time, user
publications time;

• Graph features involve information extracted from friend-
ship and subscribes graphs such as PageRank and centrality.

Fred Morstatter et. al. [10] used topics distribution, obtained by
the Latent Dirichlet Allocation (LDA) algorithm on tweets. Kyumin
Lee et. al. [8] utilized statistics of a user’s followers and tweets. Onur
Varol et.al. [15] proposed framework with many different features.
They are statistics of emotions, pos tags; posting time features,
simple statistics of retweets, mentions, and hashtag co-occurrence
networks. We will use works [8, 10] as baselines. Unfortunately, we
can’t directly compare with the [15] because they used many tools
and features specific in English, but in our samples, we have many
different languages.

To the best of our knowledge, the researchers did not apply graph
embedding techniques to the entire social graph to improve their
solution to bots detection.

2.3 Graph Embedding
In the classical approach to building a feature vector for objects, fea-
tures are usually invented by experts in the field. This approach has
several limitations. First of all, for each new area, an involvement of
experts leads to additional expenses for development. In addition,
features created by them could be computationally complex. There-
fore, methods of learning representations, which automatically ob-
tain qualitative representations of small dimensions became popular
in recent years. Such representations are usually called “embedding”
(word embedding, graph embedding, etc.). There are a large num-
ber of such methods for graphs. DeepWalk [12], Node2vec [4], and
LINE [14] are the most popular of them due to the linear complexity
of the number of edges or vertices.

Since in our experience the quality of the above algorithms
does not differ much for unweighted large graphs, we used in our
research LINE because of its good computational speed.

In the LINE two probability models of the appearance of edges
in the graph were proposed. The first model, which preserve first-
order proximity maximizes the joint probability of the observed
edges {(vi ,vj )}i, j in accordance with the following model:

p1(vi ,vj ) =
1

1 + exp(−®uTi ®uj )
,

where ®ui – vector representations of nodes.
In the second model, vertices have two different representations

(as in word2vec [9] model): ®ui when vertex treated as vertex itself
and ®u ′i – when vertex treated as the context of other vertices. Then

Bag of
Subscribes

word2vec

TF-IDF

LINE

LogReg

LogReg

LogReg

GRU

KNN

GB

MLP

GB

Figure 1: Proposed scheme of stacking

joint link probability would be p(vi ,vj ) = p(vi )p2(vj |vi ), where

p2(vj |vi ) =
exp(®u ′j

T ®ui )∑ |V |

k=1 exp(®u
′
k
T ®ui )

.

The hidden parameters of these models are vector representa-
tions of the vertices. These parameters are obtained by minimizing
the Kullback-Leibler divergence between the model and observed
distributions (which is equivalent to maximizing the likelihood).
To accelerate calculations, the method of negative sampling [9] is
used.

3 STACKING FOR BOT DETECTION
In this section, we turn to the construction of a classifier for predic-
tion of bots. We use three types of attributes for each user: friend-
ship graph, subscription information, and user’s texts. We produce
various transformations of these attributes to obtain a great set of
vector representations of a user.

Then there are two main options for exploring different feature
spaces: combine these views with one large classifier or train a
separate classifier on each of them and combine these classifiers
with ensemble techniques. The first option considers relations be-
tween features in various spaces which could improve the predictive
power of a model. But at the same time, such classifiers have less
flexibility and a tendency to overfitting. By flexibility, we mean the
ability to use the classifier or its parts in the case when for some
features don’t exist for certain users or reusability of parts of the
classifiers in the new domain. In addition, the effectiveness of the
method of ensemble algorithms was repeatedly proved in the data
analysis competition and papers. Therefore, we chose the second
option.

For each of the three types of attributes, we build their trans-
formations into vector representations and train on them different
classifiers.

3.1 Text classifiers
As one text representation we use the concatenation of bags of
words and char n-grams representations, wheren = (3, 4). Resulting
feature vector has |D | + |D3char | + |D4char | dimensions, where |D |



Make Social Networks Clean Again: Graph Embedding and Stacking Classifiers for Bot Detection RDSM2018, October 2018, Turin, Italy

Table 1: Bot Datasets

Social Network Active Banned
VKontakte 158806 21263
Twitter 69602 7886

— size word dictionary, |D3char |, |D4char | — sizes of 3- and 4-grams
dictionaries. Then TF-IDF transformationwas applied to this feature
vector and logistic regression was used for classification.

Another classifier was GRU recurrent neural network [2] that
receives word embeddings created by well-known word2vec model
[9] as input. We used word vectors with 300 dimensions preliminary
trained on the our large corpus (3.3GB) of informal text collected
from online social networks.

3.2 Subscribes classifier
Information about subscribes we handle the following way:

(1) Select largest N groups by number of subscribers;
(2) Each user is represented as “bag of subscribes” – by the

selected at previous step groups.
“Bag of subscribes” is a binary vector with information about sub-
scribes. The i-th element of this vector is 1 if the user is subscribed
to the i-th group and 0 otherwise. Length of final vector is N .

Then we train logistic regression on this feature vector with
N = 10000.

3.3 Graph classifiers
For friendship analysis we use graph embedding features with size
d = 100 obtained from LINE as input to different classifiers:

• Multilayer perceptron (MLP)
• K nearest neighbours with cosine distance (KNN)
• Gradient Boositng Classifier (GB)
• Logistic Regression (LogReg)

Machine learning algorithmswere implementedwith scikit-learn
[11], lightGBM [6] and keras [3].

3.4 Stacking
There are several common ways to combine classifiers predictions.
The most popular are the weighted average and stacking. In case
of weighted average resulting prediction is a convex combination
of all classifiers scores.

The main idea of stacking [16] is to use predictions of existing
classifiers (which are called “first-layer” classifiers) as new features.
Then a new classifier, called a meta-classifier, is trained on them.

We append vector representations of the vertices of the friend-
ship graph as the most “powerful” features to the predictions of
classifiers of the first level. Then we use gradient boosting as a
meta-classifier. The scheme of the proposed method is shown in
Figure 1.

4 EVALUATION
In this section, we empirically evaluate the proposedmethod on two
real-life datasets and compare our results with existing solutions.

4.1 Twitter Dataset
There are several papers, which share their Twitter-based datasets
([8, 15]) 1 2. Unfortunately, these datasets don’t contain followers
graphs, because this data can’t be easily collected due to Twitter’s
API limit. Also, we can’t obtain any information from suspended
accounts. That’s why we construct dataset in the following way:
we use tweets from [17] 3, graph from [7] 4 and relations between
sceen_name and user_id (for suspended users) from [5]. The result-
ing dataset consists of 77488 users that are present in all these three
datasets.

We used Twitter API to determine the suspended user’s. Users
who have been suspending received a label of 1, the rest received a
label of 0.

4.2 VKontakte Dataset
In order to show that our method is applicable on different social
networks, we also collect data from VKontakte (Russian social
network similar to Facebook) that had friendly open API with fewer
restrictions than in most OSNs. We use only public information,
such as user’s posts and comments in open groups, their friendship
information, group subscribes.

Data is downloaded using VKontakte API. We use information
about the status of users as labels. Users can have one of the
following statuses: “active”, “deleted”, ”banned”. Users with the
“deleted” status have deleted their accounts themselves. Users with
the “banned” status were blocked by VKontakte administration.
We can’t obtain any information about non-active profiles due to
restrictions of VKontakte.

For obtaining labels for VKontakte dataset we use the following
process:

(1) All users profiles from the social network are collected;
(2) Profiles with the “deleted” and “banned” statuses are ex-

cluded from the sample;
(3) Statuses of all remaining accounts are recollected;
(4) Users with the “banned” status after recollection receive a

label “1”;
(5) Users with the “active” status receive a label “0”.
We use data collected from 2 until 16 November 2017 for our

experiments 5.
Of all users, we select users withmore than 10 friends and texts in

the open groups for the last month. The restriction on the number
of friends is introduced to accelerate the computation of vector
representations. The second restriction is necessary in order to
use text attributes in the final algorithm. Note that both these
restrictions only affect the speed of the experiment, because if one
of the attributes (text or graph of friendship) is absent, the user can
be classified by another available attribute using only one classifier
from the ensemble. The resulting graph contains 110 million of
vertices and 7 billion of edges.

To reduce the required computational resources for machine
learning algorithms we select a small sample from the original

1https://botometer.iuni.iu.edu/bot-repository/datasets.html
2http://bit.ly/asonam-bot-data
3http://snap.stanford.edu/data/bigdata/twitter7/tweets2009-09.txt.gz
4https://snap.stanford.edu/data/twitter-2010.html
5VKontakte dataset is available at http://talisman.ispras.ru/datasets/



RDSM2018, October 2018, Turin, Italy K. Skorniakov et al.

Table 2: Bot detection results

Transformation Classifier VK Twitter
tf-idf LogReg 0.714 0.632

Word2vec GRU 0.687 0.592
LINE GB 0.779 0.639

LogReg 0.760 0.629
KNN 0.756 0.623
MLP 0.769 0.638

“Bag of subscribes” LogReg 0.692 -
first-layer classifiers Weighted Average 0.802 0.652

first-layer
classifiers + LINE GB 0.820 0.652
Zegzhda et al. [18] MLP 0.73 6 -

LDA BoostOR [10] 0.659 0.613
Lee et al. [8] Boosting [8] 0.637 0.605

dataset. We take all banned user among the selected above as posi-
tive labels and 5% of active users as negative labels. The parameters
of the final dataset are shown in the Table 1. Note that the algo-
rithms of the graph embedding algorithms were still trained on the
whole friendship graph for obtaining good node representations.

4.3 Metric and Baselines
As a measure of quality, we use the area under ROC-curve (AUC),
that is a common metric for binary classifications tasks.

As a first baseline algorithm for comparison, we took the results
of the detection of bots from the paper by Zegzhda et.al. [18]. The
choice of the paper is justified by using the same task, quality
measures, and social network. We also used Twitter bot detection
algorithms BoostOR [10] and Boosting [8]. Our implementation
of the Boosting algorithm didn’t use one feature — dynamic of
followers number, because we don’t have this information in our
datasets. For performance estimation, we do standard 5-fold cross-
validation.

4.4 Results and Discussions
The results of the experiments are shown in Table 2. It’s clearly
seen that proposed method based on stacking different classifiers
outperform existing approaches by 4-9 points of AUC. It is worth
paying attention to the features obtained from graph embedding
techniques. LINE provides powerful user representations. It even
allows achieving good quality with single classifiers. We believe
that the main reason for this is that the graph structure is the most
complex characteristic of a user account. Thus, the creation of a
bot with a friendship graph similar to a normal user is a complex
and time-consuming task and the most bot makers don’t do this.

Results also show that stacking of first layer classifiers with graph
embedding features allows boosting the best single classifier scores
by 1-4% of AUC. We consider that the relatively poor results of all
algorithms on the Twitter dataset are caused by peculiarities of its
construction. There was more than 8 years between the collection
of user’s texts and graphs and the moment of the collection of labels.

6We did not re-implement the method and only give the result published by the
author [18]

Also, to the best of our knowledge, Twitter does not let you know
if the user deleted his profile or it was blocked.

5 CONCLUSION
This paper presents an ensemble approach to bots detection prob-
lem. We showed that graph embedding techniques can be used to
obtain powerful features to this task. We proposed stacking algo-
rithm which effectively combines text- and graph-based classifiers
and achieves the best score on the tests. Experimental results on
real-life datasets show the effectiveness of the proposed method
and its applicability to the analysis of the different social networks.
Our method improved existing solutions by 4-9% of AUC score.

ACKNOWLEDGMENTS
This work is funded by the Minobrnauki Russia (grant number:
14.604.21.0199 (id:RFMEFI60417X0199)).

REFERENCES
[1] Fabricio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgilio Almeida.

2010. Detecting spammers on twitter. In Collaboration, electronic messaging,
anti-abuse and spam conference (CEAS), Vol. 6. 12.

[2] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[3] François Chollet et al. 2015. Keras.
[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[5] Nathan O Hodas and Kristina Lerman. 2014. The simple rules of social contagion.
Scientific reports 4 (2014), 4343.

[6] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in Neural Information Processing Systems. 3146–3154.

[7] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. AcM, 591–600.

[8] Kyumin Lee, Brian David Eoff, and James Caverlee. 2011. Seven Months with the
Devils: A Long-Term Study of Content Polluters on Twitter.. In ICWSM. 185–192.

[9] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[10] Fred Morstatter, Liang Wu, Tahora H Nazer, Kathleen M Carley, and Huan Liu.
2016. A new approach to bot detection: striking the balance between precision and
recall. In Proceedings of the 2016 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. IEEE Press, 533–540.

[11] Fabian Pedregosa et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[12] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[13] VS Subrahmanian, Amos Azaria, Skylar Durst, Vadim Kagan, Aram Galstyan,
Kristina Lerman, Linhong Zhu, Emilio Ferrara, Alessandro Flammini, and Filippo
Menczer. 2016. The DARPA Twitter Bot Challenge. Computer 49, 6 (2016), 38–46.

[14] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[15] Onur Varol, Emilio Ferrara, Clayton A Davis, Filippo Menczer, Alessandro Flam-
mini, VS Subrahmanian, Amos Azaria, Skylar Durst, Vadim Kagan, Aram Gal-
styan, et al. 2016. Online Human-Bot Interactions: Detection, Estimation, and
Characterization. Comm. ACM 59 (2016), 7.

[16] David H Wolpert. 1992. Stacked generalization. Neural networks 5, 2 (1992),
241–259.

[17] Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online
media. In Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 177–186.

[18] PD Zegzhda, EV Malyshev, and E Yu Pavlenko. 2017. The use of an artificial
neural network to detect automatically managed accounts in social networks.
Automatic Control and Computer Sciences 51, 8 (2017), 874–880.

id: RFMEFI60417X0199

	Abstract
	1 Introduction
	2 Related Work
	2.1 Bot Detection Labels
	2.2 Bot Detection Features
	2.3 Graph Embedding

	3 Stacking for bot detection
	3.1 Text classifiers
	3.2 Subscribes classifier
	3.3 Graph classifiers
	3.4 Stacking

	4 Evaluation
	4.1 Twitter Dataset
	4.2 VKontakte Dataset
	4.3 Metric and Baselines
	4.4 Results and Discussions

	5 Conclusion
	Acknowledgments
	References

