
Sydr: Cutting Edge Dynamic Symbolic Execution
Alexey Vishnyakov∗, Andrey Fedotov∗, Daniil Kuts∗, Alexander Novikov∗, Darya Parygina∗†,

Eli Kobrin∗†, Vlada Logunova∗‡, Pavel Belecky∗ and Shamil Kurmangaleev∗
∗Ivannikov Institute for System Programming of the RAS

†Lomonosov Moscow State University
‡Moscow Institute of Physics and Technology

Moscow, Russia
{vishnya, fedotoff, kutz, a.novikov, pa darochek, kobrineli, vlada, belecky, kursh}@ispras.ru

Abstract—The security development lifecycle (SDL) is becom-
ing an industry standard. Dynamic symbolic execution (DSE) has
enormous amount of applications in computer security (fuzzing,
vulnerability discovery, reverse-engineering, etc.). We propose
several performance and accuracy improvements for dynamic
symbolic execution. Skipping non-symbolic instructions allows
to build a path predicate 1.2–3.5 times faster. Symbolic engine
simplifies formulas during symbolic execution. Path predicate
slicing eliminates irrelevant conjuncts from solver queries. We
handle each jump table (switch statement) as multiple branches
and describe the method for symbolic execution of multi-threaded
programs. The proposed solutions were implemented in Sydr
tool. Sydr performs inversion of branches in path predicate. Sydr
combines DynamoRIO dynamic binary instrumentation tool with
Triton symbolic engine. We evaluated Sydr features on 64-bit
Linux executables.

Index Terms—symbolic execution, concolic execution, dynamic
analysis, binary analysis, dynamic binary instrumentation, com-
puter security, security development lifecycle, DSE, SMT, DBI,
SDL

I. INTRODUCTION

We can search errors in programs in various ways: at
the compile time, manually, applying static analysis tools
to source [1, 2] and binary [3, 4] code, dynamic analysis
tools, formal verification tools, etc. Security researchers and
developers widely use fuzzing [5, 6], dynamic symbolic ex-
ecution [7, 8], and systems combining both of them [9–11]
to detect errors. The security development lifecycle (SDL)
is becoming an industry standard [12–14]. Developers are
required to apply various analysis tools to improve the quality
of their product. These tools have two purposes: (1) generate
new inputs that expand the code coverage; (2) find errors. Of
course, while solving (1) problem one can detect a certain
number of errors, but it is more efficient to separate these
tasks. Based on the experience of developing dynamic sym-
bolic execution tools [15–17], we developed a new dynamic
symbolic execution tool (Sydr) that addresses the problem of
expanding coverage. We are going to extend Sydr to solve
problem of finding errors in future.

Dynamic symbolic execution [18–20] explore variation of
initial input data on some fixed execution path. Initially each

This work was supported by RFBR grant 20-07-00921 A.

byte of input data is modeled by a free symbolic variable.
Each instruction is modeled with an SMT [21] formula over
constants and symbolic variables according to its operational
semantics. Symbolic engine maintains a symbolic state that
is a mapping from memory bytes and registers to SMT
formulas. All symbolic register/memory modifications update
the symbolic state with new formulas. Branch conditions
on the explored path are represented by SMT formulas and
form the path predicate. Thus, the path predicate contains the
constraints that describe the explored path. The solution to
conjunction of these path constraints is an input data that
follows the same execution path. In order to invert some
branch, we negate its path constraint.

We symbolically execute a program to invert branches.
Thus, we are able to discover new paths that regular fuzzing
can hardly reach. The main goal of this work is improving
dynamic symbolic execution accuracy and performance. Accu-
racy is essential, because we need generated inputs to actually
invert target branches and discover new paths. Increasing
performance helps to gain new inputs faster.

This paper makes the following contributions:
• We surveyed existing symbolic execution improvement

approaches and implemented the most promising ones.
We evaluated each method to measure its impact on
symbolic execution in general. Sections II–VI describe
the main features: skipping non-symbolic instructions II,
AST simplification III, path predicate slicing IV, in-
direct jumps resolving V, and handling multi-threaded
programs VI. The experimental results presented in Sec-
tion VIII.

• We present Sydr, a dynamic symbolic execution tool,
which implements each of these techniques and can be
used as a path explorer for fuzzing tools. We describe the
tool design in Section VII.

II. SKIPPING NON-SYMBOLIC INSTRUCTIONS

Symbolic execution approximately slows down a target ap-
plication execution between 1000 and 1000000 times. We skip
symbolic execution of non-symbolic instructions to build the
path predicate faster and reduce memory usage. To determine
whether an instruction is symbolic we retrieve all its explicit
and implicit (e.g. pop rax implicitly reads from the stack
and modifies the stack pointer) operands with the help of

© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

01
1.

09
26

9v
1

 [
cs

.C
R

]
 1

8
N

ov
 2

02
0

DynamoRIO [22, 23] disassembler. Then we symbolically exe-
cute the instruction iff any of its read/write registers (including
ones used for computing memory address, e.g. rbx in mov
rax, [rbx]), memory, or flags are symbolic. Skipping non-
symbolic instructions allows us to build path predicate 1.2–3.5
times faster (Table VI). Moreover, we consume less memory
because we create less SMT [21] statements.

III. AST SIMPLIFICATION

Symbolic engines tend to use an intermediate AST repre-
sentation that is later translated to SMT. Symbolic engine may
simplify these ASTs before passing them to solver [8, 24].
We implemented several AST simplifications in Triton [25,
26] symbolic engine. These simplifications improve accuracy
of symbolic execution, help solver, reduce memory used by
ASTs, and improve readability of printed SMT statements. We
list some of them below:

• A & A→ A, A |A→ A.
• A ⊕ A → 0, 0 ∗ A → 0, A − A → 0, 0 & A → 0,

0� A→ 0, 0� A→ 0. Triton marks AST as symbolic
iff it contains symbolic variables. AST simplifications can
remove symbolic marks after kill operations. For instance,
symbolic rax after xor rax, rax will be marked as
non-symbolic.

• ((_ extract high low) ((_ extract hi lo)

A)) → ((_ extract high+lo low+lo) A)

• ((_ extract 11 9) (concat (_ bv1 8)

(_ bv2 8) (_ bv3 8) (_ bv4 8))) →
((_ extract 3 1) (_ bv3 8)). Triton represents
each symbolic parent register with an AST. Modification
of lower register byte results in AST that concatenates
extracted register high part with a new byte value.
In particular, if we place a constant in lower byte of
symbolic register and later extract it, we will get a
symbolic AST. The proposed simplification provides
a non-symbolic AST. So, jz branch in instruction
sequence mov rax, symbolic_variable ; mov
al, 0x00 ; test al, al ; jz 0xdeadbeef
won’t be symbolic.

• (concat ((_ extract 31 24) A)

((_ extract 23 16) A) ((_ extract 15 8) A)

((_ extract 7 0) A)) →
((_ extract 31 0) A). For instance, this
simplification is useful when we store register in
memory and later retrieve it. Triton extracts each register
byte and stores it to symbolic memory. During the
register load Triton concatenates all its extracted parts.

• ((_ extract 31 0) ((_ zero_extend 32)

(_ bv1 32))) → (_ bv1 32). Instructions that
operate on 32-bit general-purpose registers in x86-64
zero extend the result to parent register. If we move one
32-bit register to another and ask for its AST, we are
going to get lower 32 bits extraction from zero extended
register. The simplification just returns the original
moved register.

Algorithm 1 Path predicate slicing algorithm.
Input: cond – predicate for target branch inversion, Π – path
predicate (path constraints prior to the target branch).
vars← used variables(cond) . slicing variables
change← vars
while change 6= ∅ do

change← vars
for all c ∈ Π do . iterate over path constraints

if vars ∩ used variables(c) 6= ∅ then
vars← vars ∪ used variables(c)

change← vars \ change
ΠS ← cond . predicate for branch inversion
for all c ∈ Π do . iterate over path constraints

if vars ∩ used variables(c) 6= ∅ then
ΠS ← ΠS ∧ c

return ΠS

IV. PATH PREDICATE SLICING

We use path predicate slicing (a.k.a. constraint indepen-
dence optimization [27, 28]) to eliminate irrelevant conjuncts
from solver queries. For clarity, we define a path predicate Π
as a sequence of constraints. Each constraint corresponds to a
taken branch condition on the execution trace. Algorithm 1
returns a predicate for inversion of the target branch. Π
contains constraints for all taken branches that were executed
before the target branch. Function used variables(c) returns
a bitset of symbolic variable numbers used in constraint c.
We initialize slicing variables vars with variables used in
predicate for target branch inversion cond (a negation of
taken target branch constraint). Then we iterate over and over
constraints in Π updating vars with variables that transitively
depend on slicing variables. Finally, we conjunct only those
branch constraints that have variables from vars. Thus, we
leave only constraints that are relevant to inverting the target
branch.

With slicing applied solver returns a model only for some
subset of symbolic variables. We retrieve values for missing
symbolic variables from initial input data. The resulting solu-
tion is correct due to the fact that initial input data is already
a solution for a path predicate.

Slicing allows to perform a more powerful symbolic execu-
tion. It has the following advantages:

1) Solver consumes less memory and time to resolve a
query. We get model only for a part of input data that
is responsible for branch inversion.

2) Undertaint [29] can cause some symbolic variables to
be underconstrained. Thus, generated input may not
reproduce the desired path. Slicing remove possibly
underconstrained symbolic variables from the solver
query. These variables values are taken from the initial
input.

Consider the following code:

1 char* syms = "SLICING FIX IT!\n";

2
3 int main(int argc, char **argv) {
4 FILE *ptr = fopen(argv[1], "rb");
5 unsigned *b = malloc(6 * sizeof(int));
6 fread(b, 6, sizeof(int), ptr);
7 int len = strlen(syms);
8 if (b[0] < len)
9 if (syms[b[0] % len] == ’!’)

10 if (b[2] > ’@’)
11 if (b[5] + b[4] < ’B’)
12 if (b[3] + b[5] > ’@’)
13 if (b[1] + b[3] > ’@’)
14 if (b[4] < ’9’)
15 if (b[1] > ’@’)
16 printf("OK\n");
17 else
18 printf("FAIL\n");
19 }

Initial input data leads to printing FAIL in line 18. We
illustrate how slicing algorithm inverts the branch in line 15.
Slicing appends constraints for the following branches to the
resulting predicate:

• Line 15 (slicing variable b[1]).
• Line 13 (slicing variables b[1], b[3]).
• Line 12 (slicing variables b[1], b[3], b[5]).
• Line 11 (slicing variables b[1], b[3], b[4], b[5]).
• Line 14 (slicing variables b[1], b[3], b[4], b[5]).

Line 9 contains a symbolic address b[0] % len that will
be concretized by the symbolic engine. So, the branch in line
9 is underconstrained (not symbolic). Appending branch 8
to predicate without 9 may result in invalid b[0] model.
Slicing skips branch 8. Thus, we successfully generate an
input causing our example program to print OK. If we run
the example on input generated without slicing, condition in
line 9 won’t hold.

V. INDIRECT CONTROL TRANSFERS RESOLVING

Handling indirect control flow transfers is crucial for the
complete and accurate program analysis. For the branch in-
version problem, we are only interested in table control flow
transitions. In such cases, the target jump address is taken
from an array of pointers located in the program memory.
The offset for the corresponding array element is computed
from the branch condition. Jump tables [30] are generated
by compilers from the long switch and if-else statements for
the optimization purpose. Furthermore, compiler also produces
jump tables for function pointer arrays. Besides the direct code
pointers, jump tables may contain values (address offsets) that
take part in computing the target jump address:

lea rdx, [rax * 4]
lea rax, [rip + 0x155]
mov eax, [rdx + rax]
movsxd rdx, eax
lea rax, [rip + 0x148]
add rax, rdx
jmp rax

The assembly above is a typical indirect jump. In the first
two lines the table index and the base address are calculated.
In the next two lines a value loaded from the jump table
and stored in rdx register. Then this value is added to the

computed target base address and then a jump is made to the
resulting address.

To dereference a symbolic pointer Triton [25, 26] gets its
value from the concrete state. We propose indirect control
transfer resolving to partially handle symbolic pointers.

We consider each jump on address calculated from memory
cell as a potential indirect control transfer instead of determin-
ing the table control flow dependencies by code patterns. We
perform backward slicing [31] within a current basic block
to detect such transitions. It’s a trivial case when jump/call
instruction has memory reference operand. If target operand is
a register, we start tracking this register data flow dependencies
up to the beginning of the basic block. Thus, we locate an
instruction reading value from memory that forms the jump
target register.

Firstly, we check whether jump table exists at the previously
detected instruction memory access address. We support two
kinds of tables which contain addresses or offset values.
Address tables should contain values that are valid executable
addresses. We use heuristic for the offset tables. An offset
should be a negative double word value. At least one of
adjacent memory cells should contain value of the same type,
otherwise it will not be interpreted as a valid jump table. We
assume that table is continuously located in memory. We parse
memory in both directions from the current access while the
conditions for corresponding table type are met. Parsing stops
upon reaching the configurable maximum table size limit.
Besides, the valid jump table should contain at least three
entries.

Sometimes several different jump tables are placed in mem-
ory continuously. In such cases the exact table bounds cannot
be determined, and the maximum size limitation prevents
memory parsing overhead. As a result, part of the current
jump table is missed and part of adjacent jump table is parsed.
Missed part of jump table can be parsed during re-execution
of analyzed program with another memory access address.
And those jump table entries, which belong to another indirect
jump will produce incompatible path constraints during branch
inversion.

After successful jump table parsing, we generate path con-
straints for the indirect jump. A condition for each branch
is an equality of the symbolic pointer expression and the
corresponding jump table entry address. Since the indirect
jumps are usually compiled from switch statements, some
jump table entries can point to the same jump target. We
create only one path constraint for each unique jump target
to prevent generating several different inputs for the one jump
direction. The conditions for duplicated targets are merged
with disjunction.

If jump table contains offset values, we should calculate
jump table targets separately. Usually target addresses for such
cases are computed as some base address plus offset value
from the table. Knowledge of concrete target address for the
current execution and offset value for the current branch helps
to determine this base address. Then destination addresses for
every jump table branch can be easily deduced by adding offset

to this computed base.

VI. SYMBOLIC EXECUTION OF MULTI-THREADED
PROGRAMS

The regular analysis of multi-threaded programs corrupts
symbolic model and makes the following symbolic execution
incorrect. To be able to analyze such programs, we need to
keep track of thread switching and maintain separate symbolic
states for each thread.

All threads within one process have all memory shared
but their own register values, so this should be considered
in symbolic model. All threads can also have a shared path
predicates storage for symbolic branches, because they are
built on different symbolic registers values and won’t affect
each other.

The process of saving and restoring registers on the control
flow transition between threads is called a context switch. In
order to handle multi-threaded programs we implemented a
context switching operation on symbolic model. We maintain
a thread contexts storage that contains symbolic registers for
each thread. On each thread switching we save all symbolic
registers and replace them with symbolic registers for the
current thread.

The proposed technique application can be considered on
the following program:

1 int d[20], mins[4], P[4] = {0, 1, 2, 3};
2
3 void *min(void *thread_number) {
4 int i = *((int *) thread_number);
5 int cnt = sizeof(d) / sizeof(*d) / 4;
6 mins[i] = d[i * cnt];
7 for (int j = i*cnt+1; j < (i+1)*cnt; ++j)
8 if (mins[i] > d[j]) mins[i] = d[j];
9 }

10
11 int main(int argc, char **argv) {
12 int fd = open(argv[1], O_RDONLY);
13 read(fd, d, sizeof(d));
14 pthread_t t[4];
15 for (int i = 0; i < 4; ++i)
16 pthread_create(t+i,0,min,(void*)&P[i]);
17 for (int i = 0; i < 4; ++i)
18 pthread_join(t[i], 0);
19 int m = mins[0];
20 for (int i = 1; i < 4; ++i)
21 if (m > mins[i]) m = mins[i];
22 if (m > 100) printf("min>100");
23 }

This example implements a minimum search in an input array.
In lines 15–16 four threads are created. Each thread searches
a minimum for a part of an input array. Afterwards, the main
thread computes a global minimum. We symbolically execute
this program on array with minimum less than 100. In lines 6–
8 local minimums are stored to the shared symbolic memory.
In lines 19–21 the main thread computes a global minimum.
We are inverting the branch in the line 22. Thus, the program
prints min>100. Furthermore, the example illustrates that
dynamic symbolic execution is a path-sensitive analysis. The
generated input will not only have numbers greater than 100,

but also it will satisfy all constraints from branches in lines
8 and 21. These constraints actually define a partial order on
an input array. If we don’t switch symbolic registers, we get
additional unsound path constraints and lose some essential
constraints on input array. It is due to the fact that symbolic
registers get overwritten by ones from the other thread. Thus,
some array elements may be less than 100 and the generated
input won’t invert the target branch.

The limitation of this approach is that we don’t influence
the thread order during program execution. A generated input
may not follow an expected path. To solve this problem it is
necessary to implement a thread scheduler to arrange threads
order [32]. We may address this problem in future.

VII. IMPLEMENTATION

We implemented the improvements described above in Sydr
(Symbolic DynamoRIO) tool. Sydr is a dynamic symbolic
execution (DSE) tool based on dynamic binary instrumentation
(DBI). Sydr performs symbolic execution along one path
(defined by input data) and generates new inputs that invert
branches discovered on that path.

There are two approaches for implementing DSE: (1) collect
execution trace and perform symbolic execution using that
trace [17, 33]; (2) perform symbolic execution while program
is executed [34]. The (1) method has an overhead for stor-
ing execution trace on hard drive and processing the trace
to generate SMT formulas. The technique (2) doesn’t have
overhead for storing traces on disk, but it is also challenging.
DBI allows to insert analyzing code before every executed
instruction. This instrumentation code may drive symbolic
execution. Such analysis is limited to 4GB RAM when it is
applied to 32-bit executables. Moreover, problems may occur
when your instrumentation code is complex and it uses some
external libraries. For instance, DynamoRIO client crashes
when it is linked with pthread library [35]. Furthermore,
DynamoRIO heap is quite slow [36]. These kind of problems
motivated us to separate concrete and symbolic execution
into two processes. This separation allows to reduce concrete
executor code. Symbolic executor is not limited to 4 GB RAM
and can be linked with any libraries needed for analysis.

Fig. 1 presents Sydr architecture. Sydr implements
(2) method for symbolic execution. Concrete and symbolic
execution are separated into two processes communicating via
shared memory. Concrete Executor places events in shared
memory that are later processed by Symbolic Executor.

Concrete Executor (Conex) has two components: Input
Detector and DynamoRIO. Input Detector recognizes sys-
tem calls and library functions that handle input data spec-
ified by user. When such system call is detected Conex
sends an event to Symbolic Executor (Symex). This event
(ReadSymbolicInput) holds information used by Symex
to create new symbolic variables. WriteSymbolicInput
event allows to track symbolic variables when data are stored
to disk. DynamoRIO implements dynamic binary instrumen-
tation. Input Detector also requires DBI to hook system and

Fig. 1. Sydr architecture.

library calls. DBI collects information about executed instruc-
tion: address, opcode, explicit and implicit operands with their
concrete values. This information is sent as Instruction
event to Symex for symbolic execution.

Symbolic Executor (Symex) handles events from Conex
to perform symbolic execution. Symbolic Input Manager
is responsible for creating symbolic variables. It up-
dates symbolic registers, memory, and files states when
Read/WriteSymbolicInput events occur. Manager also
contains concrete values of input data corresponding to sym-
bolic variables. These values are needed while producing new
inputs. When Conex detects first read from symbolic input, it
starts passing Instruction events to Symex. These events
firstly go through Symbolic Instruction Selector. Selector
chooses just instructions having at least one symbolic operand
(explicit or implicit). These selected instructions are executed
symbolically by Triton. Indirect Control Flow Transfer Re-
solver detects indirect control transfer instructions, determines
possible control flow target addresses, and constructs path
predicate constraints for them. Exit event passed to Symex
signals that concrete execution is stopped. At this point path
constraint building is finished and Path Predicate Slicing
component starts to perform algorithm described in Path
Predicate Slicing section. New Input Generator component
inverts branch conditions in path predicate (including indirect
control flow jumps/calls) to produce new inputs. To invert each
branch a corresponding SMT solver (we use Z3 [37, 38]) query
is formed. In each query we only use those symbolic variables
that affect a target branch to be inverted, i.e. the other parts of
input data stay unchanged. The set of inputs from New Input
Generator is provided to user.

Sydr supports parallel inversion of branches. We build a
complete path predicate first and then solve SMT queries in
parallel threads. Moreover, we terminate each solver query

by a specified timeout. We could have been inverting some
branches during the path predicate construction, but further
research is needed.

VIII. EVALUATION

We evaluated Sydr on a set of single-threaded 64-bit Linux
executables [39]. We leave multi-threaded programs evalua-
tion for future research. For evaluation we used the server
with the following specification: processor AMD EPYC 7702
(128 cores), 256G RAM. We also checked the correctness
of generated inputs. If new input has the same execution
trace as original except the last branch, that should be in
inverted direction, this input is correct. We developed a tool
based on DynamoRIO to verify the inputs correctness. In
tables below column named Correct represents the number
of correct inputs. The column named SAT shows the amount
of satisfiable solver Queries. Each query is an attempt to
invert branch (change control flow direction). The column
named Branches is the number of symbolic branches in
path predicate. It should be noted that the total number of
branches can be less than the number of queries, because
each jump table is considered as one branch and produces
multiple queries. Sydr inverts branches from first to last in
path predicate. Each test is executed up to 2 hours. We limit
path predicate construction time to 20 minutes.

TABLE I
RESULTS WITH ALL PROPOSED TECHNIQUES

Application Correct SAT Queries Branches Time
bzip2recover 2101 2101 5131 5131 51m3s
cjpeg 50 50 197 8010 120m
faad 426 430 652 458145 120m
foo2lava 27 31 6127 910725 120m
hdp 809 1037 3828 67476 120m
jasper 6766 6798 18207 837669 120m
libxml2 545 1069 17532 53699 120m
minigzip 3896 7569 8977 8977 29m42s
muraster 3227 3228 4726 7102 120m
pk2bm 182 183 3673 3673 21m39s
pnmhistmap pgm 17088 17089 25446 967187 120m
pnmhistmap ppm 106 107 8247 8121 28m52s
readelf 639 739 6141 64196 120m
yices-smt2 2114 2699 9647 19543 120m
yodl 180 313 5201 4831 34m59s

We present results with all proposed techniques in Table I.
Then we disable some method in order to determine its
influence.

Table II contains results without path predicate slicing.
Slicing significantly increases accuracy of generated inputs.
For some programs (jasper, minigzip, hpd, pnmhistmap with
.pgm file, yices-smt2, readelf) the amount of correct branches
increased in several times with path predicate slicing. Still, for
bzip2recover and cjpeg result stays the same.

Table III presents results with all proposed techniques and
randomly chosen branches. The amount of correct inputs for
tests fitting in 2 hour limit is the same. For other tests the

TABLE II
RESULTS WITHOUT PATH PREDICATE SLICING

Application Correct SAT Queries Branches Time
bzip2recover 2101 2101 5131 5131 52m42s
cjpeg 50 50 198 8010 120m
faad 386 389 585 470588 120m
foo2lava 27 31 6252 910725 120m
hdp 116 464 2427 67475 120m
jasper 1 1987 5639 837669 120m
libxml2 130 1043 13520 53700 120m
minigzip 425 3961 4183 8977 120m
muraster 3234 3235 4739 7102 120m
pk2bm 181 183 3672 3673 21m48s
pnmhistmap pgm 3158 3159 4681 967187 120m
pnmhistmap ppm 106 107 8247 8121 40m15s
readelf 135 218 2046 64196 120m
yices-smt2 13 521 2135 19543 120m
yodl 26 313 5201 4831 43m24s

TABLE III
RESULTS WITH ALL PROPOSED TECHNIQUES (BRANCHES ARE

RANDOMLY CHOSEN)

Application Correct SAT Queries Branches Time
bzip2recover 2101 2101 5131 5131 51m31s
cjpeg 6 6 425 8010 120m
faad 18 71 1234 470588 120m
foo2lava 1 1 19 910725 120m
hdp 24 48 427 67476 120m
jasper 34 34 127 837669 120m
libxml2 26 62 2918 53699 120m
minigzip 3896 7569 8977 8977 18m26s
muraster 102 125 246 7102 120m
pk2bm 182 183 3672 3673 21m47s
pnmhistmap pgm 537 537 819 967187 120m
pnmhistmap ppm 106 107 8247 8121 27m
readelf 61 70 833 64196 120m
yices-smt2 1193 1543 5811 19543 120m
yodl 180 313 5201 4831 39m3s

number of correct inputs decreased because the complexity of
solver queries for randomly chosen branches increased.

TABLE IV
PARALLEL SOLVING (CORRECT INPUTS)

Application Number of Threads
1 2 4 8

cjpeg 50 54 113 113
faad 426 507 582 2803
foo2lava 27 27 32 32
hdp 809 1052 1441 1813
jasper 6766 9746 11965 12269
libxml2 545 545 545 545
muraster 3227 3450 3896 3968
pnmhistmap pgm 17088 19861 24360 24115
readelf 639 1244 1652 2018
yices-smt2 2114 3002 4147 4157

We evaluated how parallel solving influences on input
generation. We ran benchmark with all proposed techniques
using 1, 2, 4, and 8 solving threads. Table IV shows how

TABLE V
PARALLEL SOLVING (TIME)

Application Number of Threads
1 2 4 8

bzip2recover 51m3s 25m57s 13m35s 10m12
cjpeg — — 63m12s 24m8s
minigzip 29m42s 17m18s 9m13s 6m49s
pk2bm 21m39s 11m21s 5m47s 3m1s
pnmhistmap ppm 28m52s 14m20s 7m34s 4m14s
yodl 34m59s 16m54s 9m14s 5m23s

parallel solving increases the amount of correct generated
inputs. This table displays tests that do not fit in 2 hour limit
and don’t invert all branches in path predicate. For libxml2 test
the number of correct inputs stayed the same, but the number
of queries increased from 17532 to 38092. Degradation of
results for pnmhistmap pgm (8 threads worse than 4 threads)
could be explained by exhaustion of all CPU cores. We ran
several tests in parallel. Tool for testing the correctness of
inputs ran in parallel too. Table V represents how time needed
for analysis decreased with parallel solving. There are only
tests that fit in 2 hour time limit and invert all branches in
path predicate. We can see that test named cjpeg using 4 or
more threads fits in 2 hour time limit.

TABLE VI
PATH PREDICATE CONSTRUCTION TIME

Application Input Branch App Path Predicate Time
Size Count Time Base Skip X

bzip2recover 147b 5131 0.0018s 9s 5s 1.8
cjpeg 12K 8010 0.0017s 39s 16s 2.4
faad 33K 470588 0.0082s 46m35s 18m7s 2.6
foo2lava 34K 910725 0.0045s 22m32s 18m42s 1.2
hdp 530K 67478 0.0021s 1m6s 41s 1.6
jasper 198K 837669 0.0037s — 14m11s —
libxml2 453b 53699 0.0024s 1m5s 34s 1.9
minigzip 19K 8977 0.0023s 2m44s 58s 2.8
muraster 887b 7102 0.0024s 7s 3s 2.3
pk2bm 1.7K 3673 0.0018s 4s 2s 2.0
pnmhistmap pgm 198K 967187 0.0038s 14m37s 7m55s 1.8
pnmhistmap ppm 12K 8121 0.0021s 29s 11s 2.6
readelf 8.3K 64196 0.0019s 1m19s 36s 2.2
yices-smt2 2K 19543 0.0029s 26s 14s 1.9
yodl 280b 4831 0.0017s 21s 6s 3.5

The Table VI contains evaluation of path predicate con-
struction time. The column App Time represents the running
time of the program without instrumentation. The column Base
shows running time without skipping non-symbolic instruc-
tions. Running time with skipping non-symbolic instructions
is presented in the column Skip. Skipping non-symbolic
instructions makes path predicate building 1.2–3.5 times faster.
Path predicate building for jasper didn’t complete for 24 hours.
We should investigate the reasons for that later.

Results of the tool application without indirect control flow
transfers are shown in Table VII. Only a few tested programs
have symbolic indirect jumps: faad, muraster, readelf, yices,

TABLE VII
RESULTS WITHOUT INDIRECT CONTROL TRANSFERS RESOLVING

Application Correct SAT Queries Branches Time
bzip2recover 2101 2101 5131 5131 51m8s
cjpeg 50 50 197 7986 120m
faad 427 431 653 422272 120m
foo2lava 27 31 6119 910725 120m
hdp 815 1050 3851 67383 120m
jasper 6572 6604 17710 837670 120m
libxml2 545 1085 16232 53548 120m
minigzip 3896 7569 8977 8977 31m34s
muraster 2652 3861 4998 6018 120m
pk2bm 181 183 3673 3673 21m30s
pnmhistmap pgm 17062 17063 25410 967187 120m
pnmhistmap ppm 106 107 8058 8058 27m
readelf 629 727 5815 64093 120m
yices-smt2 2056 2596 9183 19386 120m
yodl 159 275 4795 4795 33m47s

yodl. Other programs can be used to evaluate how pure jump
table detection algorithm affects the analysis performance.

The programs with indirect jumps have more detected
symbolic branches. New inputs that lead to previously undis-
covered paths were generated for these programs. The largest
number of indirect jumps was found on muraster – near a
1000 symbolic branches. These queries were quite difficult
for solver to process, so there are less processed queries in
the same time. On the contrary, the number of incorrectly
generated inputs (that do not actually invert the target branch)
has significantly decreased. Without processing indirect jumps,
the program path predicate is missing some of the branches
that depend on the input. Inversion of a branch after such
missed jumps will not consider its condition, which in turn
will lead to the generation of the wrong input. For instance,
we cannot correctly invert branch in a switch case. Thus, re-
solving indirect control transfers allows to increase an analysis
accuracy.

The number of discovered branches and processed queries
for programs without symbolic indirect jumps did not change
significantly. Therefore the implemented jump table detection
mechanism does not reduce the tool performance.

IX. FUTURE WORK

We plan to continue research in improving dynamic sym-
bolic execution. There are several interesting areas to research:

• Modeling function semantics in symbolic execution
could increase accuracy and possibly speed up DSE
(tolower/toupper are interesting because they con-
strain a symbol case).

• Symbolic memory model [9] could provide new symbolic
states interesting for futher analysis.

• Using Z3-solver tactics could possibly decrease time
spent in solver.

• Developing light-weight security predicates to find some
types of dangerous vulnerabilities.

We have already partially developed security predicates,
which find critical errors, such as null pointer dereference

and out of bounds access vulnerabilities. In future we plan
to research integer overflow, wraparound, and some other
dangerous types of critical defects.

Besides, during evaluation we independently found bugs in
some programs [40, 41], including commercial NTFS support
module for UEFI. Furthermore, we plan to improve bug
detection in our analysis: iteratively launching application on
various inputs, testing generated inputs for hangs.

X. CONCLUSION

We have presented Sydr, a tool for dynamic symbolic
execution that embodies the best techniques to analyze real
world programs. We designed it in a way to provide an
independence from restrictions imposed by instrumentation
platform and target programs. Our evaluation results showed
that all considered methods are crucial for accuracy and
performance. The symbolic engine ASTs simplification and
skipping execution of non-symbolic instructions enhance anal-
ysis efficiency. Path predicate slicing, indirect control transfer
resolving, and maintenance of thread-based symbolic states
allows us to significantly increase the analysis soundness and
expand the boundaries of our tool applicability.

REFERENCES

[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S.
Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D.
Engler, “A few billion lines of code later: Using static
analysis to find bugs in the real world,” Communications
of the ACM, vol. 53, no. 2, pp. 66–75, 2010. DOI: 10.
1145/1646353.1646374.

[2] V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin,
V. N. Ignatiev, D. M. Zhurikhin, and A. I. Avetisyan,
“Static analyzer Svace for finding defects in a source
program code,” Programming and Computer Software,
vol. 40, no. 5, pp. 265–275, 2014. DOI: 10 . 1134 /
S0361768814050041.

[3] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitel-
baum, “CodeSurfer/x86—a platform for analyzing x86
executables,” in Compiler Construction, Springer Berlin
Heidelberg, 2005, pp. 250–254. DOI: 10.1007/978-3-
540-31985-6 19.

[4] H. Aslanyan, M. Arutunian, G. Keropyan, S. Kurman-
galeev, and V. Vardanyan, “BinSide : Static analysis
framework for defects detection in binary code,” in 2020
Ivannikov Memorial Workshop (IVMEM), IEEE, 2020,
pp. 9–14. DOI: 10.1109/IVMEM51402.2020.00007.

[5] S. Sargsyan, J. Hakobyan, M. Mehrabyan, M.
Mishechkin, V. Akozin, and S. Kurmangaleev, “ISP-
Fuzzer: Extendable fuzzing framework,” in 2019 Ivan-
nikov Memorial Workshop (IVMEM), IEEE, 2019,
pp. 68–71. DOI: 10.1109/IVMEM.2019.00017.

[6] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse,
“AFL++: Combining incremental steps of fuzzing re-
search,” in 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20), 2020. [Online]. Available: https://
www.usenix.org/system/files/woot20-paper-fioraldi.pdf.

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1134/S0361768814050041
https://doi.org/10.1134/S0361768814050041
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1109/IVMEM51402.2020.00007
https://doi.org/10.1109/IVMEM.2019.00017
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf

[7] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E
platform: Design, implementation, and applications,”
ACM Transactions on Computer Systems (TOCS),
vol. 30, no. 1, pp. 1–49, 2012. DOI: 10.1145/2110356.
2110358.

[8] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SOK: (state of) the art of
war: Offensive techniques in binary analysis,” in 2016
IEEE Symposium on Security and Privacy (SP), 2016,
pp. 138–157. DOI: 10.1109/SP.2016.17.

[9] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing Mayhem on binary code,” in Proceedings
of the 2012 IEEE Symposium on Security and Privacy,
ser. SP ’12, IEEE Computer Society, 2012, pp. 380–
394. DOI: 10.1109/SP.2012.31.

[10] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G.
Vigna, “Driller: Augmenting fuzzing through selective
symbolic execution,” in NDSS, vol. 16, 2016, pp. 1–16.

[11] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A
practical concolic execution engine tailored for hybrid
fuzzing,” in 27th USENIX Security Symposium, 2018,
pp. 745–761. [Online]. Available: https://www.usenix.
org / system / files / conference / usenixsecurity18 / sec18 -
yun.pdf.

[12] M. Howard and S. Lipner, The security development
lifecycle. Microsoft Press Redmond, 2006, vol. 8. [On-
line]. Available: http : / / msdn . microsoft . com / en - us /
library/ms995349.aspx.

[13] ISO/IEC 15408-3:2008: Information technology – se-
curity techniques – evaluation criteria for it security –
part 3: Security assurance components, ISO Geneva,
Switzerland, 2008. [Online]. Available: https : / /www.
iso.org/standard/46413.html.

[14] GOST R 56939-2016: Information protection. secure
software development. general requirements, National
Standard of Russian Federation, 2016. [Online]. Avail-
able: http://protect.gost.ru/document.aspx?control=7&
id=203548.

[15] I. K. Isaev and D. V. Sidorov, “The use of dynamic
analysis for generation of input data that demonstrates
critical bugs and vulnerabilities in programs,” Program-
ming and Computer Software, vol. 36, no. 4, pp. 225–
236, 2010. DOI: 10.1134/S0361768810040055.

[16] A. Gerasimov, S. Vartanov, M. Ermakov, L. Kruglov,
D. Kutz, A. Novikov, and S. Asryan, “Anxiety: A
dynamic symbolic execution framework,” in 2017 Ivan-
nikov ISPRAS Open Conference (ISPRAS), IEEE, 2017,
pp. 16–21. DOI: 10.1109/ISPRAS.2017.00010.

[17] V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov,
“Automated exploit generation for stack buffer overflow
vulnerabilities,” Programming and Computer Software,
vol. 41, no. 6, pp. 373–380, 2015. DOI: 10 . 1134 /
S0361768815060055.

[18] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–
394, 1976. DOI: 10.1145/360248.360252.

[19] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid
to ask),” in 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 317–331. DOI: 10.1109/SP.2010.26.

[20] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution tech-
niques,” ACM Computing Surveys, vol. 51, no. 3, 2018.
DOI: 10.1145/3182657.

[21] C. Barrett, P. Fontaine, and C. Tinelli, The SMT-LIB
Standard: Version 2.6, 2017. [Online]. Available: www.
SMT-LIB.org.

[22] D. Bruening, “Efficient, transparent, and comprehen-
sive runtime code manipulation,” Ph.D. dissertation,
Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2004.
[Online]. Available: https:/ /www.burningcutlery.com/
derek/docs/phd.pdf.

[23] ——, DynamoRIO: Dynamic instrumentation tool plat-
form. [Online]. Available: https : / / github . com /
DynamoRIO/dynamorio.

[24] Claripy: An abstraction layer for constraint solvers.
[Online]. Available: https://github.com/angr/claripy.

[25] F. Saudel and J. Salwan, “Triton: A dynamic symbolic
execution framework,” in Symposium sur la sécurité des
technologies de l’information et des communications,
ser. SSTIC, 2015, pp. 31–54. [Online]. Available: https:
//triton.quarkslab.com/files/sstic2015 slide en saudel
salwan.pdf.

[26] J. Salwan, Triton: Dynamic binary analysis framework.
[Online]. Available: https://github.com/JonathanSalwan/
Triton.

[27] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler, “EXE: Automatically generating inputs
of death,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, ser. CCS
’06, ACM, 2006, pp. 322–335. DOI: 10.1145/1180405.
1180445.

[28] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs,” in OSDI, vol. 8, 2008,
pp. 209–224. [Online]. Available: https://static.usenix.
org/events/osdi08/tech/full papers/cadar/cadar.pdf.

[29] M. G. Kang, S. McCamant, P. Poosankam, and D. Song,
“DTA++: Dynamic taint analysis with targeted control-
flow propagation,” in Proceedings of the Network and
Distributed System Security Symposium, ser. NDSS ’11,
2011.

[30] C. Cifuentes and M. Van Emmerik, “Recovery of jump
table case statements from binary code,” Science of
Computer Programming, vol. 40, no. 2, pp. 171–188,
2001. DOI: 10.1016/S0167-6423(01)00014-4.

https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2012.31
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-yun.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-yun.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-yun.pdf
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
https://www.iso.org/standard/46413.html
https://www.iso.org/standard/46413.html
http://protect.gost.ru/document.aspx?control=7&id=203548
http://protect.gost.ru/document.aspx?control=7&id=203548
https://doi.org/10.1134/S0361768810040055
https://doi.org/10.1109/ISPRAS.2017.00010
https://doi.org/10.1134/S0361768815060055
https://doi.org/10.1134/S0361768815060055
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3182657
www.SMT-LIB.org
www.SMT-LIB.org
https://www.burningcutlery.com/derek/docs/phd.pdf
https://www.burningcutlery.com/derek/docs/phd.pdf
https://github.com/DynamoRIO/dynamorio
https://github.com/DynamoRIO/dynamorio
https://github.com/angr/claripy
https://triton.quarkslab.com/files/sstic2015_slide_en_saudel_salwan.pdf
https://triton.quarkslab.com/files/sstic2015_slide_en_saudel_salwan.pdf
https://triton.quarkslab.com/files/sstic2015_slide_en_saudel_salwan.pdf
https://github.com/JonathanSalwan/Triton
https://github.com/JonathanSalwan/Triton
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://static.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://static.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1016/S0167-6423(01)00014-4

[31] M. Weiser, “Program slicing,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 4, pp. 352–357,
1984. DOI: 10.1109/TSE.1984.5010248.

[32] S. Guo, M. Kusano, and C. Wang, “Conc-ISE: Incre-
mental symbolic execution of concurrent software,” in
Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE
2016, ACM, 2016, pp. 531–542. DOI: 10.1145/2970276.
2970332.

[33] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Auto-
mated whitebox fuzz testing,” in NDSS, vol. 8, 2008,
pp. 151–166. [Online]. Available: https : / / www .
microsoft.com/en- us/research/publication/automated-
whitebox-fuzz-testing/.

[34] D. A. Molnar and D. Wagner, “Catchconv: Sym-
bolic execution and run-time type inference for integer
conversion errors,” UC Berkeley EECS, Tech. Rep.
UCB/EECS-2007-23, 2007. [Online]. Available: https:
/ / digitalassets . lib. berkeley. edu / techreports / ucb / text /
EECS-2007-23.pdf.

[35] D. Bruening, Issue for DynamoRIO libpthread support.
[Online]. Available: https : / /github.com/DynamoRIO/
dynamorio/issues/2848.

[36] ——, Issue for DynamoRIO heap slowdowns. [Online].
Available: https://github.com/DynamoRIO/dynamorio/
issues/2115.

[37] L. de Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in Tools and Algorithms for the Construction
and Analysis of Systems, Springer Berlin Heidelberg,
2008, pp. 337–340. DOI: 10.1007/978-3-540-78800-
3 24.

[38] L. De Moura and N. Bjørner, The Z3 theorem prover.
[Online]. Available: https://github.com/Z3Prover/z3.

[39] Sydr benchmark. [Online]. Available: https : / / github .
com/ispras/sydr-benchmark.

[40] Goblin bug. [Online]. Available: https : / / github. com /
m4b/goblin/issues/108.

[41] Faad2 bug. [Online]. Available: https : / / github . com /
knik0/faad2/pull/65.

https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/2970276.2970332
https://doi.org/10.1145/2970276.2970332
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-23.pdf
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-23.pdf
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2007-23.pdf
https://github.com/DynamoRIO/dynamorio/issues/2848
https://github.com/DynamoRIO/dynamorio/issues/2848
https://github.com/DynamoRIO/dynamorio/issues/2115
https://github.com/DynamoRIO/dynamorio/issues/2115
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://github.com/ispras/sydr-benchmark
https://github.com/ispras/sydr-benchmark
https://github.com/m4b/goblin/issues/108
https://github.com/m4b/goblin/issues/108
https://github.com/knik0/faad2/pull/65
https://github.com/knik0/faad2/pull/65

	I Introduction
	II Skipping Non-Symbolic Instructions
	III AST Simplification
	IV Path Predicate Slicing
	V Indirect Control Transfers Resolving
	VI Symbolic Execution of Multi-Threaded Programs
	VII Implementation
	VIII Evaluation
	IX Future Work
	X Conclusion

