
Static Analysis of HDL Descriptions: Extracting Models for Verification

Alexander Kamkin
*
, Sergey Smolov

*
, Igor Melnichenko

†

*
Institute for System Programming of the Russian Academy of Sciences (ISPRAS),

†
OJSC “The Institute of Electronic Control Computers named after I.S. Bruk” (INEUM)

{kamkin, ssedai}@ispras.ru, i.melnichenko@deltasolutions.ru

Abstract
1

The increasing complexity of hardware designs

makes functional verification a challenge. The key is-

sue of the state-of-the-art verification approaches is to

obtain a “good” model for automated test generation or

formal property checking. In this paper, we describe

techniques for deriving EFSM-based models from

HDL descriptions and briefly discuss applications of

such models for verification. The distinctive feature of

the suggested approach is that it automatically deter-

mines what registers of a design encode its state and

use this information for model reconstruction.

1. Introduction

It is well known that functional verification is a bot-

tleneck of the hardware design cycle. To automate veri-

fication, different kinds of models are in use. Some of

them are built from requirements (properties, use cases,

etc.); others are extracted from code (control flow

graphs, state machines, etc.). The paper focuses on

models of the second type and their application to sim-

ulation-based and formal verification. Specifically, we

consider static, compile-time derivation of extended

finite state machines (EFSMs) from design source code

written in a hardware description language (HDL).

The EFSM formalism extends the classical FSM

model by adding (1) input and output parameters, (2)

registers and (3) transitions’ guards and actions de-

fined over registers and input parameters. The main

idea is to clearly separate control and datapath (exactly

as it is acknowledged in hardware design and synthe-

sis). EFSM-based models are intensively used in func-

tional test generation (to generate conformance test

suites [1] or to cover unlikely corner cases [2]) as well

as in formal verification, especially in model checking

This work was supported in part by the Russian Foundation for

Basic Research under grant 12-01-31343.

(to check properties or to find errors and inconsisten-

cies in a design model).

In this paper, we introduce a method for deriving

EFSM models from HDL code and briefly discuss

some EFSM-based verification techniques. The re-

mainder is organized as follows. Section 2 reviews

related work dealing with EFSM extraction and using

EFSM models for verification of HDL descriptions.

Section 3 introduces the basic notions used in the work.

Section 4 describes the main concepts of the approach.

Section 5 reports experimental results. Finally, Sec-

tion 6 concludes the paper and outlines directions of

future research.

2. Related work

There are not so many approaches to hardware veri-

fication using EFSM abstraction. The paper [3] pre-

sents a FAST framework that accelerates fault simula-

tion (mutation testing) through automatic abstraction

of HDL descriptions (code with injected faults) into

event-equivalent transaction-level models (TLMs).

Fault injection/simulation techniques have been widely

investigated in the past decades. The most interesting

part of the work is RTL-to-TLM abstraction, which, in

turn, is based on EFSM extraction. Given an EFSM

model, the tool is able to recognize computational

phases (paths that must be traversed to (1) get the input

data, (2) elaborate them, and (3) produce the output

result). Abstraction is carried out by collapsing compu-

tational subphases according to a set of state-merging

rules.

Some papers address the problem of EFSM-based

test generation [1,2,4,5]. If EFSMs are derived from

HDL descriptions, such tests are able to achieve high

level of code coverage and, as opposed to [3], to cope

with state dependencies. The dominant approach used

in the area (as well as in model checking) is state graph

traversal. Comparing with the FSM-targeted methods,

there is an issue related to transition guards. When

guards depend on registers (not only on inputs), it is

hard to determine whether a path is feasible or not.

There are techniques for EFSM transformation that

eliminate dependencies [1,4,5], but they may lead to

state explosion. An alternative is to use backtracking

(and backjumping) to search for reachable states [2].

In [2], generation of “easy-to-traverse” EFSMs

from HDL code is described. The process consists of

the four steps: (1) an initial EFSM (REFSM, reference

EFSM) is extracted from code by using standard rou-

tines [6]; (2) new states are added to the REFSM to

split transitions into “smaller” ones, with no condition-

al statements in actions (LEFSM, largest EFSM); (3) to

be time-equivalent to the initial REFSM, the LEFSM is

transformed by grouping compatible transitions

(SEFSM, smallest EFSM); (4) the SEFSM is stabilized

[5] on the register encoding the design state (S
2
EFSM,

semi-stabilized EFSM). The method is rather powerful,

but, we believe, it could be improved if it took notice

of the state register(s) from the beginning.

3. Preliminaries

Let V be a set of variables. A valuation is a function

that associates a variable v  V with a value [v] from

the corresponding domain. The set of all valuations of

V is denoted as DomV. A guard is a Boolean function

defined on valuations (DomV  {true, false}). An ac-

tion is a transform of a valuation (DomV  DomV). A

pair   , where  is a guard and  is an action, is

called a guarded action (GA). Note that when we speak

about a function, it is implied that there is a description

of that function in some HDL-like language (thus, we

can reason about syntax, not only semantics).

An EFSM is a tuple S, V, T, where S is a set of

states, V = I  O  R is a set of variables, consisting

of inputs (I), outputs (O) and registers (R), and T is a

set of transitions (all sets are supposed to be finite).

Each t  T is a tuple (st, t  t, s't), where st and s't

are, respectively, the initial and final states of t, and t

and t are, respectively, the guard and the action of t. A

valuation   DomV is called a context, while a pair

(s, )  S  DomV is referred to as a configuration. A

transition t is said to be enabled for a configuration

(s, ) if st = s and t() = true.

Given a clock C and an initial configuration (s0, 0),

an EFSM operates as follows. In the beginning, it re-

sets the configuration: (s, )  (s0, 0). On every tick

of C, it computes the set of enabled transitions:

E  {t  T | st = s  t() = true}. A single transition

t  E (chosen nondeterministically) fires. Executing

this transition, the EFSM changes the configuration

(updates the context and moves from the initial state of

the transition to the final one): (s, )  (st, t).

4. EFSM extraction

The proposed approach to EFSM extraction is as

follows: (1) HDL code is parsed, and the abstract syn-

tax tree (AST) is built; (2) the AST is traversed, and the

intermediate representation (IR) is elaborated: (a)

clock inputs (CIs) are identified; (b) implicit state reg-

isters (ISRs) are detected and replaced with the explicit

state registers (ESRs); (3) the IR is transformed into

the set of GAs; (4) data flow analysis of the GAs is

performed, and the ESRs are recognized; (5) the condi-

tions on the ESRs are analyzed, and the EFSM states

are identified; (6) the EFSM transitions (with guards

and actions) are generated. Section 4.1 describes the

preprocessing phase (steps 1, 2 and 3). Section 4.2

considers the main phase (steps 4, 5 and 6).

4.1. HDL-to-GAs translation

The purpose of the preprocessing phase is to derive

the set of clocked GAs [7] from an HDL description.

The GA model is considered as being more abstract

design paradigm comparing with the RTL. In contrast

to the latter, GAs do not specify control logic (it is

constructed by a compiler that takes into account limi-

tations specified by a designer). We need to perform

the backward transformation (with a minor reservation

that we are not required to get rid of the “superfluous”

control logic presented in HDL code).

Step 1 is widely examined; let us start with Step 2.

One of the goals of the step is to identify CIs (input

signals used to synchronize the design actions). We

introduce the following heuristic. A variable v is said to

be a clock-like input (CLI) if the following properties

are satisfied: (1) v is a 1-bit input; (2) v appears in the

sensitivity list of some of the processes (or in a wait

statement); (3) v is not used in assignments (neither on

the left nor on the right). Step 2 is also responsible for

detecting ISRs and replacing them with ESRs. An ISR

is understood here as a register that is not encoded ex-

plicitly but implied by a designer. We use a method

similar to one described in [6]: (1) each process p is

associated with a unique ISR rp; every wait statement w

(including p’s activation statement) is associated with a

particular value vw of rp; (2) all execution paths be-

tween all of the wait statements are evaluated; (3) the

following transformations are carried out: (a) process p

is removed; (b) for each path (or hammock)  (between

wi and wj), a new process p is added: (i) the activation

condition of p coincides with wi’s; (ii) p has the body

if rp = vwi then ; rp <= vwj end if.

At Step 3, clocked GAs are extracted. The proce-

dure is straightforward. For each process p generated at

Step 2, a set of clocked GAs {Cp
(i)

, p
(i)

  p
(i)
}i=1,n is

created: (1) Cp
(i)

 contains all CLIs used in p; (2) p
(i)

specifies the condition of the i
th

 branch of the top-level

conditional (or case) statement (if there is no such a

statement, then n = 1 and p
(1)

  true); (3) p
(i)

 consists

of the statements of the i
th

 branch (or of the whole p’s

body if n = 1). Note that after applying the procedure

there might be situations when some of the actions

(p
(i)

) contain embedded conditional statements. To

simplify further analysis, they are lifted to the guards

(taking into account dependencies from the preceding

assignments); this leads to extra splitting of the GAs.

Let us illustrate GAs extraction on an example of a

counter. The device has three inputs (clock, reset and

enable), one output (count) and one register (state).

The VHDL code is presented in Table 1 (on the left).

Extraction is done as follows: (1) the input clock is

identified as a CLI; (2) two processes are recognized:

(a) the first one is activated on clock’event; (b) the sec-

ond one (assignment of state to count) has the trivial

activating condition; (3) according to the number of

branches in processes, two GAs (x and y) are generated

for the first process; one GA (z) is constructed for the

second one (see the right side of Table 1).

process (…) begin

 if clock’event then

 if reset = ‘1’ then

 state <= ‘0’;

 elsif enable = ‘1’ then

 state <= state + ‘1’;

 end if;

 end if;

 count <= state;

end process;

Cx

x

x

{clock}

(reset = 1)

state = 0

Cy

y

y

{clock}
(reset = 1)  (enable = 1)

state = state + 1

Cz

z

z



true

count = state

Table 1. An HDL-to-GAs translation example

4.2. GAs-to-EFSM translation

A data flow graph (DFG) is an essential way to or-

ganize a set of GAs. Let x and y be GAs and v be a

variable. They say that v is defined in x (and write

v  Defx) if x’s action contains an assignment to v; v is

said to be used in y (v  Usey) if v appears in y’s guard

or action but is not modified. A GA y is said to be de-

pendent on x if Defx  Usey  . A DFG is a directed

graph that represents dependencies between GAs. In

Figure 1, the DFG for the above example is depicted

(labels are the defined-used variables).

z

x y

{count}

{count}

{count}{count}

Figure 1. The DFG for the above example

Step 4 performs data flow analysis of the GAs and

identifies the ESRs (the registers that encode the con-

trol state). The heuristic is as follows. A variable v is

said to be a state-like register (SLR) if the following

requirements are met: (1) v is not an input; (2) there is

a GA x, such that v  Usex; (3) there is a GA y, such

that v  Defy; (4) there exists a path in the DFG from x

to y. Additional constraints include: (5) all GAs that

use v have the same non-trivial clocks (C  ); (6) for

each GA that uses v, there should be at least one clock-

free execution path to a GA that defines v (usually, v is

defined in the same action). Note that synthesis tools

stipulate stricter requirements to ESRs. For example,

the register count in the above code is a SLR, but it is

not synthesized as an ESR (ESRs should be assigned

with expressions statically evaluating to constants). For

complex designs, we use one more requirement: (7)

guards on v should be equivalent to [v]  X, where X is

a bounded set of constants (the maximum size of the set

may depend on the design complexity).

At Step 5, specific states are identified. The prepara-

tory step is to factorize the SLRs by the dependence

relation. Two variables u and v are called dependent if

there are two GAs, x and y, such that u  Usex  Defx

and v  Usey  Defy, and there exists a clock-free exe-

cution path between u and v (possibly of length 0);

otherwise, u and v are called independent. Each equiva-

lence class R of the SLRs is processed separately and

corresponds to one EFSM. State extraction is done as

follows: (1) all constraints (conditions) on R’s registers

are collected ((R)); (2) the constraints of (R) are

decomposed so as to form the smallest set of disjoint

constraints (
*
(R)); (3) each constraint s  

*
(R) is

associated with a symbolic state s. Note that the routine

is not hard if the constraints have the form [v]  X.

Finally, Step 6 generates transitions and produces

the EFSM. Providing that all conditional statements in

the GAs’ actions are lifted to the guards (see the note to

Step 3), the process is as follows: (1) the GAs are split

in such a way that a single guard is consistent with the

only state constraint, and guards associated with the

same state are either equivalent or incompatible; (2) for

each GA x, if x is consistent with s, then the proto-

transition t = (s, x  x, –), whose final state needs to

be determined, is saved (proto-transitions having the

same states and guards are merged); (2) for each proto-

transition t, the action t is symbolically executed,

mapping st  t to a new constraint 't: (a) if 't coin-

cides with some s', then t with s' as the final state is

added to the set of transitions; (b) otherwise, for all s',

such that s' and 't are consistent: (i) s'  't is back-

ward executed, producing the precondition *t; (ii) the

transition ts' = (s, (t  *t)  t, s') is added to the set

of transitions. Figure 2 shows the EFSM for the above

example. It is trivial, because there are no conditions

on the register state (identified as a SLR).

true
not (reset = '1') and (enable = '1')

state <= state + '1'

(reset = '1')

state <= '0'

Figure 2. The EFSM for the above example

5. Experiments

We have implemented a tool for EFSM extraction

and made some experiments. The tool is written in Java

with the help of JUNG [8] and zamiaCAD [9]. It han-

dles VHDL designs described in the synthesizable sub-

set of the language (currently, a hardware design is

processed as a single whole not taking into account its

hierarchical structure). We have analyzed four open-

source VHDL projects: PLASMA, DLX, HC11 and

UART (42 modules consisting of 14 KLOC). For 70%

of the modules, CLIs have been extracted (the rest

modules describe combinational logic). The CLIs in-

clude all clock and reset signals and also some signals

related to interruptions. SLRs have been detected in

25% of the modules. In about 30% of the cases, a

SLR’s name has the “state” substring (moreover, all of

the “state” registers have been recognized as SLRs). In

other cases, the results are also adequate. For example,

the tool extracts registers that keep queues’ fullness

(when Requirement 7 from the definition of a SLR is

not used).

6. Remarks and conclusion

EFSMs are widely used in hardware verification, in-

cluding simulation-based and formal techniques. A

number of EFSM-based methods have been proposed

for generating functional tests and checking formally

specified properties [1,2,4,5]. We have suggested the

method for extracting EFSMs from HDL code. The

approach has many similarities with one described in

[2], but it also has some distinctions. The main of them

is that it automatically determines what registers of a

target design represent the EFSM state and extracts

states and transitions by analyzing the conditions on the

identified registers (in [2], information on state regis-

ters is used at the last step of the process). We are

planning to compare our approach with the above-

mentioned one in the nearest future.

Another thing we are going to do is to study dead-

lock and conflict detection in networks of EFSMs with

shared variables. For example, if an EFSM defines a

variable in one transition and uses it in another transi-

tion, there should not be other EFSMs that could modi-

fy the variable in between the define-use chain of the

first EFSM. Improving test generation methods is an-

other interesting option. We think, it is a promising

idea to use concolic testing techniques (which combine

concrete and symbolic execution) [10] for constructing

test sequences for HDL descriptions.

7. References

[1] A.Y. Duale, M.U. Uyar, “A Method Enabling Feasible

Conformance Functional Test Sequence Generation for

EFSM Models”, IEEE Transactions on Computers, 53(5),

2004, pp. 614-627.

[2] G. Guglielmo, L. Guglielmo, F. Fummi, G. Pravadelli,

“Efficient Generation of Stimuli for Functional Verification

by Backjumping Across Extended FSMs”, Journal of Elec-

tronic Testing, 27(2), 2011, pp. 37-162.

[3] N. Bombieri, F. Fummi, V. Guarnieri, “FAST: An RTL

Fault Simulation Framework based on RTL-to-TLM Abstrac-

tion”, Journal of Electronic Testing, 28(4), 2012, pp. 495-

510.

[4] R.M. Hierons, T.-H. Kim, H. Ural, “Expanding an Ex-

tended Finite State Machine to Aid Testability”, Computer

Software and Applications Conference, 2002, pp. 334-339.

[5] K.-T. Cheng, A.S. Krishnakumar, “Automatic Genera-

tion of Functional Vectors Using The Extended Finite State

Machine Model”, ACM Transactions on Design Automation

of Electronic Systems, 1(1), 1996, pp. 57-79.

[6] J.-C. Giomi, “Finite State Machine Extraction from

Hardware Description Languages”, ASIC Conference and

Exhibition, 1995, pp. 353-357.

[7] J. Brandt, M. Gemünde, K. Schneider, S. Shukla, and J.-

P. Talpin, “Integrating System Descriptions by Clocked

Guarded Actions”, Forum on Design Languages, 2011.

[8] http://jung.sourceforge.net.

[9] http://zamiacad.sourceforge.net.

[10] K. Sen, “Concolic Testing”, IEEE/ACM International

Conference on Automated Software Engineering, 2007,

pp. 571-572.

