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Abstract
1
 

 

The increasing complexity of hardware designs 

makes functional verification a challenge. The key is-

sue of the state-of-the-art verification approaches is to 

obtain a “good” model for automated test generation or 

formal property checking. In this paper, we describe 

techniques for deriving EFSM-based models from 

HDL descriptions and briefly discuss applications of 

such models for verification. The distinctive feature of 

the suggested approach is that it automatically deter-

mines what registers of a design encode its state and 

use this information for model reconstruction. 

 

1. Introduction 
 

It is well known that functional verification is a bot-

tleneck of the hardware design cycle. To automate veri-

fication, different kinds of models are in use. Some of 

them are built from requirements (properties, use cases, 

etc.); others are extracted from code (control flow 

graphs, state machines, etc.). The paper focuses on 

models of the second type and their application to sim-

ulation-based and formal verification. Specifically, we 

consider static, compile-time derivation of extended 

finite state machines (EFSMs) from design source code 

written in a hardware description language (HDL). 

The EFSM formalism extends the classical FSM 

model by adding (1) input and output parameters, (2) 

registers and (3) transitions’ guards and actions de-

fined over registers and input parameters. The main 

idea is to clearly separate control and datapath (exactly 

as it is acknowledged in hardware design and synthe-

sis). EFSM-based models are intensively used in func-

tional test generation (to generate conformance test 

suites [1] or to cover unlikely corner cases [2]) as well 

as in formal verification, especially in model checking 
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(to check properties or to find errors and inconsisten-

cies in a design model). 

In this paper, we introduce a method for deriving 

EFSM models from HDL code and briefly discuss 

some EFSM-based verification techniques. The re-

mainder is organized as follows. Section 2 reviews 

related work dealing with EFSM extraction and using 

EFSM models for verification of HDL descriptions. 

Section 3 introduces the basic notions used in the work. 

Section 4 describes the main concepts of the approach. 

Section 5 reports experimental results. Finally, Sec-

tion 6 concludes the paper and outlines directions of 

future research. 

 

2. Related work 
 

There are not so many approaches to hardware veri-

fication using EFSM abstraction. The paper [3] pre-

sents a FAST framework that accelerates fault simula-

tion (mutation testing) through automatic abstraction 

of HDL descriptions (code with injected faults) into 

event-equivalent transaction-level models (TLMs). 

Fault injection/simulation techniques have been widely 

investigated in the past decades. The most interesting 

part of the work is RTL-to-TLM abstraction, which, in 

turn, is based on EFSM extraction. Given an EFSM 

model, the tool is able to recognize computational 

phases (paths that must be traversed to (1) get the input 

data, (2) elaborate them, and (3) produce the output 

result). Abstraction is carried out by collapsing compu-

tational subphases according to a set of state-merging 

rules. 

Some papers address the problem of EFSM-based 

test generation [1,2,4,5]. If EFSMs are derived from 

HDL descriptions, such tests are able to achieve high 

level of code coverage and, as opposed to [3], to cope 

with state dependencies. The dominant approach used 

in the area (as well as in model checking) is state graph 

traversal. Comparing with the FSM-targeted methods, 

there is an issue related to transition guards. When 



guards depend on registers (not only on inputs), it is 

hard to determine whether a path is feasible or not. 

There are techniques for EFSM transformation that 

eliminate dependencies [1,4,5], but they may lead to 

state explosion. An alternative is to use backtracking 

(and backjumping) to search for reachable states [2]. 

In [2], generation of “easy-to-traverse” EFSMs 

from HDL code is described. The process consists of 

the four steps: (1) an initial EFSM (REFSM, reference 

EFSM) is extracted from code by using standard rou-

tines [6]; (2) new states are added to the REFSM to 

split transitions into “smaller” ones, with no condition-

al statements in actions (LEFSM, largest EFSM); (3) to 

be time-equivalent to the initial REFSM, the LEFSM is 

transformed by grouping compatible transitions 

(SEFSM, smallest EFSM); (4) the SEFSM is stabilized 

[5] on the register encoding the design state (S
2
EFSM, 

semi-stabilized EFSM). The method is rather powerful, 

but, we believe, it could be improved if it took notice 

of the state register(s) from the beginning. 

 

3. Preliminaries 
 

Let V be a set of variables. A valuation is a function 

that associates a variable v  V with a value [v] from 

the corresponding domain. The set of all valuations of 

V is denoted as DomV. A guard is a Boolean function 

defined on valuations (DomV  {true, false}). An ac-

tion is a transform of a valuation (DomV  DomV). A 

pair   , where  is a guard and  is an action, is 

called a guarded action (GA). Note that when we speak 

about a function, it is implied that there is a description 

of that function in some HDL-like language (thus, we 

can reason about syntax, not only semantics). 

An EFSM is a tuple S, V, T, where S is a set of 

states, V = I  O  R is a set of variables, consisting 

of inputs (I), outputs (O) and registers (R), and T is a 

set of transitions (all sets are supposed to be finite). 

Each t  T is a tuple (st, t  t, s't), where st and s't 

are, respectively, the initial and final states of t, and t 

and t are, respectively, the guard and the action of t. A 

valuation   DomV is called a context, while a pair 

(s, )  S  DomV is referred to as a configuration. A 

transition t is said to be enabled for a configuration 

(s, ) if st = s and t() = true. 

Given a clock C and an initial configuration (s0, 0), 

an EFSM operates as follows. In the beginning, it re-

sets the configuration: (s, )  (s0, 0). On every tick 

of C, it computes the set of enabled transitions: 

E  {t  T | st = s  t() = true}. A single transition 

t  E (chosen nondeterministically) fires. Executing 

this transition, the EFSM changes the configuration 

(updates the context and moves from the initial state of 

the transition to the final one): (s, )  (st, t). 

 

4. EFSM extraction 
 

The proposed approach to EFSM extraction is as 

follows: (1) HDL code is parsed, and the abstract syn-

tax tree (AST) is built; (2) the AST is traversed, and the 

intermediate representation (IR) is elaborated: (a) 

clock inputs (CIs) are identified; (b) implicit state reg-

isters (ISRs) are detected and replaced with the explicit 

state registers (ESRs); (3) the IR is transformed into 

the set of GAs; (4) data flow analysis of the GAs is 

performed, and the ESRs are recognized; (5) the condi-

tions on the ESRs are analyzed, and the EFSM states 

are identified; (6) the EFSM transitions (with guards 

and actions) are generated. Section 4.1 describes the 

preprocessing phase (steps 1, 2 and 3). Section 4.2 

considers the main phase (steps 4, 5 and 6). 

 

4.1. HDL-to-GAs translation 
 

The purpose of the preprocessing phase is to derive 

the set of clocked GAs [7] from an HDL description. 

The GA model is considered as being more abstract 

design paradigm comparing with the RTL. In contrast 

to the latter, GAs do not specify control logic (it is 

constructed by a compiler that takes into account limi-

tations specified by a designer). We need to perform 

the backward transformation (with a minor reservation 

that we are not required to get rid of the “superfluous” 

control logic presented in HDL code). 

Step 1 is widely examined; let us start with Step 2. 

One of the goals of the step is to identify CIs (input 

signals used to synchronize the design actions). We 

introduce the following heuristic. A variable v is said to 

be a clock-like input (CLI) if the following properties 

are satisfied: (1) v is a 1-bit input; (2) v appears in the 

sensitivity list of some of the processes (or in a wait 

statement); (3) v is not used in assignments (neither on 

the left nor on the right). Step 2 is also responsible for 

detecting ISRs and replacing them with ESRs. An ISR 

is understood here as a register that is not encoded ex-

plicitly but implied by a designer. We use a method 

similar to one described in [6]: (1) each process p is 

associated with a unique ISR rp; every wait statement w 

(including p’s activation statement) is associated with a 

particular value vw of rp; (2) all execution paths be-

tween all of the wait statements are evaluated; (3) the 

following transformations are carried out: (a) process p 

is removed; (b) for each path (or hammock)  (between 

wi and wj), a new process p is added: (i) the activation 



condition of p coincides with wi’s; (ii) p has the body 

if rp = vwi then ; rp <= vwj end if. 

At Step 3, clocked GAs are extracted. The proce-

dure is straightforward. For each process p generated at 

Step 2, a set of clocked GAs {Cp
(i)

, p
(i)

  p
(i)
}i=1,n is 

created: (1) Cp
(i)

 contains all CLIs used in p; (2) p
(i)

 

specifies the condition of the i
th

 branch of the top-level 

conditional (or case) statement (if there is no such a 

statement, then n = 1 and p
(1)

  true); (3) p
(i)

 consists 

of the statements of the i
th

 branch (or of the whole p’s 

body if n = 1). Note that after applying the procedure 

there might be situations when some of the actions 

(p
(i)

) contain embedded conditional statements. To 

simplify further analysis, they are lifted to the guards 

(taking into account dependencies from the preceding 

assignments); this leads to extra splitting of the GAs. 

Let us illustrate GAs extraction on an example of a 

counter. The device has three inputs (clock, reset and 

enable), one output (count) and one register (state). 

The VHDL code is presented in Table 1 (on the left). 

Extraction is done as follows: (1) the input clock is 

identified as a CLI; (2) two processes are recognized: 

(a) the first one is activated on clock’event; (b) the sec-

ond one (assignment of state to count) has the trivial 

activating condition; (3) according to the number of 

branches in processes, two GAs (x and y) are generated 

for the first process; one GA (z) is constructed for the 

second one (see the right side of Table 1). 
 

process (…) begin 

  if clock’event then 

    if reset = ‘1’ then 

      state <= ‘0’; 

    elsif enable = ‘1’ then 

      state <= state + ‘1’; 

    end if; 

  end if; 

  count <= state; 

end process; 

Cx 

x 

x 

{clock} 

(reset = 1) 

state = 0 

Cy 

y 

y 

{clock} 
(reset = 1)  (enable = 1) 

state = state + 1 

Cz 

z 

z 

 

true 

count = state 

Table 1. An HDL-to-GAs translation example 

 

4.2. GAs-to-EFSM translation 
 

A data flow graph (DFG) is an essential way to or-

ganize a set of GAs. Let x and y be GAs and v be a 

variable. They say that v is defined in x (and write 

v  Defx) if x’s action contains an assignment to v; v is 

said to be used in y (v  Usey) if v appears in y’s guard 

or action but is not modified. A GA y is said to be de-

pendent on x if Defx  Usey  . A DFG is a directed 

graph that represents dependencies between GAs. In 

Figure 1, the DFG for the above example is depicted 

(labels are the defined-used variables). 

z

x y

{count}

{count}

{count}{count}

 
Figure 1. The DFG for the above example 

Step 4 performs data flow analysis of the GAs and 

identifies the ESRs (the registers that encode the con-

trol state). The heuristic is as follows. A variable v is 

said to be a state-like register (SLR) if the following 

requirements are met: (1) v is not an input; (2) there is 

a GA x, such that v  Usex; (3) there is a GA y, such 

that v  Defy; (4) there exists a path in the DFG from x 

to y. Additional constraints include: (5) all GAs that 

use v have the same non-trivial clocks (C  ); (6) for 

each GA that uses v, there should be at least one clock-

free execution path to a GA that defines v (usually, v is 

defined in the same action). Note that synthesis tools 

stipulate stricter requirements to ESRs. For example, 

the register count in the above code is a SLR, but it is 

not synthesized as an ESR (ESRs should be assigned 

with expressions statically evaluating to constants). For 

complex designs, we use one more requirement: (7) 

guards on v should be equivalent to [v]  X, where X is 

a bounded set of constants (the maximum size of the set 

may depend on the design complexity). 

At Step 5, specific states are identified. The prepara-

tory step is to factorize the SLRs by the dependence 

relation. Two variables u and v are called dependent if 

there are two GAs, x and y, such that u  Usex  Defx 

and v  Usey  Defy, and there exists a clock-free exe-

cution path between u and v (possibly of length 0); 

otherwise, u and v are called independent. Each equiva-

lence class R of the SLRs is processed separately and 

corresponds to one EFSM. State extraction is done as 

follows: (1) all constraints (conditions) on R’s registers 

are collected ((R)); (2) the constraints of (R) are 

decomposed so as to form the smallest set of disjoint 

constraints (
*
(R)); (3) each constraint s  

*
(R) is 

associated with a symbolic state s. Note that the routine 

is not hard if the constraints have the form [v]  X. 

Finally, Step 6 generates transitions and produces 

the EFSM. Providing that all conditional statements in 

the GAs’ actions are lifted to the guards (see the note to 

Step 3), the process is as follows: (1) the GAs are split 

in such a way that a single guard is consistent with the 

only state constraint, and guards associated with the 

same state are either equivalent or incompatible; (2) for 

each GA x, if x is consistent with s, then the proto-

transition t = (s, x  x, –), whose final state needs to 

be determined, is saved (proto-transitions having the 

same states and guards are merged); (2) for each proto-

transition t, the action t is symbolically executed, 



mapping st  t to a new constraint 't: (a) if 't coin-

cides with some s', then t with s' as the final state is 

added to the set of transitions; (b) otherwise, for all s', 

such that s' and 't are consistent: (i) s'  't is back-

ward executed, producing the precondition *t; (ii) the 

transition ts' = (s, (t  *t)  t, s') is added to the set 

of transitions. Figure 2 shows the EFSM for the above 

example. It is trivial, because there are no conditions 

on the register state (identified as a SLR). 

true
not (reset = '1') and (enable = '1')

state <= state + '1'

(reset = '1')

state <= '0'

 
Figure 2. The EFSM for the above example 

 

5. Experiments 
 

We have implemented a tool for EFSM extraction 

and made some experiments. The tool is written in Java 

with the help of JUNG [8] and zamiaCAD [9]. It han-

dles VHDL designs described in the synthesizable sub-

set of the language (currently, a hardware design is 

processed as a single whole not taking into account its 

hierarchical structure). We have analyzed four open-

source VHDL projects: PLASMA, DLX, HC11 and 

UART (42 modules consisting of 14 KLOC). For 70% 

of the modules, CLIs have been extracted (the rest 

modules describe combinational logic). The CLIs in-

clude all clock and reset signals and also some signals 

related to interruptions. SLRs have been detected in 

25% of the modules. In about 30% of the cases, a 

SLR’s name has the “state” substring (moreover, all of 

the “state” registers have been recognized as SLRs). In 

other cases, the results are also adequate. For example, 

the tool extracts registers that keep queues’ fullness 

(when Requirement 7 from the definition of a SLR is 

not used). 

 

6. Remarks and conclusion 
 

EFSMs are widely used in hardware verification, in-

cluding simulation-based and formal techniques. A 

number of EFSM-based methods have been proposed 

for generating functional tests and checking formally 

specified properties [1,2,4,5]. We have suggested the 

method for extracting EFSMs from HDL code. The 

approach has many similarities with one described in 

[2], but it also has some distinctions. The main of them 

is that it automatically determines what registers of a 

target design represent the EFSM state and extracts 

states and transitions by analyzing the conditions on the 

identified registers (in [2], information on state regis-

ters is used at the last step of the process). We are 

planning to compare our approach with the above-

mentioned one in the nearest future. 

Another thing we are going to do is to study dead-

lock and conflict detection in networks of EFSMs with 

shared variables. For example, if an EFSM defines a 

variable in one transition and uses it in another transi-

tion, there should not be other EFSMs that could modi-

fy the variable in between the define-use chain of the 

first EFSM. Improving test generation methods is an-

other interesting option. We think, it is a promising 

idea to use concolic testing techniques (which combine 

concrete and symbolic execution) [10] for constructing 

test sequences for HDL descriptions. 
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