HuctutyT Cuctemuoro IlporpamMmmupoBaHus
H‘ I I um. B.II. UBanHuUKOBa

Poccuiickoii AKageMHUHn HAVK

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
Nuacruryra CuCTEMHOIO
IIporpammupoBanuss PAH

Proceedings of the
Institute for System
Programming of the RAS

Tom 30, BeIyCK 4

Volume 30, issue 4

Mocxksa 2018



ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cuctemHoro nporpammupoBaHust PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢ a1BoitHOM
AQHOHHMMHOMW CUCTEMOM pEelleH3UpOBaHMU,
myOMKyrolee HayqHbIe CTaTbU, OTHOCSIIHECS
KO BCEM 00J1aCTAX CHCTEMHOTO
MIPOTrPaMMHPOBAHUSI, TEXHOIOTHI
MIPOTPaMMHPOBAHUS U BEIMHCIUTEILHOM
TeXHUKH. Lenbio n3aanus sBisieTcs
(hopMHpOBaHHE HAYYHO-HH(POPMALTUOHHOM
CpPEebI B 3TUX OONIACTAX ITyTEM ITyOIUKAIIHN
BBICOKOKAYECTBEHHBIX CTAaTEH B OTKPHITOM
JIOCTYIIE.
M3nanue npeaHa3HaueHO IS HCCIIeioBaTeNeH,
CTYJICHTOB U aCIIUPAHTOB, a TAKXKE IPAKTHKOB.
OHO 0XBAaTHIBACT IIUPOKUIT CIIEKTP TEM,
BKJTIOYAsi, B YACTHOCTH, CIETYIOIIHE:
®  OIlepalOHHBIC CHCTEMBI;
e  KOMIMIATOPHBIC TEXHOJOTHUH;
e (0a3bl JaHHBIX U HHPOPMAIIHOHHBIC
CHCTEMBI;
e  mapajenbHBIC U PacTIpe/eTIeHHbIe
CHCTEMBI;
e  aBTOMaTH3MPOBaHHas pa3zpaboTka
IpOTpamMm;
e  BepuduKanus, BaTUIANMI
TECTHPOBAHNE;
CTaTHYECKUHA ¥ THHAMAYECKUN aHaIIN3;
3auTa 1 obecredeHre 6e30macHOCTH
T10;
KOMIIBIOTEPHBIE aJITOPUTMBI;
I/ICKyCCTBGHHbIl\/’I HWHTCJIJICKT.
KypHan nzgaercs no 0JHOMY TOMY B TOJ,
IIECTH BBIITYCKOB B KaXJOM TOME.
Tonnep>xuBaeTcst OTKPHITHIN JOCTYM K
COZIEPKAHMIO M3/IaHUs, 0OecTIeunBast
JIOCTYITHOCTh PE3yJIbTAaTOB UCCIIEAOBAHUHN IS
OOIIECTBEHHOCTH U MOJICPIKUBAsT TI100aIbHBII
00MeH 3HaHUSIMU.
Tpynst UCIT PAH pedepupyrorest n/unm
UHJIEKCHUPYIOTCS B:

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by
publishing high quality articles on open
access.

The journal is intended for researchers,
students, and practitioners. It covers a
wide variety of topics including (but not
limited to):

e  Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design
Tools.

Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Go ugle ULRICHS\VEE

scholar

CYBERLENINKR 5> Worldcat
vease  OpenDOAR
¢|.|BRAR RU B28%

y e

[
8

ros




VIK004.45

Penxosierus

TnaBHbli pegakTop - Aserrcsan ApyTion Mixanosuy,
ueH-kopp. PAH, a.¢.-m.u., UCIT PAH (Mocksa,
Poccuiickas eneparms)

3aMecTHTeNIb [VIABHOT0 pefakTopa - Kysueios Cepreii
JIMuTpresnd, 1.T.H., mpodpeccop, UCIT PAH (Mocksa,
Poccuiickas eneparms)

Bypaonos Mrops bopucosnd, a.¢.-m.1., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Bopoukos Aujpeii Anaronbesnd, 1.¢.-M.H., npodeccop,
Vuuepcurer Manuecrepa (Mandectep, BennkoOpuranust)
Bupouukaiite Mpuna bonasentyposna, npodeccop, 1.¢.-
M.H., UHCTHTYT crcTeM HHGOpMATHKH UM. akagemuka A.IT.
Epmosa CO PAH (Hosocu6upck, Poccus)

Laiicapsi Cepreii Cypenosn, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Eprymenxo Huna Biammvipossa, npodeccop, A.T.H., TI'Y
(Tomck, Poccuiickas denepars)

Kapnos Jleonn Esrensesny, 1.1.4., UCIT PAH (Mocksa,
Poccuiickas ®eneparms)

Komnnos Urops Bragnvnposnd, K.¢.-M.H., TexHHIeCKHit
ynuBepcuteT Bews (Bena, ABctpust)

Kocaues Anekcanp Cepreesnd, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas deneparius)

Kystopun Hukonaii Hukonaesuy, a.¢.-m.H., UCI1 PAH
(Mocksa, Poccuiickas deneparius)

Jlactosenxuii Anexceit Jleonnaosnd, a.¢.-M.H., Tpodeccop,
Yuusepcurer yomuna (Jly6mun, Upnanans)

Jlomaszosa Mpnna Anexcanjposna, 1.¢.-M.H., mpodeccop,
Harmonansnelit nccnenoBaTenbCcKuii ynusepcuteT «Bricmas
mkosa skoHoMHKH» (Mocksa, Poccuiickas ®enepars)
Hosukos Bopuc Acenosud, a.¢.-M.H., npodeccop, CaHKT-
TlerepOyprekuii rocynapctBeHHslit yuusepeuteT (CaHKT-
IletepOypr, Poccust)

Ilerpenko Anekcanap Koncrantnnosud, x.¢.-m.H., ICIT
PAH (Mocksa, Poccuiickas ®eneparus)

Ilerpenko Anexcanap ®enoposny, a.¢.-M.H.,
HccaenoBarenbekuit HHCTUTYT MoHpeans (MoHpeais,
Kanana)

Cemenos Burammii Anons(osud, a.¢.-M.H., npodeccop,
HCIT PAH (Mockga, Poccuiickas denepanms)

Lovmin Anexcanyp Hukonaesny, 1.¢.-M.H., mpodeccop,
WCIT PAH (Mocksa, Poccuiickas denepanms)

Yepubix Annpeit, A.¢.-M.H., mpodeccop, Hayuno-
uccnenosarensckuii ueHTp CICESE (Dncenana, Humkuss
Kamudopuus, Mekcuka)

[luutman Bukrop 3unossesnd, a.1.4., UCIT PAH (Mocksa,
Poccuiickas eneparms)

Ilycrep Accad, a.¢.-M.H., npodeccop, Texnuon —
W3paunbcknii TexHonornyeckuit mHcTUTYT Technion
(Xaiita, Uzpanns)

Anpec: 109004, r. Mocksa, yi1. A. COIDKeHHUIBIHA, T0M
25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caitr: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan, Corresponding
Member of RAS, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr. Sci.
(Eng.), Professor, Institute for System Programming of the
RAS (Moscow, Russian Federation)

Igor B. Burdonov, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Andrei Chernykh, Dr. Sci., Professor, CICESE Research Centre
(Ensenada, Lower California, Mexico)

Sergey S. Gaissaryan, PhD (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Leonid E. Karpov, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Igor Konnov, PhD (Phys.—Math.), Vienna University of
Technology (Vienna, Austria)

Alexander S. Kossatchev, PhD (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Nikolay N. Kuzyurin, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.), Professor, UCD
School of Computer Science and Informatics (Dublin, Ireland)
Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor, National
Research University Higher School of Economics (Moscow,
Russian Federation)

Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor, St.
Petersburg University (St. Petersburg, Russia)

Alexander K. Petrenko, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research Institute of
Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel Institute of
Technology (Haifa, Israel)

Vitaly A. Semenov, Dr. Sci. (Phys.—Math.), Professor, Institute
for System Programming of the RAS (Moscow, Russian
Federation)

Victor Z. Shnitman, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Alexander N. Tomilin, Dr. Sci. (Phys.—Math.), Professor,
Institute for System Programming of the RAS (Moscow,
Russian Federation)

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The A.P. Ershov
Institute of Informatics Systems, Siberian Branch of the RAS
(Novosibirsk, Russian Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, UK)

Nina V. Yevtushenko, Dr. Sci. (Eng.), Tomsk State University
(Tomsk, Russian Federation)

Address: 25, Alexander Solzhenitsyn st., Moscow, 109004,
Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings/

© Uncruryt Cuctemuoro IIporpamvuposanus PAH, 2018


http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/burdonov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://www.ispras.ru/persons/gaissaryan.php
http://persona.tsu.ru/Home/UserProfile/1015
http://www.ispras.ru/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/persons/kossatchev.php
http://www.ispras.ru/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://www.ispras.ru/persons/semenov.php
http://www.ispras.ru/persons/tomilin.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/persons/shnitman.php
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.ispras.ru/en/persons/burdonov.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/en/persons/gaissaryan.php
http://www.ispras.ru/en/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/en/persons/kossatchev.php
http://www.ispras.ru/en/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/semenov.php
http://www.ispras.ru/en/persons/shnitman.php
http://www.ispras.ru/en/persons/tomilin.php
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/
https://persona.tsu.ru/Home/UserProfile/1015

Tpyasl Hucturyra CucrtemHoro IlporpaMMuUpoBaHuA

ConepxaHue

TosnepaHTHBIA CHHTAKCUYECKUI aHAIN3 ¢ UCTIOJIh30BAHUEM
CICIMAILHOTO CUMBOJIA «ANy»: aJIrOPUTM H MPAKTHUECKOE IPUMECHEHNE
Tonosewikun A.B., Muxankouy C.C.. .......ccovvveeiiieeeeieeiiiiisieeeseesssiiiniesessseens 7

WHTepaKTUBHBIH ClielUain3aTop MOMHOXKECTBA s3bIKa Java,
OCHOBAHHBII Ha METO/€ YACTUYHBIX BHIYUCICHUN
A0amosuy M. A., KUMOB AHO.B.......oeeeieieieeeeeeee ettt eeeeeiinaeneeanenns 29

Bbubnmroreka nporpaMMHUpOBaHUS T€TEPOr€HHBIX APXUTEKTYP
Kupauz06 I'.B., KUpUneHKO . A...........cccoociiviiiiiiiiiiiiene s 45

Kpurepun, npeapsBisiemMble K IPOrpaMMHOMY 00ECTICUYCHUTO IS
Pa3pabOTKH CIOKHBIX CePTHOUIMPYEMBIX CHCTEM, KPUTHIHBIX 110
Oe3omacHOCTU

Topenuy HK., I'vkoea A.C., I1eCKO8 E.B. .........c.ccccoviriiiiiiiiiiiiencieennns 63

K ¢opmanbsHoii Bepudukamm cTaHIapToB KHOEpOEe30MacHOCTH
Kynur T., JIGPCEH TL1 ..ottt 79

Cosmerienne ACSL cienuukanuii ¢ MamHHBIM KOJIOM
TIPMPO TLA. oottt 95

CPN: pacmupenune CPN Tools ast aBToMaTHOTO aHaiu3a u
BEpU(PHUKAIUU CUCTEM

Kappackenv X.C., Mopanec A., Bunnanono M. E. ...........cc.cocoevveiiininnnns 107
Junamuueckasi BepuuKaLysi KOHTPOJUIEPOB IIMH CHCTEM-Ha-

KpHCTAaJIIe

Yynunko M.M., JIP03008a E.A. ..........cccccceroiriiiiiiiiiiiesee s 129

K cuHTE3y ananTUBHBIX Pa3IMYarOIINX [TOCIEA0BATEIIEHOCTEH
JUISI KOHEYHBIX aBTOMAaTOB
Teapoosckuii A.C., EBMYMEHKO H.B.........cocoovvuiiiiiiiiiiiiiienie e 139

AHanu3 6e30MacHOCTH IMPOTOKOJIA PETHCTPAIIUN B CHCTEME

3JIEKTPOHHOTO TOJIOCOBAHUS HA OCHOBE CJICIIBIX TIOCPETHUKOB C

MTOMOIIBI0 HHCTPYMEHTa Avispa

Tucapes U.A., BAOEHKO JLK. .........coceviiiiiiiiiiie it 155



ABTOMaTHYECKas KaTMOPOBKA U CHHXPOHHU3AIUS KaMEPhl U
MOMC-ngaT4nKoB
Tlonaxos A.P., Koprnunoga A.B., Kupunenko A.A. .....cccccoevoviiiioniniinnnnnn. 169

Croco0OBI CerMEeHTAIMH METUITMHCKIX N300paKeHNI
Mycarsan C.A., Jlomakun A.B., Capracos C.1O., [TonmsiBanoB
JLK., Monaxoe U.B., Quotco8a A.C....ceeeeeiiiiciiiiiieiee e esiiiiieeeee e ssiineneens 183

IIpuMeHeHne acCOMaTUBHO-CEMaHTHYECKOTO IPEMpoIieccopa B
WHTEPAKTUBHBIX JHAJOTOBBIX CHCTEMAX Ha €CTECTBEHHOM SI3BIKE
(0010305 30 T 195

OO0 oHJIafHOBBIX AJITOPUTMAaxX IS 3ajlayd YIIaKOBKHU B KOHTEHHEPHI
¥ TIOJIOCHI, UX aHAJM3€ B XY/IIEM CIIy4ae U B CPEIHEM
Jazapes J1.O., Ky310pun H.H........c..ccooiviiniiiiiiiiiiiieie e 209



Proceedings of the Institute for System Programming of the RAS

Table of Contents

Tolerant parsing with a special kind of «Any» symbol: the algorithm and
practical application
Goloveshkin A.V., MIKNalKOVICN S.S.....occviiiieiie et 7

An Interactive Specializer Based on Partial Evaluation for a Java
Subset

Adamovich LA, KIIMOV ANG.V ... ..oeiiieee ettt s e e neaee e 29
Heterogeneous Architectures Programming Library

Kirgizov G.V., Kirillenko LA... ...cooo oo 45
Criteria for software to safety-critical complex certifiable systems
development

Gorelits N.K., Gukova A.S., PESKOV E.V......cocoiiiiiiiiie e 63
Towards Formal Verification of Cyber Security Standards

KUK T, LAISEN PG oottt ettt et e e e e e e neee e e nenee s 79
Combining ACSL Specifications and Machine Code

PULIO PLA. e 95

Prosega/CPN: An extension of CPN Tools for Automata-based
Analysis and System Verification

Carrasquel J.C., Morales A., Villapol MLE. .........c.ccccooviiiiiiiiieeceee 107
Simulation-based Verification of Hardware Bus Controllers
Chupilko M.M., Drozdova E.A. .......c.coi i 129

Deriving adaptive distinguishing sequences for Finite State
Machines
Tvardovskii A.S., YEVEUSNENKO N.V. ..eeeeiiiiiiieeeee et 139

Registration protocol security analysis of the electronic voting
system based on blinded intermediaries using the Avispa tool
Pisarev 1LA., BabenKo LK. ....ooiiiiiii ettt 155

Auto-calibration and synchronization of camera and MEMS-
sensors
Polyakov A.R., Kornilova A.V., Kirilenko LA.........c.ccoovviviiiiicieceie 169



Medical Images Segmentation Operations
Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K.,
Monakhov [.B., ChizhOVa A.S. ......cuueeeiee e 183

The use of associative semantic preprocessor in the interactive
dialogue systems in natural language
RS2 o 4100 1YY SR 195

On on-line algorithms for Bin, Strip and Box Packing, and their
worst- and average-case analysis
Lazarev D.O., KUZJUFIN NUNL... oo 209



Tolerant parsing with a special kind of
«Any» symbol: the algorithm and practical
application

A.V. Goloveshkin <alexeyvale@gmail.com>
S.S. Mikhalkovich <miks@sfedu.ru>
I.1. Vorovich Institute for Mathematics, Mechanics and Computer Science,
Southern Federal University,
8a, Milchakova st., Rostov-on-Don, 344090, Russia

Abstract. Tolerant parsing is a form of syntax analysis aimed at capturing the structure of
certain points of interest presented in a source code. While these points should be well-
described in the corresponding language grammar, other parts of the program are allowed to
be not presented in the grammar or to be described coarse-grained, thereby parser remains
tolerant to the possible inconsistencies in the irrelevant area. Island grammars are one of the
basic tolerant parsing techniques. “Island” is used as the relevant code alias, while the
irrelevant code is called “water”. In the paper, a modified LL(1) parsing algorithm with built-
in “Any” symbol processing is described. The “Any” symbol matches implicitly defined
token sequences. The use of the algorithm for island grammars allows one to reduce
irrelevant code description as well as to simplify patterns for relevant code matching. Our
“Any” implementation is more accurate and less restrictive in comparison with the closest
analogues implemented in Coco/R and LightParse parser generators. It also has potentially
lower overhead than the “bounded seas” concept implemented in PetitParser. As shown in the
experimental section, the tolerant parser generated by the C# island grammar is proven to be
applicable for large-scale software projects analysis.

Keywords: tolerant parsing; robust parsing; lightweight parsing; partial parsing; island
grammar; parser generation

DOI: 10.15514/ISPRAS-2018-30(4)-1

For citation: Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of
“Any” symbol: the algorithm and practical application. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018. pp. 7-28. DOI: 10.15514/ISPRAS-2018-30(4)-1

1. Introduction

Tolerant parsing is a parsing technique differing from the detailed whole-language
(so-called baseline) parsing needed to build a full-featured compiler for a certain
programming language. The main feature of the approach is the ability to capture
points of interest inside the program, while all the code that does not contain such
points can be skipped with no or minimal analysis performed. From developer’s

7



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

perspective, this feature allows her to focus on the structure of the points of interest,
providing a minimal description of the irrelevant area. Tolerant parsing is usually
called lightweight because tolerant grammar tends to be much shorter than the
baseline one.

There are several reasons for the tolerant parsing to be the most suitable option for
the program analysis

e Language embedding: Some program artifacts assume the usage of
multiple languages in one source file. In yacc-like grammars describing the
syntax-directed translation, actions performed on a parsing step are
expressed in terms of a certain general-purpose language. This means that
the parser developed to capture the grammar structure must be tolerant to
all the possible variations of these language snippets. A possible
application of a tolerant grammar parser is described in [1]. A detailed
description of the embedded language tolerant parsing is given in [2].

e Full grammar inaccessibility: Tolerant grammar imprints the developer’s
notion of what places inside the program are the most important in the
context of the current task. Its structure and the mapping between the
grammar entities and the language constructs are transparent to the
programmer from the very beginning and can be further refined in
accordance with the in-the-wild testing results. On the contrary, the
baseline grammar usage requires a prior exploration and comprehension.
This process is proved to be time-consuming [3] and can be impossible due
to proprietary issues or manual baseline parser writing [4].

e Domain-specific idioms: In a certain project, some local domain-specific
patterns can be applied [4]. They represent a high-level abstraction layer
which is not presented in the language syntax and obviously is out of scope
of the whole-language parser. Nevertheless, tolerant parsers can be strictly
focused at these patterns, ignoring the underlying structure that allows one,
in particular, to perform the impact analysis [5].

e Incorrect program processing: Syntax errors can be handled by the

whole-language parser with some sophisticated error recovery mechanisms

[6, 7]. These mechanisms are heuristic by the nature and do not guarantee

the successful parsing resumption, as well as the preservation of the built

parts of the parse tree. Tolerant parser is able to skip irrelevant error-

containing areas. At the same time, tolerant parsing can be broken by the

mismatch of the elements structuring the program (e.g. by the absence of a

block closing bracket in C#). Specific error handling techniques allowing

recovering from this category of errors are described for the bridge
grammars [8, 9], a special kind of the island grammars.

The contributions of this paper are: 1) a modification of the standard LL(1) parsing

algorithm aimed at island grammars tolerant parsing paradigm and designed to

simplify irrelevant code skipping by means of a special Any symbol, this symbol is

8



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

used in a tolerant grammar to mark an irrelevant code without specifying its
structure; 2) a compiler generator with a built-in tolerant grammar description
language containing Any as a part of the standard syntax; 3) a lightweight grammar
of the C# programming language for this generator; 4) an experimental evidence of
the applicability of the generated tolerant C# parser for large-scale software projects
analysis.

The remainder of the paper is organized as follows: a brief overview of the existing
tolerant parsing techniques is provided in Section 2, in Section 3 the main goals of
the current research are listed, in Section 4 we discuss related work and outline
limitations of the closest analogues of our approach, in Section 5 the modification of
the standard LL(1) parsing algorithm aimed at Any symbol processing is
introduced. The tolerant grammar for the C# programming language is presented in
Section 6, this section also includes a sufficient volume of experimental data
obtained by applying the generated tolerant parser to a real-world software source
code. In Section 7 a summary of the theoretical and practical contribution of the
paper is provided.

2. Tolerant parsing techniques

Three basic tolerant parsing techniques considered in [2, 4, 5, 10-13] are fuzzy
parsing, island grammars and skeleton grammars.

Fuzzy parsing is based on the notion of anchors, specific tokens that mark the
beginning of the constructs of interest. The formal definition of a fuzzy parser is
provided in [10, 11]. The grammar used by the fuzzy parser actually consists of a
number of smaller grammars. Each of them has its own start symbol with a
production rule starting with the anchor. The main concern of the fuzzy parsing
technique is that parsing process is tightly coupled with anchor tokens and can be
error-prone in case these tokens appear outside of the points of interest.

Skeleton grammar construction is described in [12]. The skeleton grammar partially
shares its structure with the baseline grammar. Rules describing points of interest
are complemented with baseline grammar rules needed to derive those points from
the start symbol (this process is called root completion). After the root completion,
special default productions are formulated for all the undefined nonterminal
symbols appearing in the rules added. The key precondition making this process
possible is the baseline grammar accessibility. As noticed in Section 1, most often
this is not the case, besides, baseline grammar comprehension is quite time-
consuming and requires some additional effort.

Island grammars technique is in the focus of our research. We believe that the
concept of an island grammar is not well-known, so we provide its formal definition
in accordance to [4, 5], despite the fact that this definition is not further referenced.

Definition 1. Given a context-free grammar G = (N,T,P,S), where N is a set of
nonterminal symbols, T is a set of terminal symbols, P is a set of production rules,
S € N is a specified start symbol, and a set of constructs of interest I < T~ such that

9



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

Vi € 1,3w,, w, € T": w,iw, € L(G), where L(G) denotes the language generated
by G. An island grammar G, = (N',T',P',S") for L(G) has the following
properties:

1) L(G) < L(Gp);

2) VieL,an € N:n=iand 3w, 0, € T*: w,iw, & L(G) A w,iw, € L(G)):;

3) K(G) > K(G)).
The first property means that G, generates an extension of L(G), the second means
that the syntax analyzer for G, recognizes constructs of interest from I in at least one
sentence that is not recognized by the parser for G. The third property introduces the
function K (G) denoting the grammar complexity.
Informally speaking, island grammar consists of detailed productions describing
certain constructs of interest (the islands) and liberal productions that catch the
remainder (the water). Island productions form a set of patterns to be matched by
the points of interest. However, patterns are not enough to overcome two important
island grammars side effects called false positives and false negatives [12]. In case
relevant code snippets look similar to the irrelevant ones, they can be confused by
the parser, as a result, the irrelevant code will be recognized as the point of interest
and some points of interest will be missed, there also can be a parse error. To
minimize the mismatch, iterative refinement is needed for patterns as well as for
anti-patterns matching irrelevant code.
To reduce the need for anti-patterns description and refinement, indeterministic
parsing techniques are usually used. GLR [14, pp. 381-391] and GLL [15] parsers
are capable to apply multiple parse actions for the same token in case of an
ambiguity and continue parsing the program in all ways. However, they have a
number of disadvantages: indeterministic parsing is hard to trace and debug, may
return multiple parse trees that need some extra processing, and in case the islands
look similar to the water, a parsing result can be extremely unpredictable. From the
latter it follows that one still has to describe and refine some anti-patterns.

3. Problem statement

The key assumption of the current research is that tolerant parsing can be performed
with a deterministic algorithm, while patterns and anti-patterns forming the tolerant
grammar can be simplified and partially eliminated by making the algorithm
capable to match and skip some token sequences which have no explicit definition
in the grammar.
The key goals of the current research are:
1) to design an LL(1) parsing algorithm with built-in notion of a special Any
grammar symbol that provides skipping of the token sequences that are not
explicitly described in the grammar;

10



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

2) to develop a compiler generator with an integrated language for LL(1)
grammars writing, supporting Any symbol usage and automatic syntax tree
construction;

3) to implement a tolerant island grammar for the C# programming language
in the format supported by the generator below; the grammar is supposed to
contain water anti-patterns simplified with Any symbol;

4) to test parser’s applicability to the analysis of large-scale software projects.

The developed tool is planned to be used for lightweight parsing of software
projects and their further sustainable concern-based markup.

4. Related work

4.1 Coco/R

The first tool with embedded capability to match tokens from sets which are not
directly specified in a grammar is the Coco/R recursive-descent parsers generator.
According to the documentation [16, p. 14], a special symbol ANY, which denotes
any token that is not an alternative to that ANY symbol in the current production, is
predefined in generated parsers. For a given grammar, an individual set of
admissible tokens is connected with each ANY entry. Initially all the sets consist of
all the tokens defined in the grammar, then at the parser generation stage the
alternatives of ANY symbols are removed from the corresponding sets to make the
situation when a parser has to make a choice between ANY and some explicitly
specified token unambiguously solvable in favor of the explicit option. Further we
will call these alternatives rivals, in order to avoid terminological confusion with
alternatives forming grammar rules.

The major shortcoming of ANY implementation in Coco/R is that the intuitive
principle of the explicitly specified token priority is both incomplete and
excessively restrictive. As a result, there are grammars for which parsers generated
by Coco/R do not parse some programs valid from the developer’s point of view.
Some examples of such Coco/R grammars are shown in fig. 1. Lower case is used
for terminal symbols, { } denotes zero or more repetitions of bracketed elements.
Excessive restrictiveness manifests itself for the iteration {ANY}, for which the
same set defines admissible tokens both for the first position in the sequence
corresponding to {ANY} and for the rest positions. For the grammar in Fig. 1a, the
set {b, c} corresponds to ANY. The token d is excluded from the set to make
parser capable to finish {ANY} matching and match d explicitly. The token a is
also excluded, that makes all the strings starting from a being matched by the first
alternative with explicitly written a token in the beginning. However, the latter
exclusion leads to the fact that the string bad$ is not recognized by the parser. Note
that the first token of the input— token b — is enough to choose the right
production for A nonterminal, and the next a token cannot be treated as the

11



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

beginning of the first alternative. If separate sets were used for ANYs from the
iteration, a could be added to the set of admissible tokens for the second and
subsequent positions in {ANY }, and this would not lead to an ambiguity.

The lack of outer context analysis for nonterminal symbols leads to incompleteness
of the constraints that are imposed on the ANY admissible tokens set. In Fig. 1b,
ANY has no rivals within the rule, so the set of admissible elements consists of all
the tokens defined in the grammar. As a result, the generated parser is not capable to
recognize the intuitively recognizable string abcds. Once {ANY} processing starts,
the parser reaches the end of the input stream treating each token as a part of the
sequence corresponding to {ANY }. Outer context analysis for nonterminal B shows
that token d is in FOLLOW(B), so it may appear after ANY iteration. Hence d must
be deleted from admissible tokens set and be matched explicitly.

A =a b c | {ANY} d. A=Bd | bB. B=a {ANY}.
(a) (b)

Fig. 1. The grammars illustrating ANY implementation shortcomings in Coco/R.

At the same time, static analysis of the outer context is too coarse to be a good
solution. For the grammar in Fig. 1b, B appears in two different contexts and the
restriction derived from the first context (B d alternative) is not relevant for the
second one (b B alternative). In the second context, ANY has no inner or outer
rivals. With statically defined admissible tokens set, two contexts are mixed and
string bad$ is not recognizable again. On the other hand, after choosing an
alternative for 2, the more precise information about what can follow {ANY} is
available. That is, with dynamic decision making at the parsing stage, the set of
programs recognizable by the parser can be extended.

In the current paper, the symbol Any is described. Unlike the ANY symbol in
Coco/R, it corresponds to the sequence of zero or more tokens, not a single token. In
its implementation, all the shortcomings listed above are eliminated and the decision
about the current token’s admissibility at Any position is made at the parsing stage.

4.2 LightParse

The tool for lightweight LALR(1) parsers development called LightParse [17] also
supports the use of Coco/R-like Any symbol. LightParse application is similar to
what we plan to do: generated lightweight parsers are used for concern-oriented
source code markup [18]. LightParse performs static construction of the sets of
tokens allowed at Any position and inherits all the Coco/R ANY implementation
limitations. Besides, LightParse grammar is not directly used to generate the parser.
Instead, it is translated to the YACC-like format supported by the standard LALR(1)
parser generator GPPG, then GPPG produces the parser. In the translated grammar,
every entry of Any symbol is presented as a nonterminal symbol with single-
element alternatives, by an alternative for each of the admissible terminal symbols.

12



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

To get the valid YACC-like grammar without the nonterminal outer context
analysis, LightParse imposes additional restrictions on Any usage: this symbol is
not permitted to be in the end of the alternative, except for the start symbol
productions. The presence of the intermediate grammar processing stage leads to
inconsistency between the source grammar vocabulary, which is used by the
grammar developer too, and the terms used in messages issued by the GPPG
generator when some parser generation errors appear. Our Any implementation
does not assume additional grammar adaptations for making the grammar suitable
for the standard parsing algorithm. Instead, the standard LL(1) algorithm is
modified to integrate the notion of Any and make it possible to define admissible
tokens dynamically at the parsing stage. This eliminates the limitations of
LightParse Any symbol.

4.3 Bounded seas

In [19], an extension of the regular parsing algorithm is described for parsing
expression grammars (PEG). It is intended to automatically deduce anti-patterns for
water which is supposed to be context-aware, i.e., specific for each particular island
in the input. This approach named bounded seas is integrated in PetitParser tool
which allows one to implement PEG-based parsers. Bounded seas are intended to
completely eliminate the need for water rules explicit description in island
grammars. A rule element of the form ~island-~ is treated as a triple before-
water island after-water. The key property of the water is that it never
consumes any input from the right context of the bounded sea. The right context can
be derived statically from the grammar or dynamically from the parser state. For the
after-water entity, right context is set with an expression consisting of all the
possible expressions that can directly follow after-water, separated with the
ordered choice operator. Right context for the before-water consists of the
island expression itself and the corresponding after-water boundary
expression which both are ordered choice operands. Water expression succeeds
when the corresponding right boundary expression succeeds.

Checking all the possible boundaries assumes backtracking, which leads to a
sufficient time overhead. Since backtracking is a basic technique for PEG due to
ordered choice operator presence, it is usually optimized with packrat parsing [20],
which makes parsing time linearly dependent on the length of the program. Similar
technique is used to eliminate potentially exponential complexity of bounded seas
analysis. However, execution time decrease is achieved at the cost of a significant
increase in the amount of memory used. Despite the right context exploration
complexity, bounded seas are not able to make a globally correct decision on when
water skipping should be ended. It is outlined in [19] that expressions forming the
sea boundary actually recognize only prefixes of the possible boundaries, and
boundaries form an LL(k) language where k depends on the particular situation. So,
being designed to eliminate the need for anti-patterns presence in a grammar,

13



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

bounded seas, however, do not guarantee successful distinguishing islands from
water without any explicit hints about the water content.

Besides, PetitParser itself is Smalltalk-based® and is intended for use in a closed
ecosystem of Pharo virtual machine and Moose framework, so generated parsers
have extremely low integrability into an arbitrary project.

The approach presented in the current paper has less overhead because it does not
use backtracking at all. It performs a linear input processing and use the modified
FIRST set building algorithm to find a boundary for Any. Though in [19] standard
FIRST and FOLLOW sets from LL(1) parsing theory are named insufficient to
recognize the boundary, it is demonstrated in Section 6 that with proper formulation
of anti-patterns, the use of a modified FIRST set is enough to successfully analyze
large-scale software project sources. Any symbol is used instead of explicit
description of some parts of patterns and anti-patterns, that makes the island
grammar significantly shorter and simplifies the grammar development process. Our
parser generator is implemented in C#, thus it can be used with projects written on
any .NET Framework-supporting language.

5. «Any» symbol implementation

We are mainly focused not on the individual islands capturing but on the extraction
of the program hierarchical structure up to a certain level and tend to name the
relevant code not islands but land, so the developed parser generator was named
LanD? (by coincidence, it is also an acronym of «language description»). Table-
driven predictive LL(1) parsing algorithm [21, pp. 220-228] was selected as the
simplest and most suitable for debugging option for water skipping integration.

5.1 Formal definition of a simplified grammar

We introduce into the grammar the special terminal symbol Any to mark places
where zero or more tokens from the irrelevant area can be matched. We denote by
lhs(p) and rhs(p), respectively, the left and the right part of the production p.
Notation x € rhs(p) for x e NUT means that rhs(p) = a;xa,, where a, €
(NUT),a, € (NUT)*. SYMBOLS(y) is used for the set of terminal symbols
needed to compose all the w:y > w,y € (NUT)*,w €T Through the symbol
Any, we formulate the concept of a simplified grammar.

Definition 2. Let G = (N, T, P,S) be a context-free grammar, Any ¢ T. Simplified
with respect to G is the grammar G, = (N, T, P,, Ss) defined as follows:

1) S, =S5,

! petitParser was also ported to a number of other languages, but those ports are experimental and are not
updated with state-of-the-art features such as bounded seas.

2 https://github.com/alexeyvale/SYRCoSE-2018

14



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

2) P, ={p € f(P) |lhs(p) = S, vIAp' € P;:1hs(p) € rhs(p')}, where
fiPo{p=A->alAeN,ae(NUTU{Any})*} is the mapping that
satisfies the following criteria:

a) AP cP:P' ={peP|f(p)#p} P'#0,

b) vp e P\ P', f(p) =p,

C) VpeP,3IneN: p is representable in the form
A= a1718122Y2B5 - an¥nBn and f(p) is representable in the form
A - a, AnyBia,Anyp, ...a,AnypB,, where Vi€ [1..n], a;y;B; €
(NUT)*, and Vi€ [1..n], Va € FOLLOW(A),SYMBOLS(y;) N
FIRST(Bi@i11Yi+1Bi+1 - tn¥nPna) = @;

3) Ny={A€eN|3peP:lhs(p) = A}

4) Ty ={a €T |3p € P:acerhs(p)} U {Any}.

Intuitively, P, contains productions for the start symbol of G, and productions for all
the nonterminals which are reachable from the start symbol. Note that, according to
items 3 and 4, vp € P,, lhs(p) € N, rhs(p) € (Ny U T,)*, i.e. P, really satisfies the
production set definition for a context-free grammar.

The definition of the mapping f means that some of the strings generated by G
contain substrings which can be replaced with Any, then we obtain strings
generated by G;. In the absence of grammar simplification options developer has to
work with grammar G, which can correspond to the baseline language grammar, as
well as be a specially written more tolerant version of the baseline grammar,
containing all the anti-patterns described explicitly. If Any symbol is supported by
the grammar and the corresponding generator, anti-patterns forming a set P’ can be
substantially simplified. Symbol any can be written instead of the parts denoted by
y; in production’s right hand side in case these parts satisfy the criterion 2c of the
definition 2. Verification of this criterion is possible only when solving a direct
problem: when the grammar G is generated based on the existing G. In a real
situation, there is no grammar G and the developer has to solve the inverse problem:
she manually writes a simplified grammar G, assuming that her knowledge of the
particular island patterns and the general structure of the program is close to the
ground truth — the structure of the baseline grammar G — and also considering
parts denoted by Any satisfy the criterion. When this is not the case, unparsed or
incorrectly parsed programs appear at the testing phase, this means that the grammar
should be refined. This process usually takes several iterations.

Notice that despite the parser is built according to grammar G, a program from
L(G) is needed to be parsed. The modified LL(1) algorithm uses the criterion 2c to
translate the program to the language L(G;).

5.2 Parsing algorithm modification

In fig. 2a the modified LL(1) parsing algorithm is presented. The highlighted lines
distinguish it from the standard algorithm. In the given pseudo-code parsing stack is

15



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

accessed through the Stack variable, input buffer is accessed through the lexical
analyzer object Lexer with methods NextToken returning the next token from
the input stream and CurrentToken returning the last token that was read. The
variable t corresponds to an additional buffer for the current token, M denotes the
parsing table. The grammar G, is a regular LL(1) grammar where Any is a regular
token, therefore parsing table construction algorithm remains unmodified and the
construction itself is carried out in the standard way.

Stack.Push(3);

Stack.Push(8);

¥ := Stack.Peek({};

t := Lexer.NextToken();

while (X # 5) do

if (X = t) then
if (¢t = Any) then (1)
Stack.Pop()+
t := Lexer.CurrentToken();
while (t ¢ FIRST' (Stack) and t # §) do
t := Lexer.,NextToken();

end while;

if (¢t = $ and $ ¢ FIRST'(Stack)) then
error();

end if;

else (2)
Stack.Pop();
t := Lexer.NextToken():

end if;

elif (M[X,t] = X - ¥1Y¥2...Yyg) then (3)

Stack.Pop();
for (i from k to 1) do
Stack.Pushi(¥ji);
end for;
elif (t = Any) then (4)
error();
else (5)
t := Any;
end if;
X := Stack.Peek();
end while;

if (t = 5) then (6)
accept () ;

else
error();

end if;

(a)

BuildFirst' ():
foreach (A € N) do
MemorizedFirst'[A] := @
end foreach;
changed := true;
while (changed) do
changed := false;
foreach (A — o € P) do
MemorizedFirst'[A] U= FIRST' (a);
if (MemorizedFirst'[A] is changed) then

changed := true;

end foreach;

end while;

(b)

FIRST' (¢ = Y1¥32...Yk}:
first := H#;
for (i from 1 to k) do
if (¥;€ T\{Any}) then
first U= {¥i};
break;
elif (¥Y;€ N) then
first U= MemorizedFirst'([Yjl\{e};
if (¢ € MemorizedFirst'[¥:i]) then
break;
end if;
end if;
end for;
if (Vi€ [1..k]:
or Yi = Any) then
first U= {g};
end if;

£ € MemorizedFirst'[Y;]

return first;

(c)

Fig. 2. Modified algorithms: (a) LL(1) parsing algorithm, (b) FIRST set memorization
algorithm, (c) FIRST set building algorithm

Modification of the parsing algorithm is caused by the fact that parser do a more
complicated job than checking if the program is valid with respect to G,. While

16




Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

parser is generated by the simplified with respect to some G grammar G, the
program derived by G comes as the input. As tokens are received from the input
stream, the modified parser should translate the program from L(G) to L(G;), then it
can check the syntactic correctness of the translated part.

When the terminal symbol on the top of the parsing stack does not match the current
token in t or when a nonterminal symbol X is on top of the stack and there is no
record in the cell M[X, t], the standard LL(1) algorithm reports an error because
there is no explicit option available to continue parsing, and possibly starts an error
recovery routine. For the modified algorithm, this situation is normal because, as it
was said, the program does not belong to the language the parser is generated for. In
case Any is on the top of the stack or the M[X, Any] cell is not empty, the
modified algorithm tries to replace with Any some sequence of tokens from the
input stream, making the transition from the text from L(G) to the text from L(G;).
Replacement is based on the criterion 2c: the set of tokens forming the replaced
sequence must not intersect with the set of tokens which are possible Any
successors in accordance with the parsing stack state. The successors set is called
FIRST', it is built by the modified version of the standard FIRST algorithm. This
modification is discussed in Section 5.3. Obviously, L(G) < L(G,), because at the
Any position not only valid L(G) program subsequence can be replaced, but also an
arbitrary sequence of tokens from the complement of a successors set. This makes
parser less sensitive to possible errors in water regions.

It is possible to draw some parallels between the modification given and well-
known error recovery algorithms [21, pp.228-231, pp.295-297]: Any symbol
looks similar to the error token denoting place in the grammar where recovered
parsing can be resumed, FIRST’ set seems like the set of synchronization tokens.
There are grounds for such an analogy. The program parsed is erroneous in terms of
G,. Replacing tokens with Any, the parser looks for a place from which the program
satisfies the grammar again. However, behind a skin-deep similarity, there is a
fundamental difference in goals, implementation and results obtaining by the
algorithms. Standard error recovery is performed when a program processed is
clearly incorrect. The main goal of the recovery is to resume parsing at any cost.
Some significant results of the previous analysis can be discarded, and a significant
part of the input stream, possibly containing some points of interest, is discarded
too. In addition, recovery is not guaranteed to be successful. According to
Section 5.1, the goal of Any processing is the translation of a presumably valid
L(G) program to L(G,). The premise that the program under consideration is correct
with respect to G in conjunction with the observance of the criterion 2c makes input
tokens discarding totally predictable. One can be sure that the parts of the input
stream replaced with Any belongs to the water and can be skipped without loss of
the land. Furthermore, as it was previously noted, predictable and correct
replacement with Any is possible in some cases even for programs that are incorrect
with respect to G.

17



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

Further, speaking of the fact that Any successfully replaces a sequence of tokens of
the input program, we will simply say in some cases that Any matches this
sequence. Keep in mind, that, as shown below, this process is more complex than
the standard token matching.

5.3 The problem of consecutive «Any»

To get tokens denoting the end of the sequence that corresponds to Any, the first
intention is to build the standard FIRST set for a parsing stack, treating the symbols
on the stack as a string starting from its top. Unfortunately, there is a case when the
standard FIRST algorithm is not enough. Sometimes two or more Any tokens can
follow each other at the beginning of the sentences which can be derived from the
stack. For a grammar

A =Any B C; B=a | ; C= Any c;
the FIRST (Stack) set built when the first Any is processed equals to {a,
Any}. The Any token is never returned by the lexical analyzer, so, there is no
chance that parser will recognize a string with no a tokens. As a result, a part of
L(G) remains uncovered by the parser, and the valid with respect to G, program
Any Any c Wwill never be recognized, because there is no input program that can
be transformed to it. For the example input bbbc$, Any processing starts at the
first b and fails at the endmarker symbol $.
To make the parser capable to cope with a simplified grammar that allows
consequent Any symbols in some derivations, it is needed to modify the standard
FIRST algorithm on the basis of the definition 2. According to it, Any denotes the
place where the matched sequence from an input program may be empty. In the
example above, the ¢ terminal which is explicitly presented in the grammar can be
treated as the end of the sequence to replace, if we assume that the sequence
matched by the second Any is empty. Acting under this assumption, the modified
algorithm should expand the FIRST set with the tokens that may follow the last of
the subsequent Any symbols. This turns the standard FIRST set into the FIRST'
used in Fig. 2a.
In fig. 2b and fig. 2c, modified algorithms for FIRST’ construction are presented.
In fig. 2b, there is an adopted version of the algorithm from [14, pp. 239-240]. It
performs non-recursive construction of FIRST’ sets for all the nonterminals in the
grammar. The sets constructed are memorized in the MemorizedFirst’
dictionary. The original algorithm is proven to be finite, the same proof is valid for
the adopted version. FIRST" itself is presented in Fig. 2c. Note that Any is not
placed in the FIRST’ set.
As shown in Section 6.1, when to match a sequence of Any is the only available
option for processing some part of the input, FIRST’ helps to find the actual input
subsequence corresponding to the whole sequence of Any symbols. Technically, in
this case input subsequence is matched by the first Any, the following Any symbols
18



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

match empty sequences. This is the only possible solution for a simplified grammar,
because to say for sure how to precisely establish a pairwise match between the
parts of the input subsequence and consecutive Any symbols, we need more
information about the original G grammar. A similar problem called overlapping
seas is discussed in [19]: when one sea may follow another, it is impossible to
distinguish between the after-water of the first sea and the before-water
of the second, so the second water is believed to be empty.

The suggested FIRST’ modification is proven to be enough to develop a working
tolerant grammar for the real programming language.

6. Experiments

6.1 Model example

Consider the following grammar:
A =B Any C; B =a | Any ¢; C = Any b | c;

The corresponding parsing table is presented in Table 1. The rows correspond to the
nonterminal symbols defined in the grammar, the columns correspond to the tokens
that may appear in the buffer t. Each cell contains the alternative that should be
applied when the row nonterminal is on the top of the parsing stack and the column
terminal is the lookahead token. The work of the modified parsing algorithm for a
given input string is described in Table 2. Each row corresponds to the iteration of
the outer while cycle in Fig. 2a, the last row corresponds to the action that takes
place right after exiting the cycle. The numbers in the Action column correspond to
the conditions numbered in Fig. 2a, the number of the true condition for the current
iteration is placed in the table cell.

Table 1. Parsing table for the model example

a b c Any $
A A->BAnyC A—->BAnyC
B B-a B - Anyc
C C-c C->Anyb

This example illustrates some of the advantages of our Any implementation, that
were declared earlier. In contrast to the situation discussed for the Coco/R parser
generator and the grammar in Fig. 1a, at the 4th iteration, the first a token in the
input is included in the sequence being matched by Any, because the Any symbol is
really rivalled by a only at the 1st iteration where the choice between B — a and
B — Any c productions has to be made. The 7th iteration reveals the situation
specified in Section 5.3: there is a derivation where two Any follow each other.
Searching for all the tokens that may appear after Any in A —> BAny(C in
accordance to the parsing stack, the FIRST’ algorithm looks beyond the Any,
which is in the beginning of C - Any b, and considers b as the possible successor

19



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

of the sequence that should be matched by the current Any. As mentioned earlier, in
case Any is immediately followed by other Any symbols, a sequence of input
tokens of the maximum possible length is replaced with the first Any, and
subsequent Any symbols correspond to zero-length subsequences of the input.

Table 2. Tracing table

Stack Input | X T Action | Remark
1 |$A bacaab$ | A b (5)
2 | $A bacaab$ | A Any (3)
3 | $CAnyB bacaab$ | B Any 3)
4 | $CAnycAny bacaab$ | Any | Any 1) FIRST'(c Any C) = {c}
5 | $CAnyc caab$ c c 2)
6 | $CAny aab$ | Any a (5)
7 | $CAny aab$ | Any | Any 1) FIRST'(C) = {b, c}
8 |$C b$ | C b (5)
9 | $C b$ | C Any (3)
10 | $b Any b$ | Any | Any 1) FIRST'(b) = {b}
11 | $b b$ | b b )
12 | $ $| % $ (6)

Dynamically performed computation of the set of symbols that may follow 2any
takes into account the actual outer context for the alternatives that are matched (this
context is formed by the elements that are lower on the stack, than the current
alternative), rather than all the possible outer contexts which can arise according to
the grammar.

6.2 Real-world repositories analysis

To test the algorithm on real source code repositories, the island grammar for the C#
programming language was developed. The generated parser was applied to the
repositories of three industrial projects ranked from the smallest to the largest by the
number of files with a source code: the LanD project itself (93 files),
Pascal ABC.NET® (2725 files), and Roslyn* (8027 files). PascalABC.NET is a
programming language which combines Pascal syntax with .NET framework
functionality. The corresponding project consists of compiler and IDE sources.
Roslyn is a pair of open-source compilers for C# and Visual Basic. Roslyn project
includes compiler sources and lots of test files capturing different complex and
uncommon variants of a C# program. The number of files in the corresponding
repositories relevant at the time of experiment conducting is given in brackets.

3 https://github.com/pascalabcnet/pascalabenet
4 https://github.com/dotnet/roslyn
20



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

namespace content opening directive*! (attribute|namespace|namespace member) *
opening directive ('using'|'extern') Any ';'
= 'namespace' name '{' namespace content '}’

mamespace member = name? (enum|delegate|cl
"enum' name Any '{' Any '}' ';'?

ss_struct_interface)

= 'delegate' name before body? ";'

truct_interface = ('class'|'interface'|'struct') name Any '{' class_content_element* '}' ';'?

_content_element = attribute | keyword ma

| name (keywo member_tail)

keyword marked entities = enum | delegate | ¢ o face | operator | event
operator = 'operator' Any arguments class_member_tail

event = 'event' name class_member_tail

class_member tail before_body? (block init_value? | initializer | ";')

before_body Any ':' (arguments|Any)*

initializer init_expression | init_value

init expressiocn
init value

"=>' (Any|block)* ';'
"=' (Any|block)* ';"

name (ID|arguments| 'extern') rtame_ﬁail_element‘
name tail element ID|arguments|'extern' |['.'["?'['<' name tail element* '>"['[' Any "]'|','['::"
attribute "['" (Anylattribute)}* ']"

block "{' (Any|block)* '}'

"(' (Any|arguments)* ')'

arguments

Fig. 3. Rules of the tolerant C# grammar for LanD parser generator

Rules from C# tolerant grammar are presented in Fig. 3, the complete grammar can
be found in LanD project repository®. Water rules are highlighted. Symbol *
denotes zero or more element repetitions, + denotes one or more repetitions, ?
denotes an optional element, brackets () are used for grouping. Quantifiers of a
special kind, *! and 2!, are used to set the non-empty alternative priority in case
the ambiguity is detected at the parsing table construction stage. With their help, in
particular, the dangling else problem is solved in the Pascal language grammar:
if = '"if' Any 'then' operator ('else' operator)?!

In the C# grammar, the *! construct is used to distinguish between extern
alias declaration and the header of a method written in an unmanaged code.
Though these constructs do not appear at the same nesting level in real programs,
they are allowed to do so according to the lightweight grammar. This results in
ambiguity that needs an additional priority indication.

As it can be seen, Any is widely used for denoting places which are insufficient for
points of interest capturing. Such irrelevant areas are inheritance specification and
type restrictions in class definitions (before block nonterminal), field and
property initializers (initializer nonterminal and nonterminals which are
directly derivable from it). The largest parts that are matched by Any are blocks of
code in method bodies (b1ock nonterminal). A detailed description of these areas
would make the grammar several times longer. In the corresponding anti-pattern
formulated with Any, only a minimal structuring information should be placed:
boundary tokens { and } are specified and self-nesting is explicitly allowed to
ensure that boundaries will be matched pairwise. This technique is also used for

s https://github.com/alexeyvale/SYRCoSE-2018/blob/master/LanD Specifications/sharp.land
21



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

attribute and arguments entities, so it can be said that it forms a sustainable
grammar writing pattern.

Any also appears in some patterns, such as enum, class struct interface,
operator, denoting lakes among the land. Lakes can mark irrelevant places as
well as places for which we are interested only in the list of matched tokens, not in
the correct subtree specifying the deeper structure.

Table 3. Numbers of unparsed files per C# grammar refinement iteration.

LanD Pascal ABC.NET Roslyn
0 8 - -
1 0 39 -
2 0 0 209
3 0 0 31
4 0 0 3

In Table 3, the quantitative data describing the grammar refinement process is
provided. The first column contains the number of refinement iterations passed. In
the table cells, there are numbers of files from each project which still cause parsing
failure. Having started with the smallest project, the LanD itself, we included the
bigger ones to the testing process as the grammar became refined enough to produce
parser capable to parse all the files under consideration. For two refinement
iterations, the number of errors for LanD and Pascal ABC.NET was reduced to zero.
Surprisingly, even so we got a significant number of erroneously parsed and
unparsed files for Roslyn (209 files out of 8027). Analyzing them we found out that
it was caused by tuple types and tuple literals. It is one of the new features added to
C# 7.0. These constructs may look exactly like method arguments, causing
confusion during parsing. The problem was solved by the less restrictive class
member patterns description: the entire header is matched by the name pattern
which includes the arguments pattern. The arguments pattern matches method
arguments as well as tuple types. A more accurate division of name into modifiers,
a type, an entity name and arguments was moved at the automatically built syntax
tree post-processing stage. Expression bodied properties became another cause of
errors. They are widely used in Roslyn but are not presented in LanD and
PascalABC.NET. To process them as the water, the init expression anti-
pattern was added and the init value anti-pattern was refined.

At the last iteration of grammar testing and refinement, the number of errors is still
non-zero. However, on closer inspection it was proved to be not a consequence of
inaccuracies in the grammar structure. The first file® is a test file for the Roslyn
compiler, it contains the text of the program in Shift-JIS encoding, which is used for
Japanese, moreover, the class name is written in Japanese. The latter causes a lexical

6 https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/Resources/Core/Encoding/sjis.cs
22



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

analysis error. We consider the usage of national alphabets for entity naming to be a
rare case, but, if necessary, the ID token can be adopted as needed. The second file’
also belongs to the testing infrastructure, it contains a meta-information in a form of
invalid global code: there is a string field, declared directly inside the namespace
but outside of the class. In the third file®, the code containing using directives and
a class definition is placed after the namespace definition. This code is enclosed in
#1if false preprocessor directive, so it is not compiled after the preprocessing
stage. Our tolerant parser works with the pure sources and ignores the directives, so
it justifiably treats this program as incorrect.

The resulting C# grammar is aimed at all-encompassing parsing of all the possible
valid C# code variations from three real-world software projects, at the same time it
is both tolerant with respect to code in places indicated with Any, and lightweight.
For instance, the baseline C# parser description’ for the industrial compiler
generator ANTLR, which uses an extended LL(*) algorithm [22], contains 1159
lines, and lexical analyzer specification contains 1101 lines. The text of our tolerant
LL(1) C# grammar has (including token definitions and different generator options)
just 51 lines. Developing a parser for a certain project, one can make the grammar
even more lightweight if some project-specific restrictions are known. In case some
coding conventions are applied, land and water content become less variable. If a
legacy code is parsed, one can be sure that the latest language features are not in use
there, so the grammar is allowed not to contain patterns and anti-patterns for them.
At the next stage of the experiment, the syntax trees of the parsed files were used to
calculate the numbers of successfully discovered LanD entities that we are
interested in, solving the code markup task. As control numbers, the results of
counting the same entities using syntax trees built by Roslyn were used. The entities
were grouped into five categories: enums, classes, fields, properties, methods. The
grouping is carried out in accordance with the hierarchy of classes representing the
nodes of a syntactic tree in Roslyn. Entities which corresponds to Roslyn tree nodes
of type BaseFieldDeclarationSyntax are marked as fields. These are fields
themselves, as well as events described without access methods. Elements
corresponding to nodes of types inherited from
BasePropertyDeclarationSyntax are treated as properties. In addition to
properties themselves, these are indexers and events with explicitly specified add
and remove accessors. Methods correspond to
BaseMethodDeclarationSyntax type: it is the parent type for method,
constructor, destructor, and operator nodes.

’ https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/Resources/Core/SymbolsTests/Metada
ta/public-and-private.cs

8 https://github.com/dotnet/roslyn/blob/master/src/Workspaces/Core/Portable/Shared/Extensions/ObjectE
xtensions.cs

° https://github.com/antlr/grammars-v4/tree/master/csharp

23



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

In Table 4, the quantitative results are presented. For all projects in all categories,
LanD detects more entities than Roslyn. The difference is caused by the conditional
compilation directive #1if, which is actively used in the projects under
consideration. For example, in PascalABC.NET the #if DEBUG construct is
widely used to enable debug output and additional information collecting,
conditional compilation is also presented in the sources of the syntax analyzers,
which are generated with GPPG.

Table 4. Number of entities found by Roslyn/LanD.

Enums Classes Fields Properties Methods

LanD 13/14 94/95 390/390 248/253 431/436

PABC | 356/363 4611/4622 16720/16753 | 12326/12350 42248/42386

Roslyn | 437/441 | 21583/21622 | 19606/19737 | 21886/21919 | 108040/108400

Roslyn parser has an integrated preprocessor which resolves #1if conditions and
pass to the parsing stage only the appropriate parts of the code. LanD is a language-
independent tool, so it does not have a built-in notion of directives. For a
lightweight parser, directives are defined as single-line lexemes which are usually
skipped. As a result, LanD statistics take into account all the entities regardless of
whether or not they are enclosed in the #1i £ directive with an undefined symbol. It
should be noted that C# preprocessing is a fairly simple task. If necessary, the
correct preprocessor can be easily written and applied to the text passed to the
LanD-generated C# parser. However, this will lead to a loss of information about
the areas excluded by the preprocessor.

7. Conclusion

In the present paper, the LL(1) parsing algorithm modification is proposed. This
modification is intended for performing tolerant parsing based on the island
grammars technique. The special 2ny symbol is integrated into the algorithm to add
a capability to match token sequences which are not explicitly described in the
grammar. With regard to island grammar development, the presence of Any
simplifies the description of water and partially eliminates the need to describe the
structure and variations of irrelevant areas. Besides, Any can be used for relevant
code description in case this code contains lakes — areas for which we are
interested only in pure token sequence, not in the structural information. Our Any
implementation fixes the shortcomings of the closest analogues. It is more accurate
and less restrictive in comparison with Coco/R and LightParse parser generators, it
is also more simple than bounded seas approach, and still powerful enough to parse
sources of large-scale software projects. It is experimentally proved that the
lightweight parser of the C# language with built-in automatic construction of the
syntax tree, which was developed by the authors of the current paper, makes it
possible to successfully analyze the source codes of industrial software products and
provides one hundred percent finding of points of interest. The developed generator
24



Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

of lightweight parsers is planned to be used in solving the sustainable code markup
problems.

Tolerant grammar description and syntax tree post-processing are supposed to be
simplified by integrating the Schrédinger’s token concept [13] into lexical and
syntax analyzers. In particular, it can be useful for analyzing C# language where,
along with reserved keywords, there are contextual keywords. Some of them (for
example, words where and partial) directly affect the separation of land and
water and the land structure analysis. Possible directions for further research are
also a more intelligent resolution of the consecutive Any problem and integration of
the Any symbol into LR(1) parsing algorithm.

References

[1]. Goloveshkin A.V. Searching and analysing crosscutting concerns in marked up
programming language grammar. lzvestija wvuzov. Severo-Kavkazskij region.
Tehnicheskie nauki [University News. North-Caucasian Region. Technical Sciences
Series], 2017, issue 3, pp. 29-34 (in Russian). DOI: 10.17213/0321-2653-2017-3-29-34.

[2]. Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E.,
Scott E. Island grammar-based parsing using GLL and Tom. Software Language
Engineering: 5th International Conference, SLE 2012, Dresden, Germany, September
26-28, 2012, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224-243.

[3]. Van den Brand M., Sellink M.P.A., Verhoef C. Obtaining a COBOL grammar from
legacy code for reengineering purposes. In Proceedings of the 2nd International
Conference on Theory and Practice of Algebraic Specifications. BCS Learning &
Development Ltd., 1997, pp. 6-16.

[4]. Moonen L. Generating robust parsers using island grammars. In Proceedings of the
Eighth Working Conference on Reverse Engineering (WCRE’01). IEEE Computer
Society, 2001, pp. 13-22.

[5]. Moonen L. Lightweight impact analysis using island grammars. In Proceedings of the
10th International Workshop on Program Comprehension (IWPC). IEEE Computer
Society, 2002, pp. 219-228.

[6]. Graham S.L., Haley C.B., Joy W.N. Practical LR error recovery. SIGPLAN Notes, vol.
14, issue 8, 1979, pp. 168-175.

[7]. Burke M.G., Fisher G.A. A practical method for LR and LL syntactic error diagnosis
and recovery. ACM Trans. Program. Lang. Syst., vol. 9, issue 2, 1987, pp. 164-197.

[8]. De Jonge M., Nilsson-Nyman E., Kats L.C.L., Visser E. Natural and flexible error
recovery for generated parsers. Software Language Engineering: Second International
Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers.
Springer Berlin Heidelberg, 2010, pp. 204-223.

[9]. Nilsson-Nyman E., Ekman T., Hedin G. Practical scope recovery using bridge parsing.
Software Language Engineering: First International Conference, SLE 2008, Toulouse,
France, September 29-30, 2008. Revised Selected Papers. Springer Berlin Heidelberg,
2009, pp. 95-113.

[10]. Koppler R. A systematic approach to fuzzy parsing. Software: Practice and Experience,
vol. 27, issue 6, 1997, pp. 637-649.

25



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

[11]. Carvalho P., Oliveira N., Henriques P.R. Unfuzzying fuzzy parsing. 3rd Symposium on
Languages, Applications and Technologies, ser. OpenAccess Series in Informatics
(OASIcs), vol. 38, 2014, pp. 101-108

[12]. S. Klusener and R. Lammel, Deriving tolerant grammars from a base-line grammar. In
Proceedings of the International Conference on Software Maintenance. IEEE Computer
Society, 2003, pp. 179-188.

[13]. Aycock J., Horspool R.N., Schrodinger’s token. Software: Practice and Experience, vol.
31, issue 8, 2001, pp. 803-814.

[14]. Grune D., Jacobs C.J. Parsing Techniques: A Practical Guide (2nd Edition). Springer-
Verlag, New York, 2008, 662 p.

[15]. Scott E., Johnstone A. GLL parsing. Electron. Notes Theor. Comput. Sci., vol. 253,
issue 7, 2010, pp. 177-189.

[16]. Mossenbock H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 02.03.2018.

[17]. Malevannyy M. Lightweight parsing and its application in development environment.
Informatizatsiya i svyaz [Informatization and communication], 2015, vol. 3, pp. 89-94
(in Russian).

[18]. Malevannyy M.S., Mikhalkovich S.S. Context-based model for concern markup of a
source code. Trudy ISP RAN/Proc. ISP RAS, 2016, vol. 28, issue 2, pp. 63-78. DOI:
10.15514/ISPRAS-2016-28(2)-4.

[19]. Kur$ J., Lungu M., lyadurai R., Nierstrasz O. Bounded seas. Comput. Lang. Syst.
Struct., 2015, vol. 44, pp. 114-140

[20]. Ford B. Packrat parsing: Simple, powerful, lazy, linear time. Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, ser. ICFP *02.
ACM, 2002, pp. 36-47.

[21]. Aho AV., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

[22]. Parr T., Harwell S., Fisher K. Adaptive LL(*) parsing: The power of dynamic analysis.
SIGPLAN Notes, vol. 49, issue 10, 2014, pp. 579-598.

TonepaHTHbIN CUHTAKCUYECKMW aHanum3 ¢ UCNONb3OBaHNEM
cneuuvanbHOro cuMBosa «Any»: anropuTm U NpakTU4YecKoe
npuMeHeHue

A.B. I'onosewxun <alexeyvale@gmail.com>
C.C. Muxanxosuu <miks@sfedu.ru>
Hnemumym mamemamuxu, MexaHuku u KomnviomepHuix Hayk um. U1, Boposuua,
FOoicuviii pedepanvubiil ynusepcumen,
344090, Poccus, e. Pocmos-na-Iony, yr. Munvuaxosa, 0. 8a

AnHoTtanus. ToxepaHTHBIA CHHTaKCHYECKUH aHAIIN3 MTO3BOJISIET HAUTH 00JIACTH ITPOTPAMMBEL,
TIPEICTABIIIONINE HHTEpEC B KOHTEKCTEe KOHKPETHOH! 3a/1aul, ¥ U3BJedb HH(opMamio 00 ux
CTPYKType. B To Bpems kak 3Tu 007acTH JOMKHBI OBITH MOAPOOHO OMUCAHBI B TPaMMaTHKE
A3bIKa, JPYTHe 9acTH MPOTrpaMMbl MOTYT OBITH HE OIMHMCAHbI COBCEM WM OIMCAHBI MEHee
JeTalbHO, TPH 3TOM TEHEpUpPYeMbI Mapcep MAODKEH IPH3HABAaTh KOPPEKTHBIMH BCE
BO3MOXHBIE BapHalliM NPOTPaMMbl B HEPEIEBAHTHBIX O0NACTAX, TO €CTh, JOMKEH OBITh
TOJICPAHTHBIM II0 OTHOMIEHHIO K HUM. OCTpOBHBIE I'paMMaTHKM — OJUH U3 OCHOBHBIX

26


http://ssw.jku.at/Coco/Doc/UserManual.pdf

Tonoemkun A.B., Muxankosuy C.C. TonepaHTHbIH CHHTaKCUYECKUH aHAIN3 C HCTIOJIb30BAaHUEM CHEIHAIBHOTO
CHUMBOJIAa «ANY»: aIrOPUTM U IpakTHyeckoe npumenenue. Ipyost UCII PAH, Tom 30, Beim. 4, 2018 1., c1p. 7-28

CrIoco0OB peanu3aliil TOJICPAHTHOTO IApCHHTA. TEpPMHHOM «OCTPOB» 0003HAYAIOTCS
perneBaHTHBIE O0JIACTH KOJa, TEPMHHOM «BOJa» — HEPEJICBAaHTHBIN KoA. B Hacrosmei
pabore onuckiBaeTcss MomupumupoBanusiii LL(1) anroput™ co BCTpoeHHOH 00pabOTKOi
CMEIMANBHOTO CHMBOJNA «ANY», MO3BOJSIONIET0 COMOCTABIATh II0OCNIEN0BATENbHOCTH
TOKEHOB, HE ONHCaHHBIE Pa3pabOTYMKOM I'paMMATHKH B SIBHOM Buje. IIpuMeHeHne 1aHHOTO
aJITOPUTMA K OCTPOBHBIM I'PAMMATHKaM BEAET K COKPAILEHUIO OMHCAHHUS BOJIBI U YIPOIIECHUIO
omucaHusi ocTpoBoB. Hama peammamus «Any» sBisercs Oonee Oe3omacHOW uis
HCTIONb30BAaHUS U MEHee OrPaHMYHUTENHHON 10 CPaBHEHWIO C OJIIDKaWIIMMU aHAJOraMH B
reHeparopax Coco/R u LightParse. Takxke oHa Gonee mpenckasyema u TpeOyeT MEHBIIHX
HaKJIAIHBIX PacXoJ0B B CPAaBHEHHH C KOHIICNIIMCH «OTPaHWYCHHBIX MOpEi», BHEIPEHHOI B
PetitParser. Ha Gasze anropuTMa peajan3oBaH TEHEPATOP KOMIMIISITOPOB CO BCTPOCHHBIM
A3bIKOM OIMCAaHHs OCTPOBHBIX TpamMMaTuK. Kak mokazaHo B pasfgene 3KCIHEpPUMEHTOB,
CTeHEPUPOBAHHBII 0 OCTPOBHOI rpamMmMartuke si3pika C# TollepaHTHBIN mapcep MOXKET ObITh
YCHENIHO IPUMEHEH AJISI aHAIN3a KPYITHBIX IPOMBIIIICHHBIX TPOEKTOB.

KinroueBbie cj10Ba: TOJNEpPaHTHBIM MApCUHT; YCTOWYMBBINA MApCUHT; JETKOBECHBIM NapCUHT;
YaCTUYHBII IAPCUHT; OCTPOBHAs IpaMMaTHKa; TeHepalys IapcepoB

DOI: 10.15514/ISPRAS-2018-30(4)-1

Jost uutupoBanms: ['onosemkud A.B., Muxankosuu C.C. TonepaHTHBII CHHTaKCHYECKUH
aHAJI3 C HCIOJB30BAaHUEM CIEIHMAJbHOIO CHMBOJIA «ANy»: ajJrOpUTM M MPaKTUYECKOe
npumenenue. Tpyast UCIT PAH, tom 30, Beim. 4, 2018 1., cTp. 7-28 (Ha aHITTHHCKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2018-30(4)-1

Cnucok nutepartypbl

[1]. Tonosemikun A.B. TIoMCK M aHaNW3 CKBO3HBIX (DYHKIHOHAJIBHOCTEH B Pa3sMEUCHHOM
rpaMMaTHUKE s3bIKa NporpaMMHUpOBaHUA. UsBecTus BY30B. CeBepO-KaBKal’,CKHﬁ PETHUOH.
Texuuueckue Hayku, 2017, Bom. 3, ctp. 29-34. DOI: 10.17213/0321-2653-2017-3-29-
34.

[2]. Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E.,
Scott E. Island grammar-based parsing using GLL and Tom. Software Language
Engineering: 5th International Conference, SLE 2012, Dresden, Germany, September
26-28, 2012, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224-243.

[3]. Van den Brand M., Sellink M.P.A., Verhoef C. Obtaining a COBOL grammar from
legacy code for reengineering purposes. In Proceedings of the 2nd International
Conference on Theory and Practice of Algebraic Specifications. BCS Learning &
Development Ltd., 1997, pp. 6-16.

[4]. Moonen L. Generating robust parsers using island grammars. In Proceedings of the
Eighth Working Conference on Reverse Engineering (WCRE’01). IEEE Computer
Society, 2001, pp. 13-22.

[5]. Moonen L. Lightweight impact analysis using island grammars. In Proceedings of the
10th International Workshop on Program Comprehension (IWPC). IEEE Computer
Society, 2002, pp. 219-228.

[6]. Graham S.L., Haley C.B., Joy W.N. Practical LR error recovery. SIGPLAN Notes, vol.
14, issue 8, 1979, pp. 168-175.

[7]. Burke M.G., Fisher G.A. A practical method for LR and LL syntactic error diagnosis
and recovery. ACM Trans. Program. Lang. Syst., vol. 9, issue 2, 1987, pp. 164-197.

27



Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

[8].

[9].

[10].

[11].

[12].

[13].
[14].
[15].
[16].
[17].

[18].

[19].

[20].

[21].

[22].

28

De Jonge M., Nilsson-Nyman E., Kats L.C.L., Visser E. Natural and flexible error
recovery for generated parsers. Software Language Engineering: Second International
Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers.
Springer Berlin Heidelberg, 2010, pp. 204-223.

Nilsson-Nyman E., Ekman T., Hedin G. Practical scope recovery using bridge parsing.
Software Language Engineering: First International Conference, SLE 2008, Toulouse,
France, September 29-30, 2008. Revised Selected Papers. Springer Berlin Heidelberg,
2009, pp. 95-113.

Koppler R. A systematic approach to fuzzy parsing. Software: Practice and Experience,
vol. 27, issue 6, 1997, pp. 637-649.

Carvalho P., Oliveira N., Henriques P.R. Unfuzzying fuzzy parsing. 3rd Symposium on
Languages, Applications and Technologies, ser. OpenAccess Series in Informatics
(OASIcs), vol. 38, 2014, pp. 101-108

S. Klusener and R. Lammel, Deriving tolerant grammars from a base-line grammar. In
Proceedings of the International Conference on Software Maintenance. IEEE Computer
Society, 2003, pp. 179-188.

Aycock J., Horspool R.N., Schrodinger’s token. Software: Practice and Experience, vol.
31, issue 8, 2001, pp. 803-814.

Grune D., Jacobs C.J. Parsing Techniques: A Practical Guide (2nd Edition). Springer-
Verlag, New York, 2008, 662 p.

Scott E., Johnstone A. GLL parsing. Electron. Notes Theor. Comput. Sci., vol. 253,
issue 7, 2010, pp. 177-189.

Mossenbock H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 02.03.2018.

Manésannbliii M.C. JIerkoBecHBIH MapCHHT M €ro MCHOJb30BaHue Ui QYHKIMH Cpebl
paspaboTku. Mudopmarusanms u ca3b, 2015, tom 3, ctp. 89-94.

Malevannyy M.S., Mikhalkovich S.S. Context-based model for concern markup of a
source code. Trudy ISP RAN/Proc. ISP RAS, 2016, vol. 28, issue 2, pp. 63-78. DOI:
10.15514/ISPRAS-2016-28(2)-4.

Kur§ J., Lungu M., lyadurai R., Nierstrasz O. Bounded seas. Comput. Lang. Syst.
Struct., 2015, vol. 44, pp. 114-140

Ford B. Packrat parsing: Simple, powerful, lazy, linear time. Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, ser. ICFP *02.
ACM, 2002, pp. 36-47.

Aho AV., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

Parr T., Harwell S., Fisher K. Adaptive LL(*) parsing: The power of dynamic analysis.
SIGPLAN Notes, vol. 49, issue 10, 2014, pp. 579-598.


http://ssw.jku.at/Coco/Doc/UserManual.pdf

An Interactive Specializer Based on
Partial Evaluation for a Java Subset

1. A. Adamovich <i.a.adamovich@gmail.com>
2 And. V. Klimov <klimov@keldysh.ru>
! Ailamazyan Program Systems Institute of Russian Academy of Sciences,
4a Peter the First str., Veskovo, Yaroslavl region, 152021, Russia
?Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,
4 Miusskaya sq., Moscow, 125047, Russia

Abstract. Specialization is a program optimization approach that implies the use of a priori
information about values of some variables. Specialization methods are being developed
since 1970s (mixed computations, partial evaluation, supercompilation). However, it is
surprising, that even after three decades, these promising methods have not been put into the
wide programming practice. One may wonder: What is the reason? Our hypothesis is that the
task of specialization requires much greater human involvement into the specialization
process, the analysis of its results and conducting computer experiments than in the case of
common program optimization in compilers. Hence, specializers should be embedded into
integrated development environments (IDE) familiar to programmers and appropriate
interactive tools should be developed. In this paper we provide a work-in-progress report on
results of development of an interactive specializer based on partial evaluation for a subset of
the Java programming language. The specializer has been implemented within the popular
Eclipse IDE. Scenarios of the human-machine dialogue with the specializer and interactive
tools to compose the specialization task and to control the process of specialization are under
development. An example of application of the current version of the specializer is shown.
The residual program runs several times faster than the source one.

Keywords: program analysis, program transformation, interactive program specialization,
partial evaluation, object-oriented language, integrated development environment.

DOI: 10.15514/ISPRAS-2018-30(4)-2

For citation: Adamovich I.A., Klimov And.V. An Interactive Specializer Based on Partial
Evaluation for a Java Subset. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp.
29-44. DOI: 10.15514/ISPRAS-2018-30(4)-2

! Supported by RFBR research project No. 18-37-00454 (contribution: development of

interactive methods of partial evaluation, design of the architecture and implementation of the

specializer, analysis of related works).

2 Supported by RFBR research project No. 16-01-00813 (contribution: problem statement,

design of methods based on the existing approaches, supervision, analysis of related works).
29



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

1. Introduction

The method of program specialization known as partial evaluation was invented
more than 30 years ago along with the achievement of the famous result [1], [2] of
evaluation of the First, Second and Third Futamura projections [3]-[5] for a tiny
List subset. The first round of research was completed in early 1990s when the main
textbook on partial evaluation had been published [2]. A lot of programming
problems were found to be solved by program specialization (the most known being
the generation of a compiler from an interpreter by the Second Futamura Projection)
and the emergence of a new class of program development tools based on
specialization were expected. Some other program specialization techniques, e.g.,
supercompilation [6], [7], has been developed in parallel as well. However, it is
surprising that even after three decades these promising methods have not been put
into the wide programming practice. One may wonder: What is the reason?

Our hypothesis is that the main expectation that governed the development of
specializers was wrong. The developers of these methods hoped that specializers
could work in fully automatic mode and they just needed to invent some finitely
many features and improvements that solve the problem, after which “the great
goal” would be achieved and happy programmers started using the new tools. They
expected that specializers could work in the similar “black-box mode” as optimizing
compilers. However this did not happen. The time and space complexity of the
program transformations that were necessary for specialization, turned out to be
much higher than the complexity of program optimizations that can be used as
“black boxes” with short and predictable run time and consumed memory.

We argue that automatic methods of program optimization have reached certain
inherent limits. In order to develop and use more powerful tools, we must give up
the expectations that the program analysis and transformation systems will operate
in automatic mode without human intervention. Program specializers possess too
many degrees of freedom and choice, which cannot be resolved by the algorithms of
their kind and, therefore, should use human help.

Based on this observation, we put forward the goal of construction of an interactive
specializer embedded in a habitual integrated development environment (IDE) such
as Eclipse [8]. Eclipse provides a rich open-source toolkit referred to as Java
development tools (JDT) [9], which allows a developer to deal only with essential
tasks of analysis, visualization and transformation of Java code. Adequate human-
machine dialogue tools to control the specializer and deal with the results of
specialization are to be developed. We would like to emphasize that there is strict
separation of concerns between the machine and the human: the specializer
guaranties the functional equivalence of program transformation and the user is
responsible for the control of the specializer in such a way that it produces the code
that satisfied user’s goals and needs (which the machine does not know).

30



Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

public class AckermannExample {
public final static long A (long x, long y) {
if (x == @) return y + 1;
else if (y == @) return A(x - 1, 1);
else return A(x - 1, A(X, v - 1));
}

@Specialize

public static long test(long y) {
return A(3, vy);

}

Fig.1. Source code of Ackermann function

We think that partial evaluation is better suited than other specialization methods
(like supercompilation) for human-machine dialogue organized in such a way that
the user comprehends what is happing in the specializer, receives valuable and
interesting information about his code, is capable of adjusting the source code to be
better specialized and controls the specializer. The reason is that the method of
partial evaluation consists of two stages:

o binding-time analysis (BTA) of source code that selects the parts of the
code that are to be evaluated at specialization time, and

o residual program generation (RPG) that follows the information supplied
by BTA, performs specialization proper and produces the resulting code
(referred to as residual).

A pleasant feature of BTA is that its result (called BT annotation) may be naturally
shown on the source code by highlighting and due to such visualization the residual
code is intuitively predictable. We hope that this will allow for easy adoption of
specializers as new programming tools by rank-and-file programmers.
Terminological remark. In the theory of partial evaluation the parts of source code
to be evaluated during specialization are called static. The other source code that is
transferred to the residual program (residualized) is referred to as dynamic. The
term static conflicts with the static modifier in Java and the term dynamic may
be confused with the run-time notions. That is why we avoid using these words in
the partial evaluation sense and use abbreviations S and D instead, e.g.,
S-annotation, D-annotation, S-code, D-code, S-part and D-part of a program.

The contributions of this paper are as follows.

e We show the first results of development of the Java specializer, where
partially evaluated code is restricted to operations on primitive types.

e We demonstrate the work of the specializer by an example of specialization
of the Ackermann function with respect to the first argument.

e We discuss some of the details of implementation in Eclipse and the
methods and features to be implemented in future.

31



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

public class AckermannExample {
public long test(long y) {
return A_3(vy);
}

public final long A_3(long y) {
if (y == ©) return A_2(1);
else return A_2(A_3(y - 1));
}

public final long A_2(long y) {
if (y == 8) return A_1(1);
else return A_1(A_2(y - 1));

}

public final long A_1(long y) {
if (y == 8) return A_8(1);
else return A_B(A_1(y - 1));

}

public final long A_©(long y) {
return y + 1;
}

Fig. 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section 2 we present the basics of partial
evaluation for Java by an example of specialization of the Ackermann function. In
Section 3 a bird-eye view of the implementation of the specializer in the Eclipse
IDE is presented. Section 4 contains a survey of related works in comparison with
our specializer. In Section 5 we conclude.

2. Java Specialization by Example

Fig. 1 and 2 contain screenshots of the source and residual code of the Ackermann
function made from the running specializer in Eclipse IDE.

The method 2 implements the Ackermann function and the method test invokes it
with the first constant argument 3. The Java annotation @Specialize at the
method test specifies that it should be specialized, i.e., its body is to be replaced
with the residual code and the specialized versions of the methods that it invokes are
to be generated and added to the program. The names of the methods 2 and test in
their headers are marked in orange in order to show that they are involved in BTA.
The bodies of these methods are analyzed and annotated: green highlighting marks
S-parts of code. (You see gray highlighting in fig. 1 if you read this paper in a
monochrome print).

32



Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

2.1. Binding-Time Analysis

The BTA algorithm for variables and operations of primitive types is rather
straightforward. First, all constants are annotated with S. Then recursively: a
subexpression containing only S-parts becomes s; a local variable declaration and
an assignment with s right-hand sides become s; a method parameter that
correspond to S arguments at all points of invocation becomes s; in case of conflict
of several invocations of the same method the conflicting parameter becomes D; a
conflict on several assignments to a local variable turns it to D as well; an if
statement with the S conditional expression is annotated with S regardless of the
annotation of its branches (this means that i f-else will disappear while one of
the branches will be residualized); other control statements are analyzed and
annotated similarly. When the recursion reaches the fixed point, the remaining parts
of code are annotated with D. D-parts are not highlighted in Figure 1.

This mode of operation of BTA, when each code fragment gets univocal annotation
S or D, is referred to as monovariant. The more general mode when several versions
of annotation are allowed is called polyvariant. The current version of BTA is
monovariant. In future we plan to implement polyvariant BTA for classes and
reference types according the theory developed in [10]-[18].

Monovariant BTA on primitive types can be defined formally as abstract
interpretation on a lattice with 3 elements: undefined < s < D.

As an illustration of monovariance, notice that in figure 1 method 2 is invoked 3
times in the source code, one of which has both s arguments, another 2 invocations
have the first S argument and the second one is D. The first invocation is processed
in the same way as the other two with the second s argument assigned to the D
formal parameter.

2.2. Residual Program Generation

At the generation stage, partial evaluation starts from the method with the
@Specialize annotation and recursively visits all invoked methods in turn.
Notice that, since all statements and methods with side effects are considered D and
hence are residualized rather than executed at specialization time, the order of
specialization of methods does not matter. For each of the specialized methods,
several residual versions can be produced — one for each combination of values of
S arguments. They got different names of the form (in the current version):
source-name_number. They have only those parameters that correspond to D
parameters in the source code.

The current version of the specializer can loop forever if infinitely many values of S
arguments are generated. The production version of the specializer should contain
special debugging means to gracefully leave such situations. This is our future
work. In Figure 2 there are 4 versions of residual method 2 corresponding to values
0, 1, 2, 3 of its first argument. Notice that because of monovariance the invocations

33



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

A 2(1), A 1(1),anda 0(1) have not being evaluated, since the constant 1
correspond to the D parameter of method 2.

2.3. Running Source and Residual Programs

We have chosen this example for presentation, since it demonstrates all main
features of the current version of the specializer. We did not expect a significant
speed-up as it seemed that asymptotically the number of method invocations was
almost the same and the invocations were the most expensive operations in this
example. Thus we were very surprised when the speed-up was about 3 times.

The obtained acceleration can be explained by several reasons. First, calculation
showed that the specialized version performs 1.86 times less Java byte code
instructions. Second and more important, it is natural to suppose that the JIT
compiler in JVM performs inlining of those specialized method that are simpler and
more compact than in the source code.

This example illustrates the principle, which we observed many times in
experiments with various specializers: a specializer does not replace the classic
optimizing compilers. Rather, we observe “composition” of optimizations by a
specializer and a low-level optimizing compiler and hence multiplication of speed-
ups. Residual code produced by specializers is more amendable for classic
optimizations than code written by a human being. We may conclude that
specialization opens up additional opportunities for program optimization.

3. Architecture of Specializer

The specializer has been implemented in the Eclipse development environment
(IDE) [8]. The IDE has open source code and provides points and tools to extend it.

The basis for Eclipse extension is the concept of a plug-in. Each plug-in is an
archive JAR file containing a so-called manifest, a set of files describing the
dependencies of the plug-in and the possibility of its extension (extension points).
Other plug-ins can add their functionality to these extension points. For example,
one might want to add his toolbar extensions to an already implemented toolbar
plug-in.

A small tool is usually implemented as a one plug-in, while a large one is often
provided as a set of plug-ins. Our specializer is implemented as three Eclipse plug-
ins.

The specializer consists of the following plug-ins:

e aplug-in SpecCore is the core of the specializer, which implements its
main functionality;

e aplug-in SpecMarkers is responsible for text highlighting in the Eclipse
editor in accordance with the annotation produced by the SpecCore plug-in;

e aplug-in SpecMenus implements interactions with various menus
(including context menus) and toolbars to provide a user-friendly interface.

34



Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

The SpecCore implements the binding-time analysis (BTA) and the generation of a
residual program. When analyzing the source program the plug-in SpecCore uses
the abstract syntax tree (AST) built by the Eclipse Java development tools (JDT).
JDT is a set of plug-ins that provides us with an easy way to manipulate Java source
code.

The second of the three plug-ins that form the specializer is the SpecMarkers plug-
in. It is responsible for highlighting the source code, which allows the programmer
to see which parts of the program are evaluated at specialization time and which are
residualized. This helps him to understand how to change the code to provide better
specialization.

The last part of the specializer is the SpecMenus plug-in. This plug-in uses the
extension points of other plug-ins to add the necessary elements to some menus. It
adds two new buttons to the main toolbar of Eclipse: Enable/Disable the
highlighting and the “Generate optimized Java files” button. Also this plug-in adds
items to the context menu of the Project Explorer and Package Explorer views.

4. Related Work and Comparison

A lot of works are devoted to partial evaluation for functional languages. The book
[2] summarizes the first wave of development of this method.

Later on, research into partial evaluation for imperative “Algol-like” languages [19],
[20] and C [21] was performed. In early 1990's, the first (to our knowledge)
specializer for C was developed, called C-MIX [21], [22]. Chapter 11 of the book
[2] contains its detailed presentation. C-MIX specializes a program in three stages.
The first stage is the analysis of references. For each reference variable, a set of the
variables that it could refer to is built. If the analysis finds that several reference
variables can refer to the same memory, they are labeled identically. The second
stage is the construction of a binding-time annotation of the source code. References
to the same memory area are annotated identically. In case of conflicts, the
annotation is reduced to D as usual. The third stage is the generation of the residual
program.

Specialization of reference types in Java can be similar to elaboration of pointers in
C-MIX. However, Java stricter typing and managed run-time can be leveraged for
deeper specialization. The current version of our specializer annotates all reference
variables D and, therefore, they are left unchanged. Our future work is to add the
binding-time analysis of reference types. Unlike C-MIX, we expect that our
specializer will still work in two stages — without the reference analysis phase.
Further development of ideas of C-MIX led to the creation of a specializer of
programs written in C, called Tempo [23], [24]. This specializer is much like C-
MIX.

The next important step was the development of the first specializer for an object-
oriented language — JSpec for Java [25]. JSpec uses the Harissa compiler [26] to
translate the Java program into C. Then the Tempo specializer mentioned above

35



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

transforms the program. The obtained C-representation of a specialized Java
program is mapped back into Java using the Assirah translator [25]. Finally, the
Aspect] tool weaves the specialized program with the source program to get the
executable Java bytecode. The main limitation of JSpec is that it is capable of
partially evaluating only immutable classes and objects, while mutable objects are
always residualized. Our goal is to waive this restriction.

The most advanced (to our knowledge) partial evaluation method for object-
oriented languages like C# and Java has been developed in CILPE [10]-[18], a
partial evaluator for Common Intermediate Language (CIL), the bytecode of the
Microsoft .NET Framework. It supports almost all of the basic constructs of object-
oriented languages such as C# and Java. In CILPE, a new concept of a binding-time
heap (BT heap) has been introduced. A BT heap is an abstract description of the
state of a run-time heap, which allows us to separate reference type data into
evaluated at specialization time and residualized ones and to avoid the use of the
reference analysis stage as in C-MIX. As a result of specialization, some of the
objects are no longer created in the residual program, and if necessary, local
variables are used instead of object fields. We will base on the results of this
research in our future work to implement BTA of classes and partial evaluation of
objects.

A relatively new specializer of Java programs is Civet [27]. Civet is based on a so-
called Hybrid Partial Evaluation (HPE) approach. Specialization in HPE is
performed in online mode, i.e., in one pass, while the programmer can specify
which parts of the program have s-annotation. On the contrary, in our specializer
we choose the offline approach, i.e., the residual program is built at the stage of
generation of the residual program after the completion of the binding-time analysis,

where information about the S-parts of the program is collected automatically rather
than specified by the user as in Civet.

PE-KeY [28] is a partial evaluator for Java programs based on the KeY verification
system [29]. PE-Key works in two stages. At the first stage, the program is executed
in a symbolic form with the application of a special set of rules. At the second stage,
a residual program is synthesized, while the rules are applied in the opposite
direction. The PE-KeY approach is similar to the classical offline specialization that
our specializer uses: a specialized program is produced in two stages. However, in
the first stage of PE-KeY, the program is executed symbolically, while our binding-
time analysis performs an abstract interpretation of the program. In addition, due to
limitations of the KeY verification system, PE-KeY does not support floating-point
arithmetic, while our specializer supports.

JSpec, Civet, PE-Key deal with objects at specialization time, while the current
version of our specializer annotates classes and variables of reference types with D

! For discussion of the features of and differences between online and offline partial
evaluation see [2, Chapter 7].

36



Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

and thus residualizes them unchanged. The extension of our specializer to partial
evaluation of classes and objects is our future work.

The specializers considered above interact with the user through the command line,
so it's extremely difficult to use them. In order for the specialization to be widely
used, it is required to develop the methods of interaction with the user and to embed
the specializer into an integrated development environment convenient for the
programmer, what we are implementing in our specializer. This is a crucial
difference.

We know about just one work on partial evaluation carried out in a practical setting
— the GraalVM toolkit in Oracle Labs [30], [31]. The toolkit is designed for defining
domain-specific languages by interpreters and, nevertheless, achieving high-
performance by using a specializer. The first Futamura projection provides an
opportunity for such acceleration (see [3], [4] and [2, Chapter 1.5.1]): given a
program and an interpreter that executes the program, GraalVM specializes the
interpreter with respect to a part of the given program and produces the machine
code of this part. The resulting code is executed much faster than the original one in
the interpreter. The main goal of GraalVM is to provide a technology similar to just-
in-time (JIT) compilation for the developer of a programming language without the
need to implement the complex machinery of JIT. The interpreter specialization in
GraalVM is not automatic and uses prompts by the interpreter developer. This case
of implementation of partial evaluation confirms that practical application of
specialization requires guidance from the programmer. We conduct our research in
the same direction: methods and tools are being developed to provide the
programmer with information about program behavior under specialization and
levers to control the partial evaluation processes.

5. Conclusion

In this paper we put forward the task of development of an interactive specializer.
We argue that the current stage of program specialization methods has reached
certain limits because the previously implemented specializers do not imply the
participation of the user in the process of specialization. Our specializer uses the
offline partial evaluation approach, where the program transformation if performed
in two stages — binding-time analysis (BTA) and residual program generation
(RPG). We briefly described the architecture of our interactive specializer in the
Eclipse development environment.

We illustrated the work of the specializer with the famous example of the
Ackermann function and the result of its specialization with respect to its first
argument. The specialized program runs several times (about three) faster than the
original one.

We see the following directions for further development of the specializer:

o to develop and implement binding-time analysis and residual program
generation for classes and objects;

37



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

o to implement interactive tools for composing a specialization task and
controlling the process of binding-time analysis and residual program
generation;

¢ to implement tools to visualize the correspondence between source and
residual code;

¢ to demonstrate that a well-developed specializer can convert
well-structured high-level human-oriented code, which can not be
automatically parallelized, into code that can be parallelized by existing
methods and tools;

e to prepare demo programs that benefit from specialization, for example,
building a compiler from an interpreter;

o to generalize the binding-time analysis from monovariant to polyvariant;

¢ to develop an interactive tracer (similar to run-time debuggers) that allows
the user to observe the analysis and generation processes in order to
improve the behavior of his code under specialization.

Availability. The current version of our specializer is available at
ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

Acknowledgment

We are grateful to our friends and colleagues Yuri Klimov, Arkady Klimov, Sergei
Romanenko, Sergei Abramov for valuable advices on specialization methods in
general and partial evaluation in particular and constructive feedback on the design
of our specializer system.

References

[1].

[2].

3.
[41.

[5].

38

Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993, 415 p. Available at:
http://www.itu.dk/~sestoft/pebook/pebook.html, accessed 20.06.2018

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. Available at:
http://doi.org/10.1023/A:1010095604496, accessed 20.06.2018

Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. Available at:
http://fi.ftmr.info/PE-Museum/EL1.PDF, accessed 20.06.2018


ftp://ftp.botik.ru/rented/iaadamovich/Specializer/
http://doi.org/10.1023/A:1010095604496
http://fi.ftmr.info/PE-Museum/EL1.PDF

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

[6].
[71.

[8l.
[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292-325

Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International ~ Andrei  Ershov  Memorial  Conference,
Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in
Computer Science, D. Bjegrner, M. Broy, and L.V. Pottosin, (Eds.), vol. 1181. Springer,
1996, pp. 227-248

Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Available at:
https://www.eclipse.org, accessed 20.06.2018

Eclipse Foundation. Eclipse Java development tools (JDT). Available at:
https://www.eclipse.org/jdt, accessed 20.06.2018

Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78-84. Awvailable at: http://meta2008.pereslavl.ru/accepted-
papers/paper-info-6.html, accessed 20.06.2018

Klimov Yu.A. [Program specialization for object-oriented languages by partial
evaluation: approaches and problems]. Preprinty” IPM im. M.V. Keldy'sha [Keldysh
Institute Preprints], no. 12, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-12, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization].
Preprinty” IPM im. M.V. Keldy'sha [Keldysh Institute Preprints], no. 30, 2008 (in
Russian). Available at: http://library.keldysh.ru/preprint.asp?id=2008-30, accessed
20.06.2018

Klimov Yu.A. [SOOL: an object-oriented stacked-based language for specification and
implementation of program specialization techniques]. Preprinty IPM im. M.V.
Keldy'sha [Keldysh Institute Preprints], no. 44, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-44, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: binding time analysis]. Preprinty” IPM im. M.V.
Keldy sha [Keldysh Institute Preprints], no. 7, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-07, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: residual program generation]. Preprinty” IPM im.
M.V. Keldy'sha [Keldysh Institute Preprints], no. 8, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-08, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: correctness proof]. Preprinty” IPM im. M.V.
Keldy sha [Keldysh Institute Preprints], no. 33, 2009, (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-33, accssed 20.06.2018

Klimov Yu.A. [Specialization of programs in object-oriented languages by partial
evaluation]. Ph.D. dissertation, Keldysh Institute of Applied Mathematics of RAS,
Moscow, Russia, Nov 2009, 183 p. (in Russian). Available at:
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf, accessed
20.06.2018

Klimov Yu.A. [Specializer CILPE: Partial evaluation for object-oriented languages].
Programmny’e sistemy’: teoriia i prilozheniia [Program Systems: Theory and
Applications], no. 3(3), pp. 13-36, 2010 (in Russian). Available at:
http://psta.psiras.ru/read/psta2010_3 13-36.pdf, accessed 20.06.2018

39


https://www.eclipse.org/
https://www.eclipse.org/jdt
http://library.keldysh.ru/preprint.asp?id=2008-12
http://library.keldysh.ru/preprint.asp?id=2008-30
http://library.keldysh.ru/preprint.asp?id=2008-44
http://library.keldysh.ru/preprint.asp?id=2009-07
http://library.keldysh.ru/preprint.asp?id=2009-08
http://library.keldysh.ru/preprint.asp?id=2009-33
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

[29].

[30].

[31].

40

Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
0. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32
Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,
pp. 59-77

Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)
Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM  '93). ACM, 1993, pp. 47-58. Awvailable at:
http://dx.doi.org/10.1145/154630.154636, accessed: 20.06.2018

Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),
Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-
18. Available at: http://doi.acm.org/10.1145/503032.503033, accessed 20.06.2018
Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452-499

Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. Available at:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html,  accessed
20.06.2018.

Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375-390. Available at:  http://doi.acm.org/10.1145/2076021.2048098,
accessed 20.06.2018.

Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the
9th International Conference on Integrated Formal Methods, IFM’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 283— 295. Available at:
http://dx.doi.org/10.1007/978-3-642-30729-4_20, accessed 20.06.2018

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. Available at:
https://doi.org/10.1007/978-3-319-49812-6, accessed 20.06.2018

Wiirthinger T., Wimmer C., W6 A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187—
204. Awvailable at: http://doi.acm.org/10.1145/2509578.2509581, accessed 20.06.2018
Wiirthinger T., Wimmer C., Humer C., W6 A., Stadler L., Seaton C., Duboscq G.,
Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic
language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662-676. Available at:
http://doi.acm.org/10.1145/3140587.3062381, accessed 20.06.2018.


http://doi.acm.org/10.1145/503032.503033
http://www.usenix.org/publications/library/proceedings/coots97/muller.html
http://doi.acm.org/10.1145/2076021.2048098
http://dx.doi.org/10.1007/978-3-642-30729-4_20
https://doi.org/10.1007/978-3-319-49812-6
http://doi.acm.org/10.1145/2509578.2509581
http://doi.acm.org/10.1145/3140587.3062381

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

MHTepaKTMBHbIVI cneuuvanun3aTop NnogmMHoOXecTBa A3blKa
Java, OCHOBaHHbIW Ha MeToAe YaCTUYHbIX BbIYUCNEHUN

Y 1.A. Avamosuu <i.a.adamovich@gmail.com>
2 410.B. Knumos <klimov@keldysh.ru>
1H)Ltcmumym npozpammnuix cucmem um. A.K. Avnamasana PAH,
152021, Poccusa, Apocrasckas oba., c. Becvroso, yn. [lempa Ilepsoeo, 0. 4a
2HHcmumym npuxnaono mamemamuru um. M.B. Kenoviua PAH,
125047, Poccus, Mocksa, Muycckas na., 0. 4

AnHotaums. Crenuanusanis — 3TO ONTUMH3ALMS IPOrpaMM Ha OCHOBE MCIIOJIB30BaHHS
Hanepéz 3aJaHHON MHGOPMALMH O 3HAYCHHH YacTH IEPEeMEHHBIX. MeTo/bl CIennaIn3ani
mporpaMMm  pasBuBaioTca ¢ 1970-X rogoB (CMEIIaHHBIC BBIYUCICHHSA, YaCTHYHBIC
BBIYMCIICHUS, cynepkoMmwisinys). OAHAKo yIWBUTENBHO, YTO MOCHE TPEX NeCATHICTHH
pa3paboTaHHbIE CHEHAIN3aTOPHl O CUX MOP HE JOCTHIJIH TOTO YPOBHS, KOTJIa OHM CTaHYT
HPUTOJHBI ISl IIMPOKOTO IPAKTHYECKOTO IpHMEHEHHs. BosHuKaeT Bompoc: B 4éM ke
npuunHa? Harma rumore3a COCTOMT B TOM, YTO 3ajada CIICHHAIN3aLUH TPEOYIOT ropaslo
OONbBIIET0 y4acTHs 4YeJNOBeKa B YNPABICHHH IPOLECCOM CHEHMAIM3ALUH, aHAIIH3e
pe3yJIbTaToOB, IPOBEJCHUH KOMIBIOTEPHBIX OSKCIICPHUMEHTOB, YeM B Cliydyae OOBIYHOM
ONTUMH3AIMU MPOTPaMMBI B KOMIMILITOpaX. Tpebyercss MOrpyKeHue CIHELHaau3aTopoB B
TIPUBBIYHBIC JUISL TPOTPAMMHUCTOB HHTETPUPOBAHHBIC CPEBbl Pa3pabOTKH, BKIIFOYAs CO3aHUC
COOTBETCTBYIOIINX JWAJOTOBBIX CPEACTB. B JaHHOW cTaThe ONMMUCHIBAIOTCS PE3YIBTATHI
pa3paboTKM M peaan3alliid METOJI0B MHTEPAKTUBHOM CIIeNHaNM3allid HA OCHOBE YaCTUYHBIX
BBIYMCIICHUH /IS TIOZIMHOJKECTBA si3bIKa Java. Peannzanys BEINOJIHEHA B paMKax MOMYJISIPHOM
cpenbl paspabotku (IDE) Eclipse. Pa3pabarkiBaroTcsi CIieHapUH YENIOBEKO-MAIIHMHHOTO
JManora ¢ MOJCHCTEMOIl CHeLMaNu3allii, WHTEPaKTHBHBIC CPEACTBA JUISL COCTABIICHHS
3aJaHUs Ha CHELHUAIM3AIMI0 M YIpaBJICHHE IMPOLECCOM CIeNHaan3anuu. IIpuBoauTCs
TPUMEp YCIEIIHOr0 MPUMEHEeHNs pa3paboTaHHOro crerpanuiaropa. OcraTtodHas mporpamma
paboTaeT B HECKOJBKO pa3 ObICTpee YeM UCXOIHAS.

KnawoueBble cioBa: aHamu3 MOporpaMM; TMpeoOpa3oBaHHE MPOrpaMM; WHTEPAKTHBHAS
CTCIUATH3AIUS TIPOTPaMM; YaCTHUHBIC BBIUHCICHHS; OOBEKTHO-OPHUCHTHPOBAHHBIA S3bIK;
cpena pa3paboTKH MporpaMm

DOI: 10.15514/ISPRAS-2018-30(4)-2

Jas uuTupoBanusi: Anamosuu M.A., KnumoB Aua.B. MHTepakTuBHBIN cnenuanuzaTop
TTOJIMHO’KECTBA S3bIKa Java OCHOBaHHBIN Ha METOJe YacTHYHBIX BbraucieHuil. Tpymsr UCIT
PAH, tom 30, Beim. 4, 2018 1., ctp. 29-44 (Ha anrmuiickom si3bike). DOI: 10.15514/ISPRAS-
2018-30(4)-2

Cnucok nutepatypbl

[1]. Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

41



Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

2.

3].
[41.

[5].

[6].
[71.

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

42

Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993. ToctymHo 1o ccbuike:
http://www.itu.dk/~sestoft/pebook/pebook.html, nara o6parenus: 20.06.2018

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. JocTymHo 10 ccbLIKe:
http://doi.org/10.1023/A:1010095604496, nata obpaienus: 20.06.2018

Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. JTocTynHO 10 CCBUIKE:
http:/fi.ftmr.info/PE-Museum/EL1.PDF, nara o6pamenus: 20.06.2018

Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292325

Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International ~Andrei Ershov  Memorial  Conference,
Akademgorodok, Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in
Computer Science, D. Bjogrner, M. Broy, and L.V. Pottosin, (Eds.), vol. 1181. Springer,
1996, pp. 227-248

Eclipse Foundation. Eclipse Integrated Development Environment (IDE). TocrymHo 1o
cesuike: https://www.eclipse.org, nara obparuenus: 20.06.2018

Eclipse Foundation. Eclipse Java development tools (JDT). JIoCTyIHO 110 CCBLIKE:
https://www.eclipse.org/jdt, nata o6pamenus: 20.06.2018

Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78-84. JlocTyIHO MO CCBUIKE:
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html,  mata  oGpamenwus:
20.06.2018

Kmumor 10.A. OcoOeHHOCTH TpUMEHEHHsS METOJa YaCTUYHBIX BBIUHCICHUH K
CrieHaTN3alyy IPOorpaMM Ha 00BEKTHO-OPHEHTHPOBAHHEIX s3bIKax. [Ipenpunter UTIM
uM. M.B. Kenzpima, Ne 12, 2008. JIocTyImHO 1O CChIIKE:
http://library.keldysh.ru/preprint.asp?id=2008-12, nara o6paruenus: 20.06.2018

Kimumos 10.A. Bo3moxuoctr crnermanuzaropa CILPE u npuMeps! ero nmpuMeHeHHs K
nporpaMmam Ha OOBEKTHO-OPHEHTHPOBaHHBIX s3bikax. IIpempuntsl UIIM um. M.B.
Kennmpmra, Ne 30, 2008. JfocTymHO 110 CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2008-30, nara o6pamenus: 20.06.2018

Kmmos 10.A. SOOL: 06beKTHO-OpHEHTHPOBAHHBIH CTEKOBBIN S3bIK I (YOPMATBEHOTO
ONMCaHUsl U pealu3aluyd MeTOAOB creuuanuzauuu nporpamm. IIpenpunter UIIM um.
M.B. Kenapia, Ne 44, 2008. JIocTyImHO 1Mo CCBLIKeE:
http://library.keldysh.ru/preprint.asp?id=2008-44, nara o6paruenus: 20.06.2018

Kiumos 10.A. Crnenuanuzarop CILPE: ananu3 Bpemen csizeiBanus. [Ipenpuntsr UTIM
M. M.B. Kengpima, Ne 7, 2009. [locTymHO 1O CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-07, nara o6paruenus: 20.06.2018

Kmamo FO.A. Cremmammsarop CILPE: renepammst OCTaTOYHOH IpOrpamMMBI.
IIpenpunter UTIM nm. M.B. Kennsima, Ne 8, 2009. locTymHO 1O CCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-08, nara o6paruenus: 20.06.2018


http://doi.org/10.1023/A:1010095604496
http://fi.ftmr.info/PE-Museum/EL1.PDF
https://www.eclipse.org/
https://www.eclipse.org/jdt
http://library.keldysh.ru/preprint.asp?id=2008-12
http://library.keldysh.ru/preprint.asp?id=2008-30
http://library.keldysh.ru/preprint.asp?id=2008-44
http://library.keldysh.ru/preprint.asp?id=2009-07
http://library.keldysh.ru/preprint.asp?id=2009-08

Anamosny MNL.A., Kniumos Anj.B. MHTepaKTHBHBI CrielHaIn3aTop MOAMHOXKECTBA s3bIKa JaVa OCHOBAHHBINH HA METOJIC
4acTUYHBIX BeraucieHuit. Tpyovt UCIT PAH, Tom 30, Beim. 4, 2018 r., cTp. 29-44

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

Kmmos 10.A. Crenmammszatop CILPE: nokasarensctBo koppekTHOCTH. [IpempuHTEI
WIIM um. M.B. Kengpima, Ne 33, 2009. JIocTymHO 1O cCBUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-33, nara o6paruenus: 20.06.2018

Kmumor 10.A. Cnenmanuzanuss mporpamMMm Ha OOBEKTHO-OPUEHTHUPOBAHHBIX S3BIKAX
METOJIOM YaCTHYHBIX Bbraucienuii. Jluc. K.¢.-M.H., ITHCTUTYT MpUKIaIHO MaTeMaTHKK
um. M.B. Kennsimma PAH, Mockga, Poccus, Hosops 2009, 183 crp.

HocrynHo o cceuike: http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf,

nata oopamenus: 20.06.2018

Kmumor 10.A. Cnenmamuzatop CILPE: 4gactwuHble BBIUUCICHHS IS OOBEKTHO-
OPUECHTUPOBAHHBIX SI3bIKOB. IIporpaMMHBIC cHCTeMbI Teopust u mpuioxkenus, Ne 3(3),
2010, crp. 13-36 JlocrynHo mo ceeuike: http://psta.psiras.ru/read/psta2010_3_13-36.pdf,
nara oopamenus: 20.06.2018

Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32
Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977,
pp. 59-77

Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)
Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. JIOCTYMHO 1O CCBUIKE:
http://dx.doi.org/10.1145/154630.154636, nara o6pamenus: 20.06.2018

Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02),
Portland, Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-
18. TocrynHo 1o cesuike: http://doi.acm.org/10.1145/503032.503033, nata oOpaiieHus:
20.06.2018

Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452499

Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. JIoCTyITHO 1O CChUIKE:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html,

nata obpamenus: 20.06.2018

Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375-390. JlocTymHO MO CCBIIKE:

http://doi.acm.org/10.1145/2076021.2048098, nara o6pamuienus: 20.06.2018

Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the
9th International Conference on Integrated Formal Methods, IFM’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 283— 295. JTocTynHO MO CCBLIKE:
http://dx.doi.org/10.1007/978-3-642-30729-4_20, nata obparuenus: 20.06.2018

43


http://library.keldysh.ru/preprint.asp?id=2009-33
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf
http://doi.acm.org/10.1145/503032.503033
http://www.usenix.org/publications/library/proceedings/coots97/muller.html
http://doi.acm.org/10.1145/2076021.2048098
http://dx.doi.org/10.1007/978-3-642-30729-4_20

Adamovich ILA., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[29].

[30].

[31].

44

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. [locTymHO MO CCBUIKE:
https://doi.org/10.1007/978-3-319-49812-6, nara obparuenus: 20.06.2018

Wiirthinger T., Wimmer C., Wo6B A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187-
204. JHocrymHo mo cceuike: http://doi.acm.org/10.1145/2509578.2509581, nara
obpamienus: 20.06.2018

Wiirthinger T., Wimmer C., Humer C., W6 A., Stadler L., Seaton C., Duboscq G.,
Simon D., and Grimmer M. Practical partial evaluation for high-performance dynamic
language runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662-676. {octyrHo
no ceeuike: http://doi.acm.org/10.1145/3140587.3062381, nara o6pamenus: 20.06.2018


https://doi.org/10.1007/978-3-319-49812-6
http://doi.acm.org/10.1145/2509578.2509581
http://doi.acm.org/10.1145/3140587.3062381

Heterogeneous Architectures
Programming Library

G.V. Kirgizov <gkirgizov@gmail.com>
ILA. Kirilenko <y.kirilenko@spbu.ru>
Software Engineering Department,
Saint Petersburg State University,
University Embankment, 7, Saint Petersburg, 199034, Russia.

Abstract. Embedded platforms with heterogeneous architecture, considered in this paper,
consist of one primary and one or more secondary processors. Development of software
systems for these platforms poses substantial difficulties, requiring a distinct set of tools for
each constituent of the heterogeneous system. It also makes achieving high efficiency the
more difficult task. Moreover, many use cases of embedded systems require runtime
configuration, that cannot be easily achieved with usual approaches. This work presents a C-
like metaprogramming DSL and a library that provides a unified interface for programming
secondary processors of heterogeneous systems with this DSL. Together they help to resolve
aforementioned problems. The DSL is embedded in C++ and allows to freely manipulate its
expressions and thus embodies the idea of generative programming, when the expressive
power of high-level C++ language is used to compose pieces of low-level DSL code.
Together with other features, such as generic DSL functions, it makes the DSL a flexible and
powerful tool for dynamic code generation. The approach behind the library is dynamic
compilation: the DSL is translated to LLVM IR and then compiled to native executable code
at runtime. It opens a possibility of dynamic code optimizations, e.g. runtime function
specialization for specific parameters known only at runtime. Flexible library architecture
allows simple extensibility to any target platform supported by LLVM. At the end of the
paper a system approbation on different platforms and a demonstration of dynamic
optimizations capability are presented.

Keywords: metaprogramming; code generation; embedded DSL; heterogeneous systems;
embedded systems.

DOI: 10.15514/ISPRAS-2018-30(4)-3

For citation: Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming
Library. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 45-62. DOI:
10.15514/ISPRAS-2018-30(3)-3

45



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

1. Introduction

Embedded systems have been in a widespread use a long time, and today they
become even more relevant because of the rapid development and adoption of new
application fields, for example, Internet-of-Things, ”smart houses” and robotics.
Many of the embedded systems used in these areas have heterogeneous
architectures due to nature of their tasks. Typically, they consist of one primary,
more powerful processor that executes the main program and performs common
control, and one or several secondary microcontrollers or processors that provide
read/write access to sensors and peripheral devices or may perform some other
special functions. Examples of such systems may be: Raspberry Pi (main) +
Arduino with Atmel AVR (peripheral) and Odroid XU4 (main) + stm32f4
microcontroller (peripheral).
Heterogeneity of these systems causes noticeable overhead. Traditional
development workflow requires use of IDEs and toolchains that are specific for
each part of the system. This need to develop each part of the system in a separate
project using a different set of platform-specific tools makes system development
processes more complex and expensive. The amounts of resources required for
support and changes also grow.
The efficiency of the system suffers too. Due to specificities of each
microcontroller and their limited hardware capabilities they often have only basic
firmware, which only capabilities are reading sensors, communicating results back
to main processor, receiving data and control commands from it and writing the
received data to special registers of peripheral devices. All core program logic is
contained on the primary processor, and, as secondary processors/microcontrollers
do not contain even a part of this logic, constant communication between them is
unavoidable (because of the nature of control cycle: request sensor data, wait for it
to arrive, compute control output, send it back to the secondary processors, repeat).
This work is based on preliminary results of [1] that showed the viability of the idea
of dynamic code generation. We revise previous architectural choices, fully
reimplement the library because of shortcomings of existing implementation and
substantially extend it in terms of functionality and possible applications/uses.
In particular, the new DSL is completely abstracted from other parts of the library
and can be used independently in other projects based on the idea of
metaprogramming. Moreover, the new DSL implementation allows employing
various dynamic optimizations, which are not possible in heterogeneous systems
using traditional programming techniques. The contribution of this work is twofold.
We present:

e C++ embedded DSL for dynamic metaprogramming;

e a library that simplifies development of programs for heterogeneous
systems providing unified programming interface; it also allows to achieve
higher efficiency of the system and implement better organizations of work
between its parts.

46



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom

30, Bbim. 4, 2018 1., cTp. 45-62

The library is based on the idea of a dynamic compilation of programs for
peripheral processors.

We also demonstrate system’s capabilities on a number of examples that show
important features of the new DSL and some applications in embedded systems
domain. Source code with build instructions can be found in the project repository™.

Several possible use cases of this library can be imagined. First use case is avoiding
the overhead of constant communication between processors. Of course, it’s
possible to accomplish it without this library: move part of the program logic to
peripheral processors on top of their basic firmware. However, with usual tools, it
incurs additional costs for development and support because with this approach
there is no more single point of change in core logic of the system. There is
unavoidable need to support several projects and ensure proper integration. Whereas
presented library allows avoiding both communication overhead and unnecessary
complexity of the development process.

The second use case is to allow dynamic specialization of heterogeneous systems
for their operating environment. Some types of embedded heterogeneous systems
can be deployed in a wide range of environments with various conditions. When
their operation depends on these conditions, developers of programs for such
systems must anticipate in the code all possible conditions. It may be implemented
through constant monitoring of the environment. Another alternative is on-place
configuration or tuning of each particular system. However, it may not be possible
due to nature of the task or too often or rapid (for manual operating) changes of the
environment. Another variation of dynamic specialization scenario is a runtime
configuration for specific peripheral devices (e.g. different models of sensors and
actuators).

Our library can help there in the case of sufficiently slowly changing environment
(relative to a number of control cycles, when the time required for dynamic
recompilation will pay off). It can be better shown on the specific example of PID
controller tuning. Firstly, PID controller with tuning subpro gram is loaded on the
peripheral microcontroller. Then, when optimal parameters are found,
microcontroller program can be recompiled with these particular coefficients, thus
yielding system that is maximally suited for its operating conditions. For the
specific case of not changing environment this tuning and dynamic recompilation
can be executed only once on deployment. This example is elaborated on in greater
detail in the section Demonstration.

The paper is organized as follows. The next section discusses similar works that are
based on the similar ideas. The third section describes main architectural decisions
and presents the architecture of the system. The fourth section is devoted to the DSL
and provides a reader with a number of examples. The following section describes
other parts of the system and their functionality in greater detail. The Approbation
section describes test setups and the Demonstration section shows benefits of

Yhttps://github.com/gkirgizov/hetarch
47



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

dynamic recompilation on a specific example and discusses scope and applicability
of the library. The paper is closed with conclusion and discussion of possible
directions of further work.

2. Similar Work

The difficulties, which heterogeneous systems cause, are not unique for the
embedded software engineering. Programming of heterogeneous systems is an old
problem, and there are several conceptual approaches to aforementioned difficulties.
The most known area that faces it is programming with graphical processors. In this
case, heterogeneous system consists of CPU and one or more GPUs. (The case of
graphics programming, i.e. using shaders and graphics pipelines, is further from
heterogeneous programming and is not considered here.) It is an old problem in this
field: how to effectively and, not less importantly, conveniently use GPU in usual,
CPU-centric programs? There are two main examples of systems that answer this
question: Open Computing Language (OpenCL) [2] and CUDA framework from
Nvidia [3]. Both these frameworks propose the use of C and C++ languages
extended with special functions and attributes for writing device code (code to be
executed on secondary processors). It can be written, depending on user’s aims and
requirements, either in separate files or in the main program files together with
usual C/C++ host code that is intended to be executed on CPU. OpenCL uses
dynamic compilation (at runtime) of device code; some device vendors provide
offline compilers for their devices (for example, Intel Code Builder for OpenCL
API). CUDA similarly provides both possibilities: Nvidia has an offline compiler
called NVCC and a runtime compilation library NVRTC.

The motivation behind these examples and presented in this paper library is
essentially the same: use of the same programming interface for all constituents of a
heterogeneous system.

Another area that this work touches is the ideas of generative, multi-stage
programming and runtime code generation. A good discussion of general
motivations and trade-offs behind these ideas, as well as examples of some actual
realizations and a number of references provides [4].

Among their examples Delite—a heterogeneous parallel framework for domain-
specific languages [5], [6]—is of particular interest. Delite’s focus is on the
performance of parallel heterogeneous systems, e.g. mixed CPU/GPU architectures
and clusters. It is built on top of Lightweight Modular Staging (LMS) [7] system,
that makes use of a form of metaprogramming to construct a symbolic
representation of a DSL program. LMS provides a basis for DSLs embedded in
Scala. On top of this layer, Delite is structured into a compiler framework and a
runtime component. The framework provides primitives for parallel operations and
generates Scala, CUDA or C++ code from DSLs.

Although both we and the authors of Delite start from the same idea of multi-stage
programming, our systems significantly differ in the approaches and application

48



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

domains. Most importantly, we use dynamic code generation and thus employ the
generative programming at runtime to achieve dynamic optimizations. The authors
of Delite, on the other hand, require static compilation of DSLs—they promote the
use of additional compilation stage to perform domain-specific optimizations.

3. High Level Description

Further in the text by the word host is meant primary processor, by target—one of
the peripheral processors or microcontrollers, by the user—developer who uses this
library.

3.1 Main Architectural Decisions

The following decisions have shown themselves as reasonable and grounded and
thus are inherited from the previous work [1]. They are discussed here to provide
better context.

Runtime changes in executable code on targets can be achieved by two approaches:
dynamic compilation, which happens on the host, and code interpretation which
happens on targets. Because modern interpreted languages generally have higher
requirements and cause more overhead, the first decision is to use dynamic
compilation on the more powerful host.

The second decision is to use embedded domain specific language (DSL) as a basis
for dynamic code generation. An alternative of using code attributes with compiler
extension (e.g. as used by OpenCL) is less viable due to several reasons. First, code
defined in a such way can be manipulated at the runtime only as a string of
characters. It complicates analysis and dynamic code specialization, requiring
additional step of semantic analysis before that, whereas DSL approach gives
semantic information ’for free’. Second, it is more demanding to maintain the
compiler extension to keep it up-to-date with the needed compiler versions. In
addition, it is still necessary to use dynamic compilation tools. It seems excessive to
support both the compiler extension and the dynamic compilation tools. Moreover,
it would restrict library users to only one compiler, which can be especially
inconvenient in the world of embedded systems.

LLVM [8] is used as a compilation backend. There is no real alternative, and its
excellent design and convenience of use made this work possible.

C++ is chosen as a language of implementation by several reasons: firstly, it is a
natural choice for embedded systems domain; secondly, it allows to avoid overhead
of interfacing with LLVM; and, most importantly, with template metaprogramming
it provides the necessary expressive power for implementation of the DSL, which
itself must be very expressive and general to be applicable in a wide range of use
cases. Specifically, the latest C++17 standard is used.

49



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

|IRModuleJ<"""1 CodeGen r _______ )l Ohj(nde‘

IRTranslator | LLVM o Codeloader

DSL : : 5 Connection

Function <<Interface>> ResidentCode f._ TR B S - T
Callable H = ConnlmplBase
: 7 s
Hvate [ ResidentGlobal | *[ 7777777 T
>

—1

Memory

hv) v
>
m m ‘ MemResident |-->| MemoryManager | ‘ LinuxConn | |5erlallmpl ‘

Fig. 1. UML class diagram of the system. DSL class hierarchy is shown only approximately
because of its breadth and dynamic nature. IRTranslator together with non-resident DSL
constructs constitute independent and reusable DSL subsystem.

3.2 Architecture Overview

DSL allows the user to describe the code, which will be executed on targets.
CodeGen module provides a simplified interface to LLVM compilation and
optimization facilities. CodeLoader, Execution and Connection modules let user
load code on targets, communicate with them (for example, using global variables)
and control the code execution. Management of the target’s memory is provided by
the host through MemoryManager module.

Fig. 1 shows the structure of the system.

This architecture has a benefit of simple extensibility. Each of the following parts of
the library can be extended independently from others:

e DSL constructs and operations (for example, support array slicing or
exponentiation at the language level);

e communication protocols;
e target runtime functionality;
e most importantly, target platforms.
For details on these points, the reader can proceed to the following sections.

4. DSL

4.1 Design

The core of this library is a powerful embedded C-like DSL. It is translated to
LLVM Intermediate Representation (IR) to allow code compilation for a wide range
of targets supported by LLVM. This design of the DSL as translated and compiled

50



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

at runtime is directly motivated by the concept of generative (or multi-stage)
programming when the abstraction power of high-level languages is used to
compose pieces of low-level code [4]. It makes runtime code generation and
domain-specific optimization a fundamental part of the program logic.

As authors of [4] note, the usual appeal of DSLs is in increasing productivity by
providing a higher level, more intuitive programming model for domain experts,
who are not necessarily expert programmers (“’user-facing” DSLs). The other
direction, which is of interest for us in this paper, is in using DSL as a means for
exposing knowledge about high level program structures to a compiler.

This DSL implementation makes heavy use of powerful template metaprogramming
capabilities of C++, up to C++17 standard. The idea to leverage C++ templates to
cope with challenges that poses development of DSLs aimed at generative
programming goes back at least to the work of Czarnecki et al. [9].

4.2 Description and Examples
DSL provides all necessary language constructs with a familiar syntax:
*  basic types (possibly cv-qualified):
o arithmetic types;
o pointers;
o arrays of fixed length (possibly nested);
o structs (possibly nested);
»  operations:
o arithmetic operators (with the support of pointer arithmetic);
o logical operators;
o bitwise operators;
o C-like cast;
»  control flow expressions:
o sequential (comma operator expression);
o conditional (if-else expression);
o while loop;
» functions (with a fixed number of arguments; no recursion);

» literal values.
It is also easily extensible with other higher-level constructs (for example, Python-like
array slicing) which will be translated directly to LLVM IR (i.e. will be efficient).
To allow simpler organization of the language, every DSL construct models either
value or expression; there are no statements. For example, to return void from a
function user needs to use special DSL construct 'unit’. Loops naturally return

51



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

value from their last cycle. If loop did not run it returns default-initialized value
(generally, zero-initialized).

Any DSL construct has a corresponding underlying C++ type, which determines
allowed operations on it and conversions to other types. Underlying C++ type can
be accessed through member type alias : : type which is present in every DSL type.
And the DSL value type can be obtained (if there is one) from C++ type using
to_dsl<T> type trait. In other words, there is a direct mapping between DSL types
and C++ types. Type trait to_ds1<T> can be used as a convenient type factory.

Type of the DSL constructs (real C++ type, not the underlying C++ type) encodes
how it was constructed and what child DSL constructs constitute it (for example see
listing 1).

1. Var<int> x, vy, z;

2. auto expr = (x + y) * z;

3. using expr type =

4. EBinOp< Instruction::FMul,

5. EBinOp< Instruction::Add,
6. Var<int>,

7. Var<int>

8. >,

9. Var<int>

10. >;

Listing 1. Type of some DSL expression

One of the most interesting features of the DSL is a separation of DSL abstract
syntax tree (AST) construction from DSL function instantiation. It is achieved
through the use of C++14 generic lambdas which play a role of DSL code
generators (AST builders). Example can be seen on the next listing.

1. auto max gen = [] (auto x, auto y) {
2. return If(x > vy, %, V)
3. };

4. auto dsl max = make dsl_ fun<int, int>(max gen);
It allows simple and effective reuse of needed DSL constructs, as in the next

example.
1. auto max3 gen = [&] (auto x1, auto x2, auto x3) {
2. return max gen(xl, max _gen(x2, x3));
3. };
4. auto dsl max3 = make dsl fun<int, int, int>(max3 gen);

This conceptually differs from simple function call as a means of code reuse and is
closer to function inlining. In this way the new DSL generator is constructed which,
in its turn, can be later reused. Moreover, on the point of DSL code generation user
can utilize C++ constructs to build more complex DSL expressions (Listing 2).
1. // note: accepts arbitrary DSL expressions
auto reduce_sum_gen {

}i

2

3 // Using ‘

4. return (... + xs);
5

6 auto sum3 = make dsl fun<float, double, int>(reduce sum gen);

Listing 2. Use C++ code to build complex DSL expressions.
52



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

1. ote:

2. (e.g. o r

3. auto get reducer = [] (const auto& binary op) {

4. return [&] (auto x1, auto... xs) {

5. ing C++17 fold expression

6. return ( binary op(xl, xs)), ... );
7. // Red ig Lo

8. ] Ol o

9. }i

10. };

11. auto max vararg gen = get reducer (max gen);

12. auto max3 = make dsl fun<int, int, int>(max vararg gen);

Listing 3. Generator of DSL reduce function over arbitrary DSL expressions.

Listing 4 shows two noticeable syntactic features of the DSL: the sequential
operator that plays a role of C/C++ semicolon and DSL local variables. Generally,
any DSL variable which is not an argument of DSL generator (enclosing lambda)
will be considered a local one. For the more consistent syntax user can define local
variables inside the generator lambdas. Also, note that they can’t be defined inside
the DSL expressions because they follow the rules of C++ expressions. To use
global variables a user is required to first load them on the target because they are
translated to LLVM IR as actual memory addresses.

1. Var<int> locall;

note lambda

apture (can also

auto max gen = [=] (auto arg) {

3

4 Var<int> local2;

5 return (

6 // variables c 't be defined here!
7. locall += arg,

8 locall +=

9. arg // ret

10. ) ;

11. };

Listing 4. Use of comma operator and local variables.

The next listing demonstrates that DSL allows to construct complex expressions in
familiar, close to C, syntax.

1. auto complex expr = [](Ptr<Var<uint32 t>> ptr) {

2. Var<uint32 t> tmp;

3. return tmp = *ptr &= ~ (*++ptr * Lit (1l << 8));

4. )i
Generic DSL functions is another very useful feature. As can be seen from previous
examples, DSL generators are not bound to specific types of parameters. Instead of
explicit manual instantiation of DSL function with required types of parameters
library user can instantiate generic DSL function with a help of function factory. If
generic function is used with arguments of inappropriate types, compiler will catch
this and compilation will fail with comprehensible error message.
Instantiated generic functions are stored in a function repository by a key which
represents their type. As a type of DSL constructs encodes their AST, type of DSL

53



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

functions encodes their body. Thus, the structural equivalence between functions is
achieved without any overhead. Thanks to this repeated instantiation of the
(structurally) same DSL functions is avoided. DSL function is deleted from the
repository at the end of translation to LLVM IR. Needless to say, all this happens
behind the scenes and a user isn’t required to know about these details.
Listing 5 shows an example of the use of a generic DSL function.

1. auto generic max = make generic dsl fun(max gen);

2.

3. auto max4 gen = [&] (auto x1, auto x2, auto x3, auto x4) {
4. return generic max(

5. generic max(xl, x2),

6. Cast<float>(generic max (x3, x4))

7. )

8. };

9. ) £ 2 X ti

10. // for 1 d for f

11. auto max4 = make dsl fun<float, float, int, int>(max4 gen);

Listing 5. Generic DSL function example

Last, but not the least, DSL is designed with usability in mind. C++ code with a
heavy use of templates is known for its complex error message on compilation
failure. In DSL all major type constraints are checked with static assert standard
library function which produces comprehensible compile time error messages.

5. Subsystems Description

5.1 MemoryManager

This centralized memory management organization allows to free less powerful
targets from extra tasks and avoid extra communication cycles which would be
inevitable to ensure correct memory allocation if targets managed their memory
themselves. Best-fit, worst-fit and first-fit memory management algorithms are
implemented. Conceptually MemoryManager is part of a CodeLoader and used only
for data and code loading. That is, it’s important to note that target code can’t
dynamically allocate memory on targets.

5.2 CodelLoader

With the help of CodeLoader module user can load DSL global variables and
compiled code on targets. CodeLoader also allows getting a handle to already
loaded variables and functions. In this case, no checks or memory allocation is
performed, because, in general, there is no possibility to ensure correctness of user’s
actions. For example, functions can be loaded on a target in a persistent memory in
one program run, and on another program run any knowledge about it will be lost,
whereas the user may want to access previously loaded data and functions. So, it is
assumed that user knows what he is doing.

54



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

5.3 Connection Module: Host side

Connection module consists of two parts: command protocol for communication
between host and targets and underlying connection implementation. The
functionality of the former is fully built on the primitives of the latter, which must
provide synchronous read and write operations.

The core command protocol includes the following commands:

» echo (for testing);
» read specified number of bytes at a specified address;

» write data to a specified address;
» call function at the specified address (without arguments and return value);
» set function at the specified address on execution by the timer;

» set function at the specified address on execution on the specific interrupt.
This abstraction from specific implementation allows easier extensibility on new
connection protocols. This work implements connection through TCP and through
USB (used as a virtual serial port).

5.4 Connection Module: Target Runtime API

Each specific target platform requires its own firmware to interface with the host. It
must provide functionality for communicating with the host and answering to
requests according to the command protocol.

At this point an important consideration arises: targets must provide API sufficient
for a wide range of tasks. Generally, peripheral devices on microcontrollers are
memory mapped, which means that runtime API consisting of memory read and
write functions can be sufficient. For example, the family of STM32
microcontrollers has fixed memory map and each device has a specific predefined
address in memory.

Some platforms may need an extended API. When the target has an operating
system, in particular Linux, it can additionally provide an interface to some of the
system calls: open () for using devices represented as input/output ports and mmap ()
for correct work with library runtime process address space. It is implemented in the
LinuxConnection module. Although for this platform it is also possible to
implement an interface to arbitrary system calls and libraries using diocpen() and
disym() functionality, the library runtime API for Linux is intentionally left
minimal but sufficient for tasks concerned with controlling peripheral devices.
Another important question is a debugging interface. Issuing diagnostic messages to
some local to target buffer can accomodate most of the needs and at the same time
is easily implementable. Target must provide interface to read the buffer and to get
an address of the target local logging function. This address is used to construct the
DSL wrapper for remote logging function. From this point it can be further used in
the DSL code.

55



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

6. Approbation
The system was tested on several setups:

e Linux on x86 plays the role of both host and target machines,
communication is through TCP connection (setup for tests during
development);

e the host is Linux x86, the target is Odroid XU4 (armv7a) with Linux, TCP
connection;

e the host is Linux x86, the target is bare-bones stm32f429i-discovery
microcontroller (armv7em), USB Virtual COM Port connection;

e the host is Odroid XU4 (armv7a) with Linux, the target is bare-bones
stm32f429i-discovery (armv7em), connection through USB Virtual COM
Port.

Tests were performed for each command from the command protocol (see above in
the section 5.3).

7. Demonstration

For a demonstration of dynamic optimization possibilities, which this library opens,
the reader can refer to the following listings of PID control (listing 6) and its tuning
(listing 7) for specific conditions of the deployment environment.

1. using namespace hetarch;
using namespace hetarch::dsl;

2

3

4. typedef int32 t ctrl t;
5. typedef float coef t;
6
7
8

. typedef ulnt32 t addr t; // size t of the target
9. conn: SerlalConnImpl<addr t> conn{"/dev/ttyACMO"},
10. SimplePipeline<addr t> pipeline{"armv7e_ linux eabihf", conn};

12. // Global vz s to store error data between control cy
13. auto perr = plpellne load(Global{ Var<ctrl t>{0} });
14. auto ierr = pipeline.load(Global{ Var<ctrl_t>{0} )
is)

durations (in second

18. auto pid _gen
19. auto pid ctrl

[&] (auto Kp,auto Ki,auto Kd,auto dt,auto sp) {

[&]{

23. Var<ctrl t> pv, cv, prev perr, derr;

27. return (
28. pv = read pv(),

56



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

@ J oUW N

W WwwwwwwdhhhNMNDNNDNNDNDNDNDMNDREFERPR PP 2P 2o
U WNRE OW®-JoU s WNREO WO O s WN R O -

prev_perr = perr,
perr = sp - pv,

ierr += perr,

derr = perr - prev perr,

cv = Kp*perr + Kd*derr/dt + Ki*ierr*dt;

write cv(cv)
);
i
return pid ctrl;
}i

Listing 6. PID controller DSL code.

auto tuner = [&] (auto dt, auto sp) {
// For tuning coefficients are usual mutable DSL variables
Var<coef t> Kp{0}, Ki{0}, Kd{O0};
auto pid ctrl = pid gen(Kp, Ki, Kd, dt, sp);

// Specific tuning method:

// determines current operating conditions

// (e.g. by reading some sensors)

// and returns tuning data that allows to compute

// optimal PID controller coefficients.

// E.g. for Ziegler-Nichols method it is

// Ku -- "ultimate gain" and Tu -- oscillation period
return (/* actual tuning code goes here */);

bi

// Example parameters

Lit sp{42}; // Setpoint

int ms_delay{100}; // Control cycle duration
Lit dt{ms_delay / 1000.0};

auto tuning code = make dsl fun(tuner, dt, sp);
// Translate, compile and load tuning code

auto tuning fun = pipeline.load(tuning code);

// Run tuning code and get tuning data

auto tuning data = exec.call(tuning fun, dt, sp);
// Compute coefficients using optimal tuning data
auto [Kp, Ki, Kd] = compute coefs(tuning data);

// Generate optimal PID controller

auto opt pid gen = pid gen(Kp, Ki, Kd, dt, sp);

auto opt pid code = make dsl fun(opt pid gen);

// Translate, compile and load optimal PID controller
auto opt pid = pipeline.load(opt pid dsl);

// Finally, run PID controller on timer
pipeline.schedule (opt pid.callAddr, ms delay);

Listing 7. PID tuning DSL code.

The work is organized in the following way:

57



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

e in the first phase host loads general version of the PID controller with
tuning code on the target;

e inthe second phase tuning code is called and its result is read by host;

e in the third phase host computes coefficients based on tuning data and
recompiles PID controller with them;

o finally, host loads PID controller optimized for specific coefficients.
This example shows two advantages of using the library. Firstly, tuning code is
completely absent from the final program running on the target. Dynamic code
generation allows compiling code for specific constant coefficients to achieve better
execution times and smaller program size.
Secondly, the dynamically generated code can be more optimal due to optimizations
performed by LLVM. When coefficients are integer values, or, even better, integer
powers of two (or float values, that can be rounded without big errors), resulting
code will be generated with fewer (or completely without) expensive floating

operations.
1. typedef int ctrl t;

2. typedef float coef t;

3.

4. extern coef t Kp, Kd, Ki;

5. ctrl t perr = 0, ierr = 0;

6.

7. ctrl t pid ctrl(fleat dt, ctrl t sp, ctrl t pv) {
8. ctrl t prev perr = perr;

9. perr = sSp - pv;

10. ierr += perr;

11. ctrl t derr = perr — prev perr;

12.

13. return Kp*perr + (Kd*derr/dt) + (Ki*ierr*dt);
14. }

Listing 8. PID controller C code used for LLVM IR comparison.

To emphasize possible dynamic optimizations, fig. 2 presents a comparison between
listings of the PID controller code for two cases:

*  C code from listing 8 compiled with clang without this library;
» DSL code from listing 6 dynamically optimized with this library.

58



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

1. ; Kp * perr 1.

2. %9 = load float, float* @Kp 2.

3. %10 = sitofp i32 S%perr to float 3. ; K perr

4. %11 = fmul float %9, %10 4. 312 = shl 132 %perr, 2

5. 5. %13 = sitofp i32 %12 to float

6. ; Kd * derr / dt 6.

7. %12 = load float, float* @Kd 7. ; Kd * derr / dt

8. %13 = sitofp i32 %derr to float 8. %14 = sitofp i32 %derr to float

9. %14 = fmul float %12, %13 9. %15 = fmul float %14, 5.000000e-01
10. %15 = fdiv float %14, %dt 10. %16 = fdiv float %15, 1.000000e-01
11. 11.

12. %16 = fadd float %11, %15 12. %17 = fadd float %16, %13

13. 13.

14. ; Ki * ierr * dt 14.

15. %17 = load float, float* @Ki 15. ; Ki * ierr * dt

16. %18 = sitofp i32 %ierr to float 16. %18 = mul i32 %ierr, 6

17. %19 = fmul float %17, %18 17. %19 = sitofp i32 %18 to float

18. %20 = fmul float %19, %dt 18. %20 = fmul float %19, 1.000000e-01
19. 19.

20. %21 = fadd float %16, %20 20. %21 = fadd float %20, %17

Fig. 2. Comparison of LLVM IR generated for expression "kp*perr + (Kd*derr/dt) +
(ki*ierr*dt)" (core part of the PID controller code; other lines are omitted here).
Compiler options used: -02 -target x86 64-pc-1linux-gnu. LLVM IR is used instead of
native assembler because it is more readable and optimizations are done on the IR.
Left: compiled with clang from C code on list. 8. LLVM IR is presented only for the last line.
Right: compiled with LLVM from DSL (see list. 6). For the sake of demonstration it is
assumed that dynamically determined PID controller coefficients are kp=4, kd=6,
ki=0.5; and control cycle duration is dt=0. 1.

There are several things on the fig. 2 to note:

» dynamically generated code has fewer memory accesses because it is
compiled for specific values (note lines 2, 7, 15 where usual code loads
coefficients stored as global variables);

* instead of floating-point multiplications (lines 4 and 17 on the left) integer
shift (line 4, right) and integer multiplication (line 16, right) are used,;

*  one apparent to a programmer optimization on line 9, right is missed:
substitute multiplication by 0.5 with integer division by 2 or right shift by
one; and it should be?, although it is possible to implement such
optimizations on the DSL level.

7.1 Library Applicability

The library is intended for use with embedded heterogeneous systems of a small
scale with low-power secondary processors and microcontrollers that run
heterogeneous tasks. The case of homogeneous tasks on the more powerful systems
is better accomodated with existing tools (e.g. OpenCL or Delite) that are

“This compiler behavior is expected according to C11 standard (section F9.2.1), because
representations of 0.5 and 2 maybe not be equivalent and the result can be different on some
machines.

59



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

specifically aimed at scheduling and parallelizing the computations across bigger
number of secondary processors. This library is not intended for such use cases and
doesn’t provide any orchestration for parallel tasks. Each secondary processor
should be managed manually and separately.

Generally, the benefits and applicability of the library should be considered in each
particular case. As noted in the introduction, the library is well suited for the
problems when the dynamic configuration of the system is required (either for
particular environment conditions or for different peripheral devices and sensors).
It’s also important to consider the price of dynamic recompilation: the benefits of
the specialized and optimized code should amortize the compilation price.

8. Conclusion

This work presented a powerful DSL language aimed at metaprogramming and
showed its application to the domain of heterogeneous embedded systems. Although
the library misses some features (as noted in Further Work section), it constitutes a
proof of concept that the idea of dynamic code generation is perspective and useful
in the real-world scenarios

9. Further Work

The work can be continued in several directions.

The library does not provide facilities for loading on the targets existing compiled
code, for example, libraries. To be applicable to a wider range of use cases it
requires support of this functionality.

The development of the DSL is another direction. It can be extended with additional
language constructs, for example, switch, goto or to support recursion. It can also be
further developed to include more features of functional programming languages,
e.g. functions as first-class citizens. Support for a debugging in terms of the DSL
(breakpoints, tracing) can also be added.

References

[1]. K. Melentev, R. Belkov, and I. Kirilenko. The programming system for cybernetic
heterogeneous architectures using LLVM. In Proc. of the Second Conference on
Software Engineering and Information Management (SEIM-2017), 2017, pp. 31-35 (in
Russian).

[2]. J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, vol. 12, no. 3, ,
2010, pp. 66-73.

[3]. M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov. Parallel computing experiences with CUDA. IEEE micro, vol.
28, no. 4, 2008.

[4]. T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda, N. Amin, G. Ofenbeck,
A. Stojanov, Y. Klonatos, M. Dashti et al. Go meta! A case for generative programming

60



Kuprusos I'.B., Kupunenko SI.A. bubanoreka nporpaMMHpOBaHHs I€TEPOreHHbIX apxXUTekTyp. Tpyost UCIT PAH, Tom
30, Bbim. 4, 2018 1., cTp. 45-62

and DSLs in performance critical systems. In LIPIcs-Leibniz International Proceedings
in Informatics, vol. 32, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[5]. K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and K.
Olukotun. A heterogeneous parallel framework for domain-specific languages. In Proc.
of the 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT), IEEE, 2011, pp. 89-100.

[6]. A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun.
Delite: A compiler architecture for performance-oriented embedded domain-specific
languages. ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no.
4s, 2014, article no. 134.

[7]. T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Communications of the ACM, vol. 55, no.
6, 2012, pp. 121-130.

[8]. C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Mar 2004, pp. 75-86.

[9]. K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W. Taha. DSL implementation in
MetaOCaml, Template Haskell, and C++. In Domain-Specific Program Generation,
LNCS, vol. 3016, 2003, pp. 51-72.

BubnuoTteka nporpaMmmMMpoBaHUsA
reTeporeHHbIX apXUTEKTYp

I'.B.Kupeusoe <gkirgizovi@gmail.com>
A.A.Kupunenxo <y.kirilenko@spbu.ru>
Kageopa cucmemmnozo npoepammuposanus,
Canxm-IlemepoOypeckuii 2ocyoapcmeenHvlil yuugepcumen,
199034, Poccus, e. Cankm-Ilemepoype, Ynusepcumemckas nabepeosicnas, 7

AHHOTanus. BcTpauBaemble cCTEMBI C T€TEPOT€HHONW apXUTEKTYpOM, paccMaTpUBaeMbIe B
JaHHOI paboTe, COCTOAT W3 OJHOTO YNPABISIOMIETO W OMHOTO WM HECKOJBKUX
nepudepuitHbIX mporeccopoB. Pazpadorka 1O s Takux cHCTEM MPEACTAaBIISET 3aMETHBIE
CIIOXKHOCTH, TpeOysl pa3inyHble HAOOPHI HMHCTPYMEHTOB [UISl KaKIOW COCTaBISIONICH
reTeporeHHol cucreMsl. JlOCTIKEHHE BBICOKOH A(p(h)eKTHBHOCTH Takke CTaHOBUTCS Ooiee
cioXHOW 3amadell. Kpome TOro, BO MHOTHX CLEHApHUsIX BCTPaMBaeMbIE CHCTEMBI TPEOYIOT
HACTPOWKM BO BpEeMs HCIIOJHEHHS, 4YTO HEMPOCTO O0OEeCHeYnTh C HCIOJIb30BaHUEM
CTaHJAPTHBIX  CpeAcTB. OTa pabora mpencraBimsier  C-momoOHBIA  MpeaMeTHO-
opueHTupoBaHHBI 36k (DSL) gt meranporpammmupoBanus © - OMOIHOTEKY,
MPEIOCTABIAIONIYI0 €OUHBIH  HWHTepdeiic I MporpaMMHUpPOBAaHUS  MEpUPEPUITHBIX
MIPOLIECCOPOB C HCIOIB30BAHUEM 3TOTO S3BIKA. JTO ITIO3BOJISICT Pa3pelINTh YIOMSHYTHIE
mpobnemsr. DSL Berpoer B C++ 1 mo3BosIsieT CBOOOAHO MAaHUITYTUPOBATH HAIMMCAHHBIMH Ha
HEM BBIPQOKCHUSIMH M, TakuM 00pa3oM, TPEACTaBIsIeT CO0OW peanH3anuo HICH
I€HEPATUBHOTO IIPOrpaMMUPOBaHUs, KOT1a BBIPA3UTEIbHAS MOIIb BEICOKOYPOBHEBOTO SA3bIKA
UCTIOJIb3YETCs ISl MHOTOCTYIIEHUATONW T'€HEpaluu HU3KOYPOBHEBOTO DSL koma. Bmecte ¢
JPYTMMH BO3MOXXHOCTSIMH, Harpumep, 00061eHHpiMu DSL hyHKImsiMu, 310 enaeT JaHHbIH
SI3BIK THOKMM MHCTPYMEHTOM JUISl TUHAMUYECKOH Kojorenepanuu. [loaxo, nCTIonb3yeMblil B
O6ubnmmoTexe, — S5TO JUHAMHUYEcKas KoMmwminus. Kox, HamicaHHBIH Ha TpeJMEeTHO-
OpUEHTUPOBAHHOM si3bIKe, TpaHciuupyercs B LLVM IR u 3arem xommmmmpyercs B
MAalIMHHBIH KOX BO BpeMs HCIOJHEHHS. OTO OTKPBHIBAET BO3MOXKHOCTH JIHMHAMHUYECKHX

61



Kirgizov G.V., Kirilenko I.A. Heterogeneous Architectures Programming Library. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018, pp. 45-62

ONTHMH3ALMH KOJa, HAIpHUMEp, CHeNUaIN3anuy (YHKIUH U ONpPEAEICHHBIX 3HAUCHUH,
H3BECTHBIX TOJIBKO BO BpeMsl McHONHeHNUs. [ nmOkast apxuTekrypa OHOIHOTEKH obecrednBaeT
MPOCTYI0 PACIIUPAEMOCTh Ha Jo0ble Iuiatdopmel, mopaepxkuaemble LLVM. B konue
paboTel Takke NpUBOAATCA ampolamus OHONMOTEKHM Ha HECKOJBKHX CHUCTeMax |
JIEMOHCTPALUS BO3MOKHOCTH JUHAMUYECKUX ONTUMHU3ALIHIL.

KnroueBble ciioBa: MeranmporpaMMHpOBaHHWE; KOJOTeHepamus; BCTpoeHHBIH DSL;
TeTepPOreHHbIE CHCTEMBI; BCTPOSHHBIE CHCTEMBI.

DOI: 10.15514/ISPRAS-2018-30(4)-3

Jnsi mutupoBanus: Kuprusos I'.B., Kupunenko S.A. Bubnmorexa mporpamMMupoBaHUS
rereporeHHsIx apxurektyp. Tpymast MCII PAH, tom 30, Bem. 4, 2018 r., ctp. 45-62 (Ha
anriumiickom s3eike). DOI: 10.15514/ISPRAS-2018-30(3)-3

Cnucok nutepatypbl

[1]. K. MeneurseB, P. benkos u . Kupunenko. Cucrema MporpaMMHpPOBAHHS
KHOEPHETHYECKHX T'EeTEPOTCHHBIX apXUTEKTyp ¢ wucmons3oBanuem LLVM. Second
Conference on Software Engineering and Information Management (SEIM-2017) (short
papers), 2017, crp. 31-35.

[2]. J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, vol. 12, no. 3, ,
2010, pp. 66-73.

[3]. M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov. Parallel computing experiences with CUDA. IEEE micro, vol.
28, no. 4, 2008.

[4]. T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda, N. Amin, G. Ofenbeck,
A. Stojanov, Y. Klonatos, M. Dashti et al. Go meta! A case for generative programming
and DSLs in performance critical systems. In LIPIcs-Leibniz International Proceedings
in Informatics, vol. 32, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[5]. K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and K.
Olukotun. A heterogeneous parallel framework for domain-specific languages. In Proc.
of the 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT), IEEE, 2011, pp. 89-100.

[6]. A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun.
Delite: A compiler architecture for performance-oriented embedded domain-specific
languages. ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no.
4s, 2014, article no. 134.

[7]. T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Communications of the ACM, vol. 55, no.
6, 2012, pp. 121-130.

[8]. C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Mar 2004, pp. 75-86.

[9]. K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W. Taha. DSL implementation in
MetaOCaml, Template Haskell, and C++. In Domain-Specific Program Generation,
LNCS, vol. 3016, 2003, pp. 51-72.

62



Criteria for software to safety-critical
complex certifiable systems development

N.K. Gorelits <nkgorelits@2100.gosniias.ru>
A.S. Gukova <asgukova@2100.gosniias.ru>
E.V. Peskov <evpeskov@2100.gosniias.ru>
State Research Institute of Aviation Systems,
7, Viktorenko Str, Moscow, 125319, Russia

Abstract. Nowadays there is an actual problem in aviation industry — how to make the
development of complex safety-critical systems certifiable according to international and
domestic standards and regulations like DO-178C, DO-254, ARP 4754A, ARP 4761 etc. In
the article configuration management process from the development lifecycle of DO-178C is
considered as the main source of criteria for the development tool selection. Selected criteria
can be applied to software tool, which supports entire development lifecycle of aviation
software, as well as to software tools supporting some individual lifecycle processes. The
activities of configuration management process provide work with all project lifecycle data,
its storage, integrity, security, manageability and information support for data exchange
between the remaining lifecycle processes, maintenance of the history of changes etc.
Compliance with the principles of the configuration management process allows project
managers to control development, ensure the required quality and reliability of the product;
also, its certifiability and the necessary level of confidence in security, reduce financial and
time development costs. As example of using criteria one of the most widely known in
industry software tool for requirements development and management was analyzed for
compliance with the chosen criteria.

Keywords: DO-178C; qualification requirements 178C; software development; software
analysis; software choosing; certifiable systems; complex systems; complex systems
development; avionics; on-board equipment; lifecycle processes; lifecycle; configuration
management; system engineering.

DOI: 10.15514/ISPRAS-2018-30(4)-4

For citation: Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical
complex certifiable systems development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4,
2018, pp. 63-78. DOI: 10.15514/ISPRAS-2018-30(4)-4

1. Introduction

This research was inspired by acquaintance and very productive work
communication with untimely gone Michael Saburov. Michael Saburov participated
in development of Russian analogs of certification standards and regulations DO-

63



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

178B [1], DO-178C [2], DO-254 [3] and DO-330 [4]. Also Michael Saburov
participated in implementation of processes from these regulation documents in
several industry enterprises. Michael Saburov took an active part in formation of the
concepts of research described in this article. All results and experience gained by
us during work on this research are dedicated to Michael Saburov.

Development and the following certification of complex safety-critical systems in
compliance recommendations of regulation documents DO-178C, DO-254, ARP
4754A [5], ARP 4761 [6] is an actual task and a big challenge for modern Russian
aviation industry.

Today among the software announced by its developers as supporting lifecycle of
complex systems development a huge number of products are presented to allow
software development in accordance with international quality standards.
Nevertheless at the moment assessment of the capabilities of each tool (or often it
will be the whole product line of expensive tools) and making a reasonable choice is
rather difficult problem.

Big quantity of existing software tools and systems positioned by developers as
tools, which support lifecycle processes of complex systems development, don’t
have well-founded assessments.

Assessments and reviews about such software, based on experience of practical
usage in industry projects, are very important — software market proposes a lot of
software tools and systems made by Russian and foreign developers. So that’s why
industrial enterprises have to make difficult choice of software tools for
development and the following certification of their critical-safety systems.

It is difficult to choose instrumental environment for support the entire development
lifecycle — unfortunately universal multipurpose tool, which would satisfy the
requirements of all standards of all industries, does not exist yet.

In general, most of the enterprises use separate tool for support and automate each
process of development lifecycle (like requirements development process,
configuration management processes, verification etc.). The situation is complicated
because often all or the most parts of such software suite have different
manufacturers. If the project have big set of weakly integrated software, then
product development becomes more and more complex both in atomic tasks of
individual specialist and in global meaning of the whole project — labor intensity
increases.

The organization of development landscape as a bunch of software tools entails
difficulties with tools integration, training costs, implementation costs, purchase of
licenses. All these changes increase the amount of resources, which are needed for
successful completion of the processes — human resources, financial, and time
resources. In this case, reaching project goals, formulated before the beginning of
work, become more and more difficult task.

In conditions of State program of import substitution [7] software tools and systems
made by Russian developers cause big interests. However, usage experience of

64



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

Russian software and consequently number and reliability of assessments according
to requirements listed above standards and regulations are not big enough.

In this article, we tried to understand and present what mechanisms and features
software tool should have to be useful to simplify and systematize development of
certifiable aviation software. This article is a part of series of materials about
aviation standards research in context of choosing software tools for certifiable
aviation software development [8].

2. DO-178C processes and the role of configuration
management process among them

Russian analogue of DO-178C - Qualification requirements 178C [9] — regulates
processes of certifiable development of aviation software. The heading of Russian
document contains important words — “Requirements to the software of on-board
equipment and systems at certification of aircraft”. These words uniquely determine
goals of recommendations, specified in the document.

Certifiability of product — significant property, because the purpose of most
developments is the following release of end product the on relevant market. In the
context of aviation systems certifiability means that aircraft with system included
will receive type certificate [10].

Under certifiability assurance, we mean the implementation of the development
processes in specific way —

o all necessary for certification activities are performed,
o all necessary for certification objectives are achieved,
o all necessary data is collected about development process and its result,

o this data is stored and processed in such a way that certification authority
could receive any data at any stage of project in order to examine the data
and to trace the history of their interactions and relationships.

Activities and objectives to airborne systems and equipment development are
described in document DO-178C (Russian analogue — qualification requirements
178C). DO-178C provides instructive materials and guidance to create airborne
systems and equipment. Implementation of activities and objectives achievement
listed in DO-178C give a chance to get in the end the result, which performs its
intended function with a level of confidence in safety that complies with
airworthiness requirements.

DO-178C describes a set of development lifecycle processes for aviation systems
and equipment. DO-178C divides processes of the development lifecycle to three
groups. The first group includes only one process — software planning process.
The second group called software development processes includes four processes
— software requirements process, software design process, software coding process
and integration process. The third group consists of four integral processes —

65



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

software verification process, software configuration management process, software
quality assurance process, certification liaison process.

During software development, processes directly creation of software of aviation
systems takes place along with all previous and accompanying it measures for the
design, coding, integration etc. The main result of development processes is the
executable object code and its associated additional data are produces and loaded
into the target hardware for further integration. This result is necessary to be
achieved having carried out all the measures described in qualification
requirements.

Integral processes play a role of enabling processes (by analogy with enabling
systems in the terms of System Engineering [11]) - created and edited during
development processes data is stored and processes through mechanisms and
activities of configuration management process, required reviews and analyses are
made in the verification process and so on. Data — development lifecycle artifacts or
configuration items — may be requirements with different levels of details, software
architecture, source code and executable object code and different protocols,
problem reports, and many other results of activities.

Explanation the importance of integral processes implementation is very simple —
otherwise it is very difficult almost impossible to collect necessary for certification
data and to control the development process. It means that it will be difficult to
provide necessary level of confidence in safety that complies with airworthiness
requirements.

Each of integral processes has its own role and importance in the development
lifecycle; it could not be ignored or partially abolished during lifecycle. Huge risks
await developers who dare not comply integral processes - certification authority
will not accept results obtained this way and will not give relying certificate. Also
final product may contain errors and defects of varying degrees of critically. This
situation will not allow achieving the required level of confidence in safety and
quality of result in total, if the development process comes to an end with the
release of the working result.

In modern world of computers and upcoming information technologies the whole
software development lifecycle (and aviation software is not an exception) passes
through software tools, information systems and therefore its databases and
repositories. These software tools and information systems for all kinds of
operations on data (creation, storage, editing etc.) must be evaluated for their
sustainability and compliance with development according to certain standards and
other regulation documents.

If perform analyze requirements to development product, which Qualification
requirements 178C specifies and requires developer, becomes obvious that the most
restrictions and requirements for software (in which aviation software will be
developed) come from configuration management process. Activities of
configuration management process provide operations with development lifecycle

66



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

data, its storage, informational support to data exchange between other lifecycle
processes, logging the history of changes etc.

In this research, we chose configuration management process as the source of
arguments or justifications for choosing of software tools on which certifiable
aviation software will be developed. These substantiations are formulated in the
form of criteria. Criteria can be applied to potentially interesting software tools and
systems from the market and help with assessment and reasonable choice of some of
them. There will be described below how to apply selected criteria to the most
widely used (worldwide and also in Russia) software for requirements development
in the industry.

3. Basic criteria to tool from configuration management process

Configuration management process in project must be performed in accordance
with the document “Software Configuration Management Plan”. Software
Configuration Management Plan should be developed for each software
development project during Software Planning Process if development corresponds
to Qualification requirements 178C. In this document configuration management
environment should be determined as well as configuration management process
activities which will be performed during software development lifecycle.
Configuration management environment must support activities from section 7.2 of
Qualification requirements 178C. The list of configuration management activities
contains some process regulations (which restrain project members within the
workflow) and requirements to the mechanisms of configuration management
environment. It would be very useful if such mechanisms and methods will be
implemented in software, which will be used for development because not all of
them could be replaced with some organizational regulations.

Configuration management plan contains some requirements to configuration
management activities follow-up. As examples of these requirements can be listed:
states of configuration items, workflows of problem reports and change requests,
inspection procedures, baseline definition rules and rules of versioning
configuration items, organizational restrictions, safety details etc. These
requirements will not be considered in this article because its implementation can be
realized regardless of the instrumental part of configuration management
environment.

In this article, we identified the basic principles and mechanisms (basic criteria)
determined by configuration management environment and configuration
management activities according Qualification requirements 178C.

First of all we would like to highlight single and unified storage for all lifecycle data
as basic configuration management principle. It means that project should have
unified configuration management system for registration, storage and delivery all
software development lifecycle data.

Let us enumerate basic mechanisms of configuration management environment:

67



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

o identification of configuration,

¢ configuration status accounting,

e change management and control,

e traceability,

e versioning,

e registration of inconsistencies and corrective actions,

e storage, retrieval and release.
Described mechanisms (further, criteria) are based on text Qualification
requirements 178C and are advisory in nature. These criteria can be used as an
additional informational source while choosing software tool for certifiable aviation
software development.
Elements of the criteria list will be considered in more detail below.

3.1 Identification of configuration and its configuration items
Procedure of identification of the configuration item (and the whole configuration in
general) includes assigning an identifier to the configuration item and registering it
in the configuration management system. The identifier of configuration item is a
designation uniquely distinguishes one configuration item from another. Identifier
of configuration item could not be changed ever. Identifier of configuration together
with its version makes unique identifier of configuration item in a particular
configuration. Version of configuration item will be described below in one of the
criteria.
An example of attributes that we suppose useful for registration of configuration
item:

e configuration item identifier (doesn’t change ever after registration),

e mnemonics (designation which will help user identify configuration item),

o configuration item name,

e purpose of configuration item (type),

o kind of configuration item (atomic, composite — configuration index),

o version (number, sign if it is baseline or not),

o data control category (Control Category 1 or Control Category 2),

¢ link to the configuration item source.

Note: software lifecycle data can be classified to Data Control Category 1 or to
Data Control Category 2 (section 7.3 of Qualification requirements 178C).

3.2 Configuration status accounting

Status accounting of developing software configuration should be conducted in
order to provide the certification authority all necessary information (like

68



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

configuration index, history of configuration etc.). That is why it is necessary to
ensure that registration of the actions performed on the configuration units is
automatic.

An example of data which we suppose to necessarily register when performing any
action on the configuration item:

¢ date and time of making changes to the configuration item,
e number of version of the configuration item,

e user id — who made changes to configuration item or created version of
configuration item,

o status of version of configuration item including the history of this status
changes,

o for configuration items from Control Category 1: link to the change request
for this configuration item.

3.3 Versioning, baselines

Rules of naming and versioning for configuration items should be defined.

Note: for example, configuration item’s version is denoted as an integer (1, 2, 3
etc.). New value of configuration item’s version is obtained by increasing the value
by 1. If it was 2, the next value will be 3.

Rules for baseline formation and baseline appointment mechanism should be
defined. In addition, restrictions on the baseline’s modification should be defined.
Note: baseline is approved and registered version of configuration item, which will
be used as basic for further development. Baseline can consist of one or several
configuration items.

3.4 Configuration items traceability

Traceability requirements and mechanisms should be defined for link different types
of configuration items and related data. Configuration items can be connected with
each other, also with reason of creation (source), with dependent items, with history
of configuration item’s changes etc.

Note: As example of connections, we may mention links between low level
requirements with its parent high level requirements, low level requirements with
executable object code, problem report with configuration item, problem report with
change request and with task for making approved changes etc.

Configuration items traceability is very important in the context of developing
software certification. It is necessary for configuration items to trace links with
source of its creation with maked to configuration items changes and with reason to
making changes etc.

69



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

Traceability of links should work in both directions. Changes in configuration items
should trace to sources of changes (for example to change request, which in its turn
refers to parent problem report) and back.

It is always useful for users to analyze some visualized view of data. As a variant of
useful and intuitive view of links and traces may be a traceability matrix.
Traceability matrix shows how configuration items are connected to each other and
their relations type is displayed. Type of relations between configuration items can
be presented both in simple form with only displaying link presence or absence, and
in the various types of links and communication.

Table 1 illustrates an example of configuration item’s baseline formation.

Table 1. An example of traceability matrix: links between configuration items

Configuration items
Cl1

Cl2
CI3
Cl4

" [l not applicable
X — connection exists

'y Y, »_ certain type of connection exists

3.5 Change management and control

The change management of the configuration items must be implemented. Change
management activities are responsible for the reaction to recording, evaluating,
solving problems through the whole lifecycle of each configuration item.

Any change of configuration item should only be done by creating a new version of
changing configuration item. However all previous versions should remain
unchanged. Previous versions should be stored in repository and be accessible.
Changing of configuration items from Control category 1 is possible only through
special procedure of change management. Problem report should be created and
approved, detailed change requested and tasks should be created from this problem
report. Changes to configuration items from change request should be also approved
and only then changes may be applied to configuration items. All related
information about changes must be stored forever — who, when, for what reason
have changed that version of configuration item. Changes to configuration items
with Control category 2 do not require complex procedure with approvals and
reviews of changes.

70



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

3.6 Registration of inconsistencies and corrective actions

Once inconsistencies or defects are detected, it is necessary to determine procedure
and mechanisms of its registration. Also corrective actions should be established,
impact analysis of the proposed changes should be done and making of the
approved changes to configuration item should be strictly controlled.

Any project member who discovered an inconsistency or defect or any other type of
error, should be able to write it in special configuration item — problem report.

An example of attributes, which we suppose to necessarily register when registering
a problem report for any configuration item:
¢ link to configuration item — source of detected inconsistencies,

¢ link to index of configuration which includes configuration item with
inconsistence or to process or workflow if inconsistence is more global,

e inconsistence description,

e problem report’s author id,

e steps to reproduce the problem,
e problem report state,

¢ link to corrective actions (for example: change request).
An example of attributes which we suppose to necessarily register when registering
a corrective action for any problem report (for example: change request):

o link to problem report (change request source),

¢ link to configuration items in which it is necessary to make changes,

e impact analysis of proposed changes to the rest configuration items of
lifecycle data.

3.7 Storage, retrieval and release

Method and proof of data integrity should be determined during its storage and
retrieval from backups. Rights to release data should also be defined. Tools for
creation, retrieval and integrity control of backups should be implemented according
to chosen method.

Note: the need for backup creation can be both for the entire repository and for a
separate development project or for separate configuration.

The realization of instrumental support for the creation, retrieval and data integrity
control is very important and in demand because it allows to minimize time costs
for these procedures and to reduce the risk of data distortion or loss.

Note: using of a checksum mechanisms for backups creation may be a good
example of data integrity control realization.

71



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

4. Configuration management tools, analysis

The experience of cooperation with Russian developers of avionics system
demonstrates that most of them try to create on-board software in compliance with
the requirements of the document Qualification requirements 178B/C and then
certify their software products.

At the same time there are situations when the software development process is
produced without detailed requirements (in fact without requirements at all - only
high-level technical specification are used), without configuration management,
without reviews or inspections. Software testing is conducted, but unfortunately, its
completeness can be insufficient because of the absence or incompleteness of
requirements.

Realizing their unpreparedness for further certification without using of specialized
software, aviation enterprises are implementing various tools. An example of such
tools can be IBM Rational DOORS, IBM Rational Change + Synergy, IBM
Rational Team Concert, Siemens Team Center Requirements, LDRA and others. In
this case often overlooked that without understanding the processes (and not having
the described processes on a paper at least) it is almost impossible to get the effect
of the implementation of the tool.

It is necessary to apply the certification process with a complex approach to achieve
the best result. It means - to develop the processes, to provide their support by tools,
to develop plans and standards (Plan for Software Aspects of Certification, Software
Development Plan, Software Verification Plan, Software Configuration
Management Plan, Software Quality Assurance Plan; Software Design Standards,
Software Code Standards, Software Requirements Standards) and to conduct
development in full compliance with these plans and standards.

Often enterprise of the aviation industry implement only tool for writing and storage
requirements. Typically, this tool has minimal change management capabilities.
Developers try to manage requirements ignoring or paying low attention to the
configuration management process — this approach is fundamentally incorrect.
Below we put a list of the most widely used tools to support the software
development lifecycle, implemented in Russian aviation enterprises.

To support requirements management processes are often used: Microsoft
Excel / Word, IBM Rational DOORS, Siemens TeamCenter Requirements
Management (mainly in those enterprises where Siemens TeamCenter PLM was
previously implemented in the design department) and even more rare - 3SL Cradle.
Due to the State program of import substitution, products of Russian developers
arouse great interest. Among the most ambitious, it is possible to highlight product,
which supports the entire development lifecycle of systems - Devprom.

To support lifecycle data change management processes are often used: IBM
Rational Change + Synergy (tools are not supported by the vendor, but are still in
use in some enterprises), IBM Rational Team Concert, and the most popular project
and task management tools - Redmine and Attlassian Jira.

72



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

In situation when the software product Redmine or Jira are used to manage changes
to the lifecycle data, the integration between these tools is rather nominal — all tools
supported development lifecycle work independently, links between change
requests and requirements are fixed in a text file.

This approach does not contradict the principles of configuration management
prescribed in Qualification requirements 178C, but not only doesn’t simplify the
development process, but also makes the process management even more difficult
(dependence on the human factor, the inability to track changes (the absence of a
change marker), the lack of quick switch from a change request to the changed data,
etc.).

To support configuration management processes are often used: GitHub - the
most popular and freely distributed tool among code developers and SVN
(Subversion)— a traditionally used repository for file sharing in enterprises in Russia
(also distributed under the conditionally free Apache license).

The functionality of these tools when it used as configuration management systems
does not allow you to fully support all activities of the configuration management
section 7.2 of Qualification requirements 178C. Moreover, the use of all the
functionality of this software may be considered as a violation of some of them. It is
almost impossible to restrict the functionality of tools that are useful to traditional
code developers in order to comply with the process specified in the Configuration
Management Plan.

For example, GitHub does not store intermediate versions when you merge code
branches (or other files when you use this tool as a configuration management
environment) and you cannot track changes that precede the merge.

Quote from DO-178C (section 7.2.4 ¢): “Throughout the change activity, software
life cycle data affected by the change should be updated and records should be
maintained for the change control activity”.

For the analysis for compliance with the criteria described in the previous section,
we present the summarized results of the requirements management tool IBM
Rational DOORS use in State Research Institute of Aviation Systems (GosNIIAS)
and the results of the analysis of the entire IBM Rational product line for lifecycle
management [12].

We can analyze requirements management tools for conformity by Configuration
Management process criteria, because the requirement is one type of configuration
items and recommendation of section 7.2 of Qualification requirements 178C about
its storage and handling must be observed.

To evaluate the criteria, the following values (weight) were selected:
e 0 —criteria is not supported;
e 0.5 - criteria is partially supported;

e (.75 — criteria is supported through tool configuration, adaptation or any
integration;

73



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

e 1 criteria is fully supported.
The analysis results are shown in the figure below on Fig.1.

Identification

Storage, Configuration
retrieval and status
release accounting
Problem
report and Versioning,
corrective baselines
actions

. . -e-Reference
énfiguration
Change .

items

management . ~4-1BM RATIONAL
g traceability

-#-|BM DOORS

Fig. 1. Tools analysis

5. Conclusion

Configuration management process — is the main source of criteria for choosing the
tools, which support aviation software development lifecycle. Configuration
management process acts as unifying “input-output bus” for all lifecycle data.
Therefore, tools with support of the software development lifecycle should focus on
the mechanisms, embedded in the configuration management process, in order to be
able to interact closely (be integrated). Such a close relationship (integration)
through the configuration management process can significantly help with the
development process, provide a predictable (and positive, if the tool was chosen
correctly) result of aviation software development and help with preparing to the
certification. It is important to note, that the purchase of the software tools and
instruments does not ensure success in passing the certification — methodological
support is also needed.

The task to select software tools for development lifecycle support is not easy,
because it is rather difficult to determine in advance whether all requirements of
chosen for this project lifecycle process will be supported by software tool, system
or a set of tools. Analysis of configuration management process and selecting
criteria from it to tools allows to define the boundaries of necessary for the project
systems and tools. Analysis gives as result formulated requirements to the tool,
which can be applied for choosing and buying suitable tool or in case of
independent development such instrumental environment. In case of buying these
requirements and criteria will help to choose exactly that product whose functions
are necessary and sufficient for development goals without spending a lot of money

74



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

for buying disparate software tools of different manufacturers, which will
complicate the solution as a whole.

These conclusions are confirmed by the above analysis of one of the tools. Using of
the set of tools extending the functional brings the environment closer to the
reference state of configuration management process. In addition, there are
difficulties: often the cost of licensing significantly increases (you have to buy
additional tools), the time for installation, integration and implementation of the
process increases, number of tools used in the project is growing and requires
management efforts. As a result, the total complexity of development increases.

References

[1]. Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178B), 1992.

[2]. Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178C), 2011.

[3]. Design Assurance Guidance for Airborne Electronic Hardware (RTCA DO-254), 2000.

[4]. Software Tool Qualification Considerations (RTCA DO-330), 2011.

[5]. Aerospace recommended practice. Guidelines for development civil aircraft and systems
(SAE ARP 4754A), 2010

[6]. Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment (SAE ARP 4761), 1996

[7]. The Order of the Ministry of Industry and Trade of the Russian Federation of March 31,
2015 Ne 663 “About the approval of the industry plan of actions for import substitution
in branch of civil aircraft industry of the Russian Federation” (with changes and
additions)

[8]. Gorelits N.K., Peskov E.V., Requirements management as efficiency measure for
software development in aviation industry. Sbornik trudov VIII Mezhdunarodnoy
konferentsii “IT-STANDART 2017” [Proc. of VIII International conference “IT-
Standard 2017”’], Moscow, 2017, pp.105-113, ISBN 978-5-98597-346-4 (in Russian)

[9]. Qualification requirements part 178C, IAC, 2014 (in Russian)

[10]. M.A.Saburov, Yu.A.Solodelov, N.K.Gorelits. Development of the certifiable avionics
software by the example of JetOS real time operation system. Navigatsiya, navedenie i
upravlenie letatel’nymi apparatami: tezisy dokladov Tret’ey Vserossiyskoy nauchno-
tekhnicheskoy konferencii [Proceedings of Third All-Rus. Scient.-Techical Konf.
“Navigation, guidance and control aircraft”], Moscow, 2017, pp.241-243, ISBN: 978-5-
93728-133-3 (in Russian)

[11]. System engineering — System life cycle processes (ISO/IEC/IEEE 15288:2015), 2015

[12]. Koverninsky 1.V., Kan A.V., Volkov V.B., Popov Yu.S., Gorelits N.K. Practical
experience of software and system engineering approaches in requirements management
for software development in aviation industry. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 2, 2016, pp.173-179. DOI: 10.15514/ISPRAS-2016-28(2)-11

75



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

Kputepuu, npeabsaBnsaemMble K NporpaMmMHOMY
obecne4yeHnro ans paspaboTKu CNOXHbIX
cepTucUUMpyeMbiX CUCTEM, KPUTUYHbIX NO 6e30MacHOCTU

H.K. I'openuy < nkgorelits@2100.gosniias.ru>
A.C. I'vkosa < asgukova@2100.gosniias.ru>
E.B. Ileckos <evpeskov@2100.gosniias.ru>
Focydapcmeeﬁnbzﬁ Hayl{HO'uCCJle()OSCZmeJZbCKMIZ uHcmumym aeuadyuOHHblX cucmem
Poccus, 125319, o. Mockea, yr. Bukmopenko, 7

AnHotamms. Ha ceropHsmHuii JeHb B aBHAllMOHHOM OTpaciy CYIIECTBYET akTyasbHas
mpobieMa — Kak HHCTPYMEHTAJbHO TOAJCPKAaTh M O0ECHEYUTh CEepTUPHIUPYEMOCTh
pa3pabOTKM KPUTHYHBIX 110 OE30MACHOCTH CJOXHBIX CHCTEM B COOTBETCTBHH C
MEXIYHapOAHBIMA ¥ OTEUYECTBEHHBIMH OTpPACICBBIMH CTaHIApTaMH, HOPMAaTHBHBIMU
nokymentamu, Ttakumu kak KT-178C, KT-254, P-4754, P 4761 u np. B crathe
paccMmarpuBaeTCs Mpolece yrnpapieHUus KoHdurypammeii npu paspadorke mo KT-178C kak
OCHOBHOH MCTOYHHK KPHTEPHEB IJIsI OCYIECTBICHNS] BEIOOpA HMHCTPYMEHTAIBLHOTO CPEACTBA
TOACPKKU pa3paboTKu. BrineneHHbIe KpUTEPUH MOTYT OBITh IPUMEHEHBI K HHCTPYMEHTY
TOJIAEPKKU BCETO )KU3HEHHOTO UKIA pa3paboTku aBuaroHHOro 10 B coorBeTcTBUM ¢ KT-
178C, a Tarke K WHCTPYMEHTaM, OTBEYAIOLINM 3a MOIACPKKY OTICIBHBIX IPOIECCOB
JKU3HEHHOTO IHKJIAa. MepomnpHsThs mpolecca yrnpasieHus KOHGUrypanuei o0ecreunBaloT
paboTy ¢ JaHHBIMH JKH3HEHHOTO IMKJIA, WX XpaHEHHe, IEeJIOCTHOCTh, OE30IacHOCTb,
YIPaBIsIeMOCTb, MH(POPMAMOHHYIO TOMAEPKKY OOMEHa ITaHHBIMH MEXIy OCTAIbHBIMU
npoleccaMl JKU3HEHHOTO LKA, BeJeHHe HcTopuu u3MeHeHuid u T.1. CoOmoneHne
NPUHIUIIOB IIpoLiecca YNpaBieHHs KOHQUrypalyeil MO3BOJISIET OCYIIECTBISTH KOHTPOJIb
pa3paboTku, oOecrmeunuTh TpeOyemble KayecTBO W HANSKHOCTh MPOAYKTa, €ro
cepTUGUIMPYEMOCTh M HEOOXOAMMBIH ypOBEHb JOBEpHs K OE30MacCHOCTH, CHU3UTHh
(huHAHCOBBIE W BpEMEHHBIE 3aTpaThl Ha pa3paboTKy. B kaudecTBe mpuMepa HCIONB30BAHUSL
KpUTEpHEB TPHUBEACH aHAM3 OJHOTO W3 PACIpPOCTPAaHEHHBIX B OTPACIH HHCTPYMEHTOB
pa3paboTKH 1 ynpaBieHus TpeOOBaHUSIMHI Ha COOTBETCTBUE YKAa3aHHBIM KPUTEPHSIM.

KmoueBble ciaoBa: KT-178C; DO-178C; paspaborka I1O; anamuz I10; Beidop IIO;
CepTUHIPYEMBIE CHCTEMBI; CIIOKHBIE CHCTEMBI; pa3paboTKa CIIOXKHBIX CHCTEM; aBUOHHKA;
KBO; mponeccsr XKII; >XW3HEHHBI IWKJI; YIpaBleHHe KOHQUTypamued; CHCTeMHas
HHKCHEPHSL.

DOI: 10.15514/ISPRAS-2018-30(4)-4

Jas uurupoBanus: ['opemuny H.K., I'ykoBa A.C., IleckoB E.B. Kpurepuu, npenbpsasiseMmsie
K TPOTrpaMMHOMY OOECIICUCHHIO sl Pa3pabOTKH CIOXHBIX CEPTUQHIMPYEMBIX CHCTEM,
KpuTHuHbIX 0 G6e3omacHocty. Tpynsr UCIT PAH, Tom 30, Bem. 4, 2018 1., cTp. 63-78 (Ha
anrmiickom s3pike). DOI: 10.15514/ISPRAS-2018-30(4)-4

Cnucok nutepatypbl
[1]. Keanudurkaruonusie TpeGoBanus yacts 178B, 2002 — AP MAK.

76



Topemmit HK., T'ykopa A.C., Tleckos E.B. Kpurepuu, npetbssisemble K NPOrpaMMHOMY 00€CIICYEHHIO JUTs Pa3paboTKH
CIIOKHBIX CePTUDUIMPYEMBIX CHCTEM, KPHTHUHBIX 110 6e30macHocTi. Tpyost MCIT PAH, Tom 30, Bbim. 4, 2018 1., cTp. 63-78

2.
[3].

[4].
[5].

[6].
[7].

[8].

[°1.
[10].

[11].

[12].

Kpammdukannonnsie TpedoBanus yacts 178C, 2014 — AP MAK.

PyxoBozacTBO 10 rapaHTHN KOHCTPYHUPOBaHMSI OOPTOBOIL 211eKTpoHHOH ammapartypsl KT-
254, 2011 - AP MAK.

Software Tool Qualification Considerations (RTCA DO-330), 2011.

PyxoBoactBo P4754 o mponeccam cepTr(UKAIK BEICOKOMHTEIPHPOBAHHBIX CIIOKHBIX
OOPTOBBIX CUCTEM BO3IYIIHBIX CyIOB IpaskaaHckoi aBuanuu. AP MAK, 2010
PykoBoxctBo 4761 mOo MeronaM OIEHKM O€30IIaCHOCTHM CHCTEM U OOpPTOBOTO
000pyJOBaHUS BO3IYIIHBIX CYJ0OB IpaskAaHcKol aBuanmu, 2010

IIpnka3 MunaucTepcTBa MPOMBIIUIEHHOCTH U ToproBimu PO ot 31 mapra 2015 r. N 663
"O6 yTBepXKJOCHHHM OTPACIEBOTO IUIAHA MEPOIPHUATHH II0 HMIIOPTO3aMEUICHHIO B
OTpaciy TpaXTaHCKOro aBMacTpoeHWs Poccuiickoit @enepanmu" (C M3MEHEHHMSIMH U
JTOTIOJTHCHUSIMH )

Toperun  H.K., TleckoB E.B., “YmpaBnenme TpeOoBaHMSMH KaK KpUTEpHI
3¢ (GeKTHBHOCTH TpU pa3pabdoTKe MPOTPaMMHOTO OOecleueHHss B aBHALIMOHHOU
orpaciu”, Co6opruk TpynoB VIII Mexnynapongnoit kondepenmuun “UT-Cranmapr
2017”. Mocksa, 2017, ctp. 105-113, ISBN 978-5-98597-346-4

Software Considerations in Airborne Systems and Equipment Certification (RTCA DO-
178C), 2011

CabypoB M.A., Conogmenos lO.A., T'opemny H.K. Paspabotka ceprudummpyemoro
6OpTOBOrO MPOrPAaMMHOIO OOECIICUCHUs] Ha MpPUMEpEe OIEPAIMOHHOH CHCTEMBI
peanbHoro BpemeHu JetOS. HaBuraius, HaBeJeHHE W YIpPAaBICHHE JETATEIbHBIMU
ammaparamu: Te3uchl MOoki. Tperbeit Beepoc. HaydHO-TexHMuUeckon koH®. (MockBa —
Pamenckoe 21-22 cent. 2017 1.), 2017, cp. 241-243, ISBN: 978-5-93728-133-3.

I'OCT P 57193 CucremHas u nporpaMmHas uxxeHepus. [Iporieccs! xKHU3HEHHOTO LUK
cucreM, 2016

Koverninsky 1.V., Kan AV., Volkov V.B., Popov Yu.S., Gorelits N.K. Practical
experience of software and system engineering approaches in requirements management
for software development in aviation industry. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 2, 2016, pp.173-179. DOI: 10.15514/ISPRAS-2016-28(2)-11

77



Gorelits N.K., Gukova A.S., Peskov E.V. Criteria for software to safety-critical complex certifiable systems
development. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 63-78

78



Towards formal verification of cyber
security standards

Tomas Kulik <tomaskulik@eng.au.dk>
Peter Gorm Larsen <pgl@eng.au.dk>
Aarhus University, Department of Engineering
Finlandsgade 22, Aarhus, 8200, Denmark

Abstract. Cyber security standards are often used to ensure the security of industrial control
systems. Nowadays, these systems are becoming more decentralized, making them more
vulnerable to cyber attacks. One of the challenges of implementing cyber security standards
for industrial control systems is the inability to verify early that they are compliant with the
relevant standards. Cyber security standard compliance is also only validated and not
formally verified, often not providing strong proofs of correct use of cyber security standard.
In this paper, we propose an approach that uses formal analysis to achieve this. We formally
define building blocks necessary to define the system formally in order to enable formal
modeling of the system and carry out the analysis using the Alloy Analyzer. Our approach
can be used at an early design stage, where problems are less expensive to correct, to ensure
that the system has the desired security properties. We show the applicability of our approach
by modeling two distinct cyber attacks and mitigations strategies used to defend against these
attacks and also evaluate our approach based on its flexibility to handle and combine different
aspects of the cyber security standards. We discuss the future directions of our research.

Keywords: cyber security; formal analysis; cyber security standards.

DOI: 10.15514/ISPRAS-2018-30(4)-5

For citation: Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security
Standards. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 79-94. DOI:
10.15514/ISPRAS-2018-30(4)-5

1. Introduction

In an industrial setting there is an increasing use of wireless technology because
many components becomes Internet of Things (1oT) enabled. Rather than having to
investing in a continuation of wired connections the balance between cost and
agility many companies moves to such loT solutions. However, this move towards
wireless technologies gives new security challenges that must be taken serious in
order to protect both the data and algorithms owned by the companies. In order to

79



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

ensure this different security standards have emerged and here the IAS/IEC-62443
is a promising candidate that deserves special examination [1].

In order to master the increase of complexity caused by the increased wireless
connections the architectures of the distributed systems needs thorough analysis.
Here model checking is a promising candidate to provide such an analysis. This has
an appropriate balance between the time and cost spent on the analysis and the
exhaustiveness favorable. In this paper we demonstrate how this can be achieved
defining possible attacks and the corresponding mitigations using a formal
approach. The main result is an illustration of how this kind of framework can be
deployed to illustrate how a specific architecture and its chosen mitigations can be
proven that the different cyber-attacks cannot be realized.

The remainder of this paper is structured as follows: Section 2 introduces the
essential parts of the ISA/IEC-62443 standard and this is followed in Section 3
defining the architecture of considered system. The main result of this paper is
presented in Section 4 defining extended formal framework for cyber-attacks and
possible mitigations for these. Section 5 explains about how formal analysis can be
conducted using the Alloy Analyzer [2]. This is followed by Section 6, which
considers related work for formal analysis of cyber security standards. Finally,
Section 7 provide concluding remarks also indicating the future directions planned
for this work.

2. The chosen cyber security standard

Within this paper we consider security of an industrial control systems based on 10T
environment. This is further considered in terms of applying cyber security
standards that are used to ensure industrial automation and control system security,
specifically the ISA/IEC-62443 series of standards.

The series is split into 4 distinct groups where each group considers different
perspective of cyber security of the industrial automation control system (IACS).
Each of the groups contain documents, where each document is understood as a
single standard. This leads to name designation of specific standards based on the
format: ISA/IEC-62443-X-Y where X is the designation of the group and Y is the
designation of the specific document.

The first group, ISA/IEC-62443-1, General, considers the general aspects of the
standard and cyber security. Concepts and metrics defined within this group are
present throughout the other groups of the standard as shown in Fig. 1. The second
group, ISA/IEC-62443-2, Policies and procedures, focuses on organizational
aspects of cyber security. The main consideration of this group is providing the
requirements that the organization has to fulfill in order to manage their cyber
security program. The third group, ISA/IEC-62443-3, System, addresses the
security on a system level. The security requirements for the system is defined here
as well as guidance on implementation of these and fulfillment of these
requirements. The final group, ISA/IEC-62443-4, Component, contains documents
defining detailed requirements for cyber security on the component level.

80



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

2.1 The standard under consideration

The standard that we consider for formal verification is ISA/IEC-62443-3-3, System
security requirements and security levels. This standard has been selected as it
provides requirements that are applicable on system level and are verifiable by
technical means. The intended audience for this standard are asset owners, system
integrators and service suppliers and the purpose of this standard is to use the
defined requirements to evaluate the system under consideration and determine if
this system is capable of reaching a specific security level (SL). The standard
defines 4 SLs:

e SL 1: The lowest SL aimed to prevent unauthorized disclosure of
information via eavesdropping or casual exposure.

e SL 2: Aimed to prevent unauthorized disclosure of information to an entity
actively searching for it using simple means with low resources, generic
skills and low motivation.

e SL 3: Aimed to prevent unauthorized disclosure of information to an entity
actively searching for it using sophisticated means with moderate
resources, IACS specific skills and moderate motivation.

e SL 4: The highest SL aimed to prevent unauthorized disclosure of
information to an entity actively searching for it using sophisticated means
with extended resources, IACS specific skills and high motivation.

ISAJIEC-62443-2

Policies and

procedures
ISA/IEC- ISA/IEC-62443-3
62443-1 System

General

ISA/IEC-62443-4
Component

Fig. 1. Overview of ISA/IEC-62443 series structure

Within the standard the security requirements on the system level are considered as
system requirements (SRs) where each SR can define 0 to 3 requirement
enhancements (REs). SL of the aspect of the system is measured as a compliance
with SRs and REs for this aspect, shown in Table 1.

81



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,

vol. 30, issue 4, 2018, pp. 79-94

Table. 1. Mapping between compliance with SRs, Res and corresponding SLs

SR RE(s) SL
SR1 None SL1
SR1 RE 1 SL2
SR1 RE1+RE?2 SL3
SR1 RE1+RE2+RE3 SL4

In case that no SR is defined for the given aspect of the system, the standard
implicitly defines SL 0 as an SL for this aspect of the system.

3. System architecture

The system under consideration extends a generic control systems architecture and
capabilities defined in the framework for Threat-driven Cyber Security Verification
of 10T Systems (FCSVIoT) [3]. This architecture consists of subsystems equipped
with sensors and actuators shown on Fig. 2. Each subsystem is a microcontroller
capable of computation and communication. Communication between the
subsystems creates a distributed control system, which provides data to and accepts
commands from a central engineering terminal. In this paper we extend the
architecture with the notion of router, a special type of subsystem that enables data
exchange among other subsystems and extends the capabilities of the system by
defining user actions on the engineering terminal. We further consider that
communication channels must exist between subsystems in order to exchange data.

Engineering
terminal
3
Router
e A~
Subsystem 1 _|_ Subsystem 2 ' Subsystem n

Sensor/actuator Sensor/actuator Sensor/actuator
package package package

Fig. 2. Architecture of the system under consideration

82



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

We let our subsystems be governed by a set of atomic actions forming a basic
alphabet for each subsystem S; as SA = {generate, send, acquire, accept, discard,
connect, disconnect, recover, compromise} and each subsystem has a finite set of
states S. Actions cause transitions between states of the subsystem such as:

action(param) , ,
s'where s,s' €S

We further define a predicate on communication channels secure(c) stating that the
communication channel is secured. The generate action represents generation of
data by the subsystem, send action represents sending the data on a communication
channel, acquire represents acquiring data from the communication channel, accept
defines accepting the acquired data, discard defines discarding the acquired data.
The connect and disconnect action represent a subsystem connecting to and
disconnecting from a communication channel. The compromise action moves the
subsystem to a compromised mode of operation, compromised(S;), where we
consider that the subsystem has malicious intent. Recover action moves the
subsystem from compromised to normal mode of operation, normal(s;).

We extend the actions in the FCSVIoT by considering the engineering terminal E as
an user interaction part of the system by defining its own alphabet of actions
EA ={allow, forbid}, where allow represents allowing and forbid represents
disallowing interaction with an user by the engineering terminal. We also consider
that the system holds a set of user accounts allowing users access to the Engineering
terminal, Ac where a single account is denoted as a. Each account has exactly one
credential cr, hence the system also holds a set of valid credentials Cr. We further
define the router R as with alphabet RA = SA\{generate} as the router is not
equipped with sensors to generate its own data. This leads to creation of system
alphabet A = SA U EA.

4. Attacks and mitigations

We define cyber attacks as sequences of events leading to potential harm to the
system under attack. Within this paper we consider two cyber attacks, specifically
data packet tampering and brute force attack against an user account [4]. These
attacks have been purposefully selected as the selected cyber security standard
addresses them and specifies requirements for mitigations aimed to increase cost of
these attacks. We provide a formal description of the attack sequence and mitigation
for both of the attacks under consideration.

4.1 Data packet tampering attack

Packet tampering is the act of a compromised subsystem, specifically a router
changing values in a data packet, causing the intended receiving subsystem to
receive different values from those sent by the transmitting subsystem. This has then
the potential to cause unsafe behavior of the system. In order to describe an instance
of this attack, consider two subsystems S, and S, operating in normal mode, which
we show formally as normal(S,) A normal(S;) and a router R used to enable data

83



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

exchange between the two subsystems. The router operates in a compromised mode
compromised(R), meaning that some malicious actor has access to and control over
this router.
The subsystems S, and S; are always connected to the router, meaning that at any
time they can exchange data with the router using communication channels ¢, and
C1. We use the FCSVIoT predicate always_connected as
always_connected(S,, Ry, cy) A always_connected(S,, Ry, ¢;) specifying that there is
always possibility of communication between S, and S, via R,,.
Now we consider that S, is sending a unit of data d to S;. The data d is first
obtained by R,, which modifies the data d, represented by a new modify action
added to the alphabet of the router in order to represent software installed by
malicious actor, and then sends it further to S;. The attack hence combines actions
into a pattern by following a specific sequence:

1. S,.generate(d)
So-send(co, d)
Rg.acquire(co, d)
R,.modify(d)
R,.send(cy, d)
S;.acquire(c,, d)

7. S;.accept(d)
Main act of the attack happens at the R,.modify(d) event. Here the data d becomes
malicious as malicious(d). In case of non-existent mitigations within the system, the
subsystem S; simply accepts the data and becomes itself compromised, hence the
attack is successful.
In order to mitigate this attack, we consider security requirements from the
ISA/IEC-62443-3-3 security standard, covering the communication integrity,
namely SR 3.1 stating that The control system shall provide the capability to protect
the integrity of transmitted information.
The requirement itself does not provide the necessary guidance on what method to
use to protect the data, hence we consider the SR 3.1 RE 1 specifying the
cryptographic integrity protection as The control system shall provide the capability
to employ cryptographic mechanisms to recognize changes to information during
communication. To mitigate the attack from a general perspective we consider that
the data has to contain a cryptographic signature derived from the data content and a
secret known to subsystems, but not routers. This introduces a concept of signed
data, which we do by extending the alphabet of the subsystem by adding an atomic
sign event as sign(d). We further define a predicate for signed data stating that the

data is considered signed only if signed by a subsystem operating in a normal mode:

) sign(d) ,
signed(d) =3s:s —— ;s"As €Sy

o kr~wn

84



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

We then consider applying the signing event as a mitigation by specifying that the
subsystem discards the signed data if it has been modified, with indices added to the

state notation, describing the order of state transitions:

discard(d) )
Vsis — Sy if

always_connected(S;, R;, cx)

acquire(d,cy)
and 3sy: 5 —— ; 5,

modify(d)
and3s:s ——— ;s

J
and signed(d)
Applying this mitigation by adding S,.sign(d) after the S,.generate(d) event causes
the final event in the chain to be S;.discard(d) since R,.modify(d) is present. This
means that the subsystem S; does not enter compromised mode and the cyber
attack is unsuccessful.

’

4.2 Brute force attack against an user account

Brute force attack against an user account uses computational power to try to guess
user sign in credentials by randomly generating passwords and user names and
providing them to the system for verification. The attack can be streamlined if the
user name and length of the password is known, decreasing the "guess space”,
which in turn leads to less time required to guess the correct credentials. If the user
account can be breached this gives the malicious actor control over the system in
terms that the breached account allows, potentially allowing the malicious actor
submission of malicious commands to the system. To formally describe the attack
we consider a single engineering terminal E, operating in a normal mode,
normal(E;). We further define a check function on an engineering terminal,
responsible for raising the allow or forbid event:
allow, ifcr € Cr
check(er) = {forbid, otherwise

We formulate the attack as a recursive crack(cr) function that generates new cr for
every attempt used to find a cr such that cr € Cr:

true, if allow

crack (check(new(cr))), if forbid

Once the function returns true the malicious actor has obtained access to the
engineering terminal, causing the engineering terminal to operate in a compromised
mode of operation, as compromised(E,) and the attack is considered successful.
In order to mitigate the attack we consider the requirement SR 1.11 defined in
ISA/IEC-62443-3-3, stating, The control system shall provide the capability to
enforce a limit of a configurable number of consecutive invalid access attempts by
any user (human, software process or device) during a configurable time period.
The control system shall provide the capability to deny access for a specified period
of time or until unlocked by an administrator when this limit has been exceeded. To
enforce this we define a locked predicate acting on specific account mapped via its
85

crack(check(cr)) = {



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

valid credential where mapping between account ac and credential cr is one to one
and hence for simplicity we omit cr and consider ac as belonging to a specific cr as:

allow()
locked(ac)= - 3s:s ——> s’:ac € Ac
We then need to consider the amount of allowed invalid access attempts. In order to
abstract away from details of password complexity, we present an assumption
stating that the successful brute force attack against an system that allows
reasonable small amount (in general we would consider this less than 10 for
practical reasons) invalid access attempts is so unlikely that we consider it
impossible. Using this assumption as a mitigation we can guarantee that the user
account cannot be breached by brute force attack. We also abstract away from
notion of time intervals as we consider that the brute force attack is happening
rapidly and would always exceed the amount of tries within a specific time interval.
We formally show this mitigation by first defining a global variable for ac holding
the current attempt as attempt(ac) for its credential cr:
attempt(ac)={ attempt(ac) + 1, if check(cr) = forbl:d
0, otherwise
We then use the variable in adding an attempt limit on using a credential to sign in
to an user account such that the account becomes locked if the maximum amount of
attempts is reached:
limited(cr, max_att)= locked(ac) if attempt > max_att
By applying the limited predicate to the credentials we cause the account to become
locked as a result of the crack function. Since a locked account cannot be used to
gain access to the engineering terminal, the cyber attack fails and the engineering
terminal continues in the normal mode of operation, normal(E,). It is important to
note that in general the max_att has to be set in such a way that does not hinder
usability of the system, while providing assurance of sufficient security. This
mitigation strategy has therefore a limitation in case the max_att is set unreasonably
large.

5. Formal analysis

In this section we shortly present the extensions made to the FCSVIoT and show
how the mitigations for data packet tampering and brute force against user account
attacks have been verified when considered within the architecture defined in
Section 2. This is achieved by expressing the aforementioned attacks and
mitigations using FCSVIoT with extensions introduced in this paper and verifying
these scenarios using the Alloy Analyzer.

5.1 Short introduction to Alloy Analyzer

Alloy is a formal specification language, based on first order logic, used for
expressing structural constraints in software systems. Alloy allows for modeling at
different levels of abstraction, where at the highest level it provides object oriented
interpretation, at second level it uses the set theory and at the lowest level atoms and

86



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

relations are used. Within our model we are using the set theory, atoms and relations
to model the types using the sig keyword. Subtyping is supported in Alloy by
usage of extends keyword. We model relations between objects by specifying
mappings between sets, for example has:set EngTerminal one->some
Account, where has is the relation stating that the one, meaning exactly one
engineering terminal has some, meaning at least one account associated with it. The
scope of the model is specified after the run block, by quantifying how many atoms
do we want to include in the model by using the exactly keyword. Properties of
the Alloy model can be verified by usage of the Alloy Analyzer software tool [5],
which checks properties of the model by generating counterexamples.

5.2 Overview of extensions to FCSVIoT

Among the first extensions is addition of new data types Router corresponding to
the router, EngTerminal corresponding to the engineering terminal, Account
corresponding to user account and Credential corresponding to credential for
specific account as specified in Section 3. Using Alloy Analyzer, we define these
datatypes using set definitions, represented by the sig keyword. We further extend
the State definition with number of new relations. We further define the router as
an extension of Device type and also adapt Subsystem to be extension of
Device, as shown in Listing 1.

The Device type is used as a base type since Router and Subsystem share most
of the actions. The only difference is that we consider that the router is not capable
of generating data. The relations within State now also use Device in order to
model relation that cover both Router and Subsystem. For example, the
compromised relation shown in Listing 1 shows that a state can contain any
number of compromised devices. Another relation recorded in each state is for
example accepted which maps devices to data.

The different types discussed above are governed by several facts, which are
understood as constraints on the model. One of these is the consideration that the
data is either signed or not and this does not change as the system progresses in its
state transitions. This is shown in Listing 2. In this constraint s' is the state
following the s state, hence the constraint guarantees that the data remains signed in
all states.

87



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

open util/ordering[State]

sig Data {}

sig Device {}

sig Subsystem extends Device{}
sig Router extends Device{}
sig Channel {}

sig EngTerminal {}

sig Credential{}

sig Account{}

sig State {

compromised: set Device,
can_authorise: set Subsystem,
malicious: set Data,

signed: set Data,

accepted: set Device -> set Data,
secure: set Channel,
attempts_exceeded: set Account,
limited: set Account,

cracked: set Account,

large: set Credential,

locked: set Account,

has:set EngTerminal one->some Account,
hasCred:set Account one->one Credential

H /* Facts belonging to State */ ... }
Listing 1. Extensions and changes to the modeling framework

fact{

all s:State, s’:s.next |
s.signed = s’.signed

}

Listing 2. Global constraint governing signed data

5.3 Verification of data tampering mitigation strategy

Here we demonstrate the mitigation strategy applied to a scenario discussed in 4.1.
The simplest model to demonstrate data tampering mitigation strategy in fact only
requires one subsystem and a router as it is the router that is responsible for the
attack. This is shown in Listing 3. The listing shows the constraint for mitigation
and the setup of the model. The complete extended FCSVIoT can be found via [6].

88



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

run {

// mitigation signed data

all s:State | all d:Data | d in s.signed
//test the condition

some malicious

} for

exactly 5 State

, exactly 1 Subsystem

, exactly 1 Data

, exactly 1 Channel

, exactly 1 Router

, exactly 2 Device

, exactly © EngTerminal

Listing 3. Verifying the data tampering mitigation strategy using Alloy

The run commands checks that the data is signed in five states, required to exectute
the whole scenario. The result of this execution is: No instance found. This
means that the Alloy Analyzer could not find a counter-example within the
requested scope and the mitigation strategy is proven to work.

5.4 Verification of brute force attack:

We will show how the mitigation strategy for brute force attack can be modeled by
considering a scenario described in Section 4.2. The run command for the model
we use consists of one engineering terminal with one user account, with its
associated credentials and omits subsystems as shown in Listing 4. The mitigation
used in this scenario states that all accounts within all states of the system are
always considered limited (i.e. they consider limit on the number of unsuccessful
login attempts).

This scenario considers three states, creating the smallest scope necessary for its
execution. Once the run command is executed the Alloy Analyzer returns No
instance found, confirming that the mitigation strategy prevents the user
account from being cracked.

89



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

run {

// mitigation account has limited tries
all s:State | all a:Account |

a in s.limited

//test the condition

some cracked

//start with no cracked account
no first.cracked

}for

exactly 3 State

, exactly 1 EngTerminal

, exactly 1 Account

, exactly 1 Credential

, exactly O Subsystem

Listing 4. Verifying the brute force attack mitigation strategy using Alloy

6. Related work

As cyber security is becoming very important topic in the industry, mainly in advent
of digitalization and trends such as industry 4.0 [7], research is being carried out
within the area of using formal methods in order to provide proofs that systems
meet cyber security requirements [8][9][10]. The benefits of using model based
verification are its applicability at an early stage of system development in order to
help avoid exposure to attacks as well as provide mitigations for attacks that are not
easily avoidable [11][12]. This approach consists of formal description of the
behavior of a system and formal description of cyber-attacks and mitigations. The
complete model is then formally analyzed in order to verify that the mitigation
strategies prevent the cyber-attacks from causing potentially harmful behavior of the
system. Sometimes specific cyber security standards are considered as criteria for
these mitigations strategies [13].

In order to provide assurance that an industrial control system meets criteria
specified in a cyber security standard, authors of [14] have investigated the ISA-
99.01-01 standard by considering the requirements and metrics specified within the
standard. While the authors have described part of the standard formally, their goal
was not to conduct formal analysis to ensure the satisfiability of the security
requirements by a given architecture but rather to provide recommendations to the
operators of industrial control systems to not blindly trust standards but verify their
security impact on the system.

The authors of [15] have proposed a formalization and verification technique for
ISO/IEC-15408 standard known as Common Criteria using Z notation. In their

90



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

technique they consider the natural language definitions within the standard and
create formal templates based on these. The authors suggest usage of the templates
against the formalized specification of the target system, which is left to the party
verifying the system against the instantiated templates. The authors provide an
example of this verification using the Z/EVES theorem prover. Our approach differs
by providing formal building blocks for the system from the start, hence
formalization of the system can be done by selecting from these building blocks.

7. Conclusions and future work

So far this research has demonstrated that the chosen approach is quite extensible
where this paper has demonstrated how the models made in Alloy can be extended
in a conservative manner with additional threats. It is expected that we in the future
in this context is furthering the formal definitions to encompass more of aspects of
the security standard and to verify these against larger variety of cyber-attacks. We
further consider switching to TLA+ [16] in order to show the applicability of our
framework using different formalism.

Acknowledgments

This work is partially supported by the Manufacturing Academy of Denmark
(MADE) Digital project. For more information see http://www.made.dk/.

References

[1]. International ~ Society of Automation. The 62443 Series of Standards.
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf, accessed on
13/3/18

[2]. D. Jackson, Software Abstractions: Logic, Language, and Analysis. Heyward Street,
Cambridge, MIT Press, April 2006, iISBN-10: 0-262-10114-9.

[3]. Tomas Kulik, Peter W. V. Tran-Jergensen, Jalil Boudjadar, and Carl Schultz. A
framework for threat-driven cyber security verification of iot systems. In Proc. of the
First International Workshop on Verification and Validation of Internet of Things,
Visterés, Sweden, april 2018, in print.

[4]. C. Bekara. Security issues and challenges for the iot-based smart grid. Procedia
Computer Science, vol. 34, 2014, pp. 532-537. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050914009193

[5]. The Alloy Analyzer Modelling website, http://alloy.mit.edu/alloy/, 2018

[6]. Tomas Kulik and Peter Gorm Larsen. Extensions to formal security modeling
framework.
https://github.com/kuliktomas/FCSVIoT/commit/189c7962f7f0870fa5315c31a71a6b35e
896e47d, 2018.

[7]. N. Jazdi. Cyber physical systems in the context of industry 4.0. In Proc. of the 2014
IEEE International Conference on Automation, Quality and Testing, Robotics, May
2014, pp. 1-4.

91


http://www.made.dk/

Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,
vol. 30, issue 4, 2018, pp. 79-94

[8]. M. Ge and D. S. Kim. A framework for modeling and assessing security of the internet
of things. In Proc. of the 2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS), 2015, pp. 776-781.

[9]. C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying Formal Methods to a
Certifiably Secure Software System. Software Engineering, IEEE Transactions on
Software Engineering, vol. 34, no. 1, 2008, pp. 82 -98.

[10]. A. N. Haidar and A. E. Abdallah. Formal modelling of pki based authentication.
Electronic Notes in Theoretical Computer Science, vol. 235, 2009, pp. 55 — 70. [Online].
Auvailable: http://www.sciencedirect.com/science/article/pii/S157106610900084X

[11]. D. C. Wardell, R. F. Mills, G. L. Peterson, and M. E. Oxley. A method for revealing and
addressing security vulnerabilities in cyber-physical systems by modeling malicious
agent interactions with formal verification. Procedia Computer Science, vol. 95, no.
Supplement C, 2016, pp. 24 — 31, Available:
http://www.sciencedirect.com/science/article/pii/S1877050916324619

[12]. F. A. Teixeira, F. M. Pereira, H.-C. Wong, J. M. Nogueira, and L. B. Oliveira. Siot:
Securing internet of things through distributed systems analysis. Future Generation
Computer Systems, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17304235

[13]. J. Woodcock, S. Stepney, D. Cooper, J. A. Clark, and J. Jacob. The Certification of the
Mondex Electronic Purse to ITSEC Level E6. Formal Aspects of Computing, vol. 20,
no. 1, 2008, pp. 5-19.

[14]. D. K. Holstein and K. Stouffer. Trust but verify critical infrastructure cyber security
solutions. In Proc. of the 43rd Hawaii International Conference on System Sciences,
2010, pp. 1-8.

[15]. S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. Formal verification of security
specifications with common criteria. In Proceedings of the 2007 ACM Symposium on
Applied Computing, ser. SAC ’07, 2007, pp. 1506-1512. [Online]. Available:
http://doi.acm.org/10.1145/1244002.1244325

[16]. L. Lamport, Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002, Boston, MA,
USA, 384 pages.

92



Kynuk T., Jlapcen ILT. K dpopmainsHoit Bepudukamnun cranaapros kudepoesonacnoctu. Tpyost UCIT PAH, Tom 30,
Boimn. 4, 2018 r., ctp. 79-94

K dopmanbHoOM Bepucmkaumm ctraHgapTos
Knb6epbe3onacHocTu

Tomaw Kynux <tomaskulik@eng.au.dk>
TIumep I'opm Jlapcen <pgl@eng.au.dk>
Opxyccrutl ynusepcumem, Jlenapmamenm uHxicenepul,
Finlandsgade 22, Opxyc, 8200, Janus

AnHoTanms. CraHmapTsl KuOepOe30MacHOCTH YacTO HCIONB3YIOTCS Mg 0OecredeHust
3aIIMIICHHOCTH TIPOMBINIICHHBIX CHCTEM yIpaBleHHs. B mocienHee BpeMs Takue CHCTEMEI
CTaHOBSITCSI Bce OoJiee JCNEHTPAIN30BAaHHBIMH, UTO JIeJaeT MX BCe Ooyiee YSI3BUMBIMH JUIS
pasHoro pona kuOeparak. OfHa U3 npoOIeM peanu3aluy CTaHAApTOB KHOEpOEe30IacHOCTH B
NPOMBIIUICHHBIX CHCTEMax YIPaBICHHS COCTOMT B TOM, YTO HEBO3MOXKHO CBOEBPEMEHHO
NIPOBEPHUTh, COOTBETCTBYIOT JH pa3pabaTblBacMble CHCTEMBbI 3THM CTaHIApTaM MM HeT.
TToMHMO HPOYETro, COOTBETCTBUE CTAHIAPTY KMOEPOE30MaCHOCTH TOJIBKO BATMIUPYETCS, a He
BepuuLupyercss HOpMaNbHO, YTO, KaK HPaBHJIO, HE JIaeT YOCIMTENbHBIX [OKAa3aTelbCTB
NPaBUJILHOTO HCIOJIb30BAaHUS CTaHIapTa. B craThe mpemiaraercs MOIXOA, B KOTOPOM
NpOBEpKa 3aNIMIIEHHOCTH HMPOMBIIUICHHBIX CHCTEM YHPABICHUS OCYIIECTBISIETCS ITyTeM
¢dopmansHOro aHamu3a. I1oAXon COCTOMT B CIEAYIOIIEM: OIPENCNIAIOTCS CTPOUTEIbHbIC
OJI0KH, HEOOXomUMBbIe s (OPMATBFHOTO ONMCAHUS CHUCTEMBI; cocTaBisieTcs (opmanbHas
MOJieJIb CHCTEMBI, MOJENb aHAIM3HMPYeTCst ¢ moMmomibio uHeTtpymenta Alloy Analyzer.
TpennaraeMplii MOAXOJ MOXET HMCIOJNB30BAaThCsl HAa PAHHHUX CTAAUSX MPOCKTUPOBAHMS, I/ie
npo0OJaeMbl HE TakK JIOpPOTHM AJs HclpaBieHHs. YToObl 1MOKa3aTh NMPUMEHHUMOCTh II0OJX07a,
OBUIM CMOJICITMPOBAHBI JBE KHOEpaTaky, a TakKe CTPATerHu MPOTHBOACHCTBUS MM. TToaxon
OBbUT TaKKe OLIEHEH Ha MpeIMeT THOKOCTH — BO3MOXKHOCTH COBMEIICHHUS Pa3HBIX aCIEeKTOB
CTaHAApTOB KuOepOe3omacHOCTH. B crathe Tarke oOCykmatoTcs OyIaymiue HampaBICHHS
UCCIICZIOBAHUSL.

KinwueBbie  cioBa:  kubepOe3omacHOCTh,  (HOpPManbHBIA  aHANM3;  CTaHAAPTHI
KHOepOe30MacHOCTH

DOI: 10.15514/ISPRAS-2018-30(4)-5

Jas uutupoBanus: Kymuk T., Jlapcen [L.I. K ¢opmansHOl Bepupukanuu cTaHIapTOB
xubep6ezomacHoctr. Tpynst ICIT PAH, tom 30, Bem. 4, 2018 1., ctp. 79-94 (Ha aHTIHiiCKOM
s3bike). DOI: 10.15514/ISPRAS-2018-30(4)-5

Cnucok nutepatypbl

[1]. International ~ Society of Automation. The 62443 Series of Standards.
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf, accessed on
13/3/18

[2]. D. Jackson, Software Abstractions: Logic, Language, and Analysis. Heyward Street,
Cambridge, MIT Press, April 2006, iISBN-10: 0-262-10114-9.

[3]. Tomas Kulik, Peter W. V. Tran-Jorgensen, Jalil Boudjadar, and Carl Schultz. A
framework for threat-driven cyber security verification of iot systems. In Proc. of the

93



Kulik T., Larsen P.G. Towards Formal Verification of Cyber Security Standards. Trudy ISP RAN/Proc. ISP RAS,

vol.

30, issue 4, 2018, pp. 79-94

[4].

[5].
[6].

[7].

[8].

[al.

[10].

[11].

[12].

[13].

[14].

[15].

[16]

94

First International Workshop on Verification and Validation of Internet of Things,

Visteras, Sweden, april 2018, in print.

C. Bekara. Security issues and challenges for the iot-based smart grid. Procedia

Computer Science, vol. 34, 2014, pp. 532-537. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1877050914009193

The Alloy Analyzer Modelling website, http://alloy.mit.edu/alloy/, 2018

Tomas Kulik and Peter Gorm Larsen. Extensions to formal security modeling

framework.

https://github.com/kuliktomas/FCSVIoT/commit/189c7962f7f0870fa5315¢c31a71a6b35e

896e47d, 2018.

N. Jazdi. Cyber physical systems in the context of industry 4.0. In Proc. of the 2014

IEEE International Conference on Automation, Quality and Testing, Robotics, May

2014, pp. 1-4.

M. Ge and D. S. Kim. A framework for modeling and assessing security of the internet

of things. In Proc. of the 2015 IEEE 21st International Conference on Parallel and

Distributed Systems (ICPADS), 2015, pp. 776-781.

C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying Formal Methods to a

Certifiably Secure Software System. Software Engineering, IEEE Transactions on

Software Engineering, vol. 34, no. 1, 2008, pp. 82 —98.

A. N. Haidar and A. E. Abdallah. Formal modelling of pki based authentication.

Electronic Notes in Theoretical Computer Science, vol. 235, 2009, pp. 55 — 70. [Online].

Auvailable: http://www.sciencedirect.com/science/article/pii/S157106610900084X

D. C. Wardell, R. F. Mills, G. L. Peterson, and M. E. Oxley. A method for revealing and

addressing security vulnerabilities in cyber-physical systems by modeling malicious

agent interactions with formal verification. Procedia Computer Science, vol. 95, no.

Supplement C, 2016, pp. 24 — 31, Available:

http://www.sciencedirect.com/science/article/pii/S1877050916324619

F. A. Teixeira, F. M. Pereira, H.-C. Wong, J. M. Nogueira, and L. B. Oliveira. Siot:

Securing internet of things through distributed systems analysis. Future Generation

Computer Systems, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X17304235

J. Woodcock, S. Stepney, D. Cooper, J. A. Clark, and J. Jacob. The Certification of the

Mondex Electronic Purse to ITSEC Level E6. Formal Aspects of Computing, vol. 20,

no. 1, 2008, pp. 5-19.

D. K. Holstein and K. Stouffer. Trust but verify critical infrastructure cyber security

solutions. In Proc. of the 43rd Hawaii International Conference on System Sciences,

2010, pp. 1-8.

S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. Formal verification of security

specifications with common criteria. In Proceedings of the 2007 ACM Symposium on

Applied Computing, ser. SAC ’07, 2007, pp. 1506-1512. [Online]. Available:

http://doi.acm.org/10.1145/1244002.1244325

. L. Lamport, Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002, Boston, MA,
USA, 384 pages.



Combining ACSL Specifications and
Machine Code

P.A. Putro <pavel.putro@ispras.ru>
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. When developing programs in high-level languages, developers have to make
assumptions about the correctness of the compiler. However, this may be unacceptable for
critical systems. As long as there are no full-fledged formally verified compilers, the author
proposes to solve this problem by proving the correctness of the generated machine code by
deductive verification. To achieve this goal, it is required to combine the pre- and
postcondition specifications with the machine code behavior model. The paper presents an
approach how to combine them for the case of C functions without loops. The essence of the
approach is to build models, both machine code and its specifications in a single logical
language, and use target processor ABI to bind machine registers with the parameters of the
high-level function. For the successful implementation of this approach, you have to take a
number of measures to ensure the compatibility of the high-level specification model with the
machine code behavior model. Such measures include the use of a register type in the high-
level specifications and the translation of the pre- and postconditions into the abstract
predicates. Also in the paper the choice of logical language for building models is made and
justified, the most suitable tools for implementing the approach of merging specifications are
selected and the evaluation of the system of deductive verification of machine code built on
the basis of the proposed approach is made using test examples obtained by compiling C
programs without loops.

Keywords: deductive verification; formal methods; machine code; ACSL
DOI: 10.15514/ISPRAS-2018-30(4)-6

For citation: Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 95-106. DOI: 10.15514/ISPRAS-2018-30(4)-
6

1. Introduction

The paper presents a step forward towards the creation of a tool capable of proving
the correctness of machine code based on the formal specification of a function for a
high-level language [1]. Such a tool will allow to avoid the assumption about the
correctness of the compiler by verification of the generated code regarding
specification of source code functionality. The only way in which the correctness
analysis of machine code is not necessary is to create a fully formally verified
compiler [2].

95



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

However, the existing developments in the field of formally verified compilers [3]
now do not allow using all the possibilities of existing unverified analogs, for
example, GCC [4]. This work is necessary for the implementation of an alternative
approach — deductive verification [5] of compiler products, the correctness of which
has not been proven. Using this approach will allow you to safely use the already
created software.

Different approaches to formal specification and building a model of machine code
behavior were proposed in different machine code verification projects. Here, the
formal specification of a function or a sequence of machine code instructions shows
the pre- and postconditions for a function and the behavior model describes
mathematical and logical state change formulas. The paper discusses an approach to
combining ACSL [6] specifications of the C language with the machine code of the
PowerPC e500mc processor obtained by compiling these functions. The choice of
the target language is caused by the fact that most high-critical system software like
operating system kernels is written in C. While the very high-level languages
support a variety of protective mechanisms — such as the prohibition of pointers or
checks when casting, the C language is designed for maximum performance by
allowing the programmer to interact directly with the memory.

Proof of critical code sections by deductive verification methods can improve the
reliability of such systems. In the pursuit of performance, compilers try to make the
most of the capabilities of the target processor. Machine code produced by
compilers can be extremely difficult for manual verification and specification
because the compilation disappears all the information about the names of variables
and even the order of execution of commands may be different than in the original
program. Only the pre- and postconditions for a particular function remain
unchanged. Automatic combination of C-level specifications with the logical model
of machine code will allow you to check its correctness in a fully automatic mode.

2. Machine code representation

The specification of machine code instructions in logical languages is a complex
and lengthy process. Often, the appearance of the function behavior model
specification in this language is very different from that provided in the processor
specification. In addition, the lack of special tools makes it difficult to debug such
models. To solve these problems, the author proposes to use the NML language,
together with the MicroTESK tool [7]. The NML language contains special
structures and data types to simplify the modeling of the hardware. The MicroTESK
toolset includes universal disassembler of the machine code by the NML language
and the NML to SMT-LIB [8] translator.

Fig. 1 shows the cmpl operation specification from the official documentation for
PowerPC €500 core family [9] processors and fig. 2 shows its NML version. From
here, you can see that the NML language allows you to fully describe processor
instructions, including their representation in Assembly language and machine code.
In addition, the use of the NML language as the basis for the representation of

96



TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

machine code will allow to reuse all NML models, developed by the MicroTESK
development team for the purposes of testing of microprocessors.

Compare Logical

cmpl crfD,L,rA.rB
o 5 6 g 9 10 11 15 16 20 21 30 H
011111|crfD‘.f|L| rA B 0000100000|.-‘|

if L=0 then
else

if L=0 then
else

if a <, b
ifa=> b
if a =

[

00y

CRa¥ersp a2 4%ereDas

Fig. 1. CMPL official specification

op cmpl (crfD: CRFD, L: BIT, ra: R, rk: E)
init = {
X0 10 = coerce(card(10), 0bO000O100000);
OPCD = coerce(card(e), Ok0Ll1111);

syntax

= format ("cmpl %d, %d, %=, %=", crfD, L, ra.syntax, rb.syntax
image = format("%6s%3s5%1ls%1s%5s5%5s%10s%1s", OPCD, crfD, L, "O", ra.images, rk.image, XO_10, "O"
action = {
if L == coerce(BIT, 0) then

if ra < rb then
temp = 0b0OO01;

endif;

if ra > rb then
temp = 0b010;

endif;
if ra == rb then
temp = 0bl00;
endif;
CR< (coerce (card(5) ,cxrfD) *442) .. (coerce (card(5) ,crfD) *4) > = coerce(card(3), temp):
CR<coerce (card(5),crfD) *4+3> = XER_S0:

endif;

Fig. 2. CMPL NML specification
3. ACSL specifications representation

3.1 ACSL specifications translation

As a logical language, in which ACSL specifications will be translated, the author
suggests using the WhyML language [10]. The Why3 tool designed to analyze this
language allows you to apply many useful transformations and optimizations. It also
allows you to translate WhyML code into logical code for many different provers.
In addition, the task of translating ACSL specifications into WhyML code has
already been solved by the Jessie plugin [11] for Frama-C [12]. In the course of
research [1], it was established that the use of the plugin Jessie directly, not suitable
for the tasks of machine code analysis.

Jessie plugin makes a number of simplifying assumptions that do not take into
account the peculiarities of machine code. Instead, it was decided to take as a basis

97



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

the unfinished code of jessie3 project [13] — part of the Why3 project. The Jessie3
code has been modified and extended to take into account the peculiarities of
machine code. In particular, the language WhyML has been described the type of
processor registers. In addition, the algorithm of generating targets for the proof was
changed for the subsequent fusion — pre- and postconditions were separated from
the function behavior model.

3.2 Using register type for compatibility with machine code

Processor registers can be represented by a limited integer type with an extended set
of operations. Operations include signed and unsigned arithmetic, bitwise
operations, and memory read operations at the address specified in the register and
by offset. To describe all such operations high-level languages, use a variety of
different types, as well as a cast operation. However, using different data types will
complicate the proof of correctness problem for SMT-solvers. This is especially
noticeable in the case of bitwise operations, which are available only for bitvectors
in SMT-LIB. Bitvectors cast operations to an integer type are not supported by the
latest SMT-LIB [14] standard, and various SMT-solvers offer their own version of
the implementation of this operation.

The BitVec type from SMT-LIB is well-suited for describing the type of registers
because it contains all the necessary arithmetic and logical sign and unsigned
operations. However, the theory of bitvectors at the why3 level does not support all
the necessary operations and is built as an unsigned type. Based on the standard
theory of bitvectors, the author developed a theory to support the type of processor
registers. The theory supports both signed and unsigned integer types and there is
ongoing work to add support for pointer arithmetic and memory dereferencing. The
driver for CVC4 SMT-solver [15] was updated for translation of the register type to
the type BitVec with corresponding mapping of operations.

3.3 Splitting specification and behavior model

To merge machine code, you must separate the pre - and post-conditions from the
behavior of the high-level function, which will then be replaced by the behavior of
the machine code. To implement this approach, the author uses abstract logical
predicates of pre- and postconditions checking. These predicates take as input the
parameters of the verification function, and the predicate of the postcondition is also
taking its result. Further, by means of axioms predicates are defined by a logical
expression in accordance with ACSL specifications. In fig. 3 you can see the
predicates for pre- and postconditions are generated based on the ACSL
specifications of absolute value function (fig. 4), where usabs_pre — the predicate of
a precondition, and usabs_post is a predicate of the postcondition.

98



TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

predicate usabs post r3Z r3Z
predicate usabs _pre r3z

axiom usabs post axiom
forall n:r32, result:r3z2.
usabs_post n result <->
sge result (of _int 0) /\ (eg result n \/ eqg result (sukb (of_int 0) n))

axiom usabs pre axiom :
forall n:r32. usabs_pre n <-> slt (neg (of_int 2147483648)) n

Fig. 3. WhyML abs logic specification

S %@ requires -2147483648 < n;
ensures ‘\result == n || \result == 0-n;
ensures ‘\result >= 0;
wf
int abks (int n)

Fig. 4. ACSL abs specification

3.4 Replacing proof goal

To facilitate the subsequent merging, the proof goal is substituted during translation
of WhyML to SMT-LIB. A new goal for the proof can be described as follows: If
the precondition of a function with its arguments is satisfied then the postcondition
with the arguments of the function and its result is not satisfied. The negation is
used because the SMT-solvers operation specifics — searching for example variable
values that will satisfy all restrictions described in SMT-LIB model.

;sfunction argument 1
(declare-const _arg (_ BitVec 32))
;;assign _arg here

sifunction result
[declare-const func res (_ BitVec 32))
:;assign func res here

[assert (usabs_pre
_arg })

[assert (not (usabs_post
_arg _func res)))

Fig. 5. Proof goal template

If such an example could not be found then the assumption is incorrect and the
predicate of the postcondition is always executed. Therefore, the Expected verdict
of the SMT-solver — unsat. It is important to note here that arguments and the result
of the function execution are not associated with machine code at this stage — the

99



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

merge module solves the problem of their binding. Fig. 5 shows SMT-LIB code of
goal to prove the correctness of the absolute value function.

3.5 Merging high- and low-level specifications

If you perform all the steps described in the previous sections of this paper, namely,
creating an NML model of the machine code and an ACSL to the WhyML
translation module, you can perform a merge in two different ways. The first
method is the merging at the level of WhyML, and the subsequent translation to
SMT-LIB by means of Why3. This approach has a number of advantages, mainly
related to Why3 capabilities for WhyML code analysis.

“4» Why3 Interactive Proof Session - o X
File

20 @ ¢
55 c g
gz

why3, Buil £In. BuiltIn *)

why3. Bool Bosl *]

il

B sl

9 resilt n \/ =q result (sub (of_int 0) n])

<> 51t (neg (of_int 2147483543)) n

cVC4(L5) = L]

nt 32) (o
15 regs) 34 sizel] 8¢

L

E) replay

Fig. 6 Why3 IDE

It is worth noting that Why3 IDE (fig. 6), can be used for interactive proof and
manual simplifications of verification goals. At the moment the MicroTESK team,
with the support of the author, is developing an NML to WhyML translation
module. The second approach, as well as the only one implemented at the moment,
is merging at the SMT-LIB level. The main advantage of this approach is that the
MicroTESK tool has already been implemented NML to SMT-LIB translation
module. In addition, the vast majority of operations and data types available in
NML have analogs in SMT-LIB.

For example, a set of General-purpose registers is modeled in the NML of the
PowerPC processor model as an array of 32-bit registers with a 5-bit index. There is
no predefined 5-bit unsigned type in Why3, let alone an array with such an index.
However, in SMT-LIB, as in NML, you can manually set the length of BitVec
constants. In addition, the translation directly to SMT-LIB allows to avoid
unnecessary abstractions that Why3 algorithm for WhyML to SMT-LIB translation
can add.

The task of the merge module is to bind together the function arguments and the
result of function of high-level language with registers and memory of the model of
machine code, and set the environment. Here, the environment refers to machine-

100



TTyrpo IT.A. Comernenne ACSL criermukarmii ¢ MarmaHbIM KozioM. Tpyost ACIT PAH, Tom 30, Bbi. 4, 2018 1., c1p. 95-106

specific things, such as the initial value of the stack register or instruction counter.
To do this, it is necessary to take into account the specificity of generation SMT-
LIB behaviors of the machine code and the specification for the function and
specificity of the ABI of architecture.

Next, in fig. 7 we can see binding of the arguments of instructions with the registers
for the PowerPC architecture. Developed by the MicroTESK team, generation
SMT-LIB by the NML model produces thousands of lines of code. This code can be
divided into two main parts: The declaration of all the logical constants needed to
describe the behavior model and the description of the state transformation formulas
by means of using one assert per machine code instruction and one for every of
machine instruction argument.

s sfunction argument 1

(declare—-const _arg 1 (_ BitVec 32))

(assert (= _arg 1 (select GPR!1 (_ bv3 5))})

;s sfunction result
(declare-const func res (_ BitWVec 32))
(agsert (= _func res (gelect GPR!47 (_ bv3 5))))

Fig. 7 Binding function argument and result

4. Evaluation

The developed approach was successfully used to verify the machine code of the
absolute value function on the basis of bitwise operations (“Fig. 8”), for which a
verdict was obtained, clearly indicating correctness of the function. Tests were also
developed to verify the correctness of the implementation of translation of
mathematical and logical operations of the ACSL language. Testing of the NML
model was done by means of MicroTESK tool.
int abs({int n)
{
int t = (unsigned int) n > (32-1):
return (-t) ~ (n-t);

Fig. 8 Absolute value function

5. Related works

In the why3-avr [16], [17] project, the deductive verification approach is used to
prove the correctness of non-loop programs in the assembly language of the AVR
microcontroller. The AVR microcontroller used in this study has a fairly simple
instruction set that allows you to manually specify the behavior model for each
command in the WhyML language, which does not have special means to describe
such structures. Also, the model code is described in such a way that allows the
programmer to simply copy the function code in the AVR assembly language and
add to it a formal specification to get WhyML code for checking the correctness of
the function. This approach is especially useful for direct development in a low-

101



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

level language because the Why3 tool has rich capabilities for transformation and
analysis of Why3 code. In addition, the use of Why3 allows converting the WhyML
code for proving by various SMT solvers.

However, the program in assembly language is different from compiled machine
code that in machine code is a sequence of bytes where there is no all information
associated with label names and variables, as well as the formal specification. In
addition, machine code does not allow you to abstract from your environment as
much as assembly language code. For example, in machine code, indicators such as
the address of a function in memory and the value of the stack register at the time of
entering the function are important. Also, a high-level formal language
specification, such as C, uses various abstractions, such as parameter names and
variables, that become unavailable after they are translated into assembly language
or machine code. The approaches proposed by the author differ from those
described in this project in that they allow using the specification of the high-level
language function for analyzing machine code, as well as scaling the supported
command system with the help of a specialized modeling language hardware NML.

In the Technical report published by the University of Cambridge Computer
Laboratory [18], the HOL4 proof assistant [19] is used for Formal verification of
machine-code programs. The paper describes a tool able to verify the machine code
for subsets of instructions for popular architectures ARMV4, PowerPC, x86.
Behavior model for these instructions was developed by independent developers, so
models for both ARM and x86 was designed for HOL4 language [20] [21], and the
PowerPC model [22] were manually translated from the Coqg language [23] to
HOLA4.

Here it is worth noting the similarity with the project why3-avr because instructions
behavior models were specified manually on unspecialized for such a purpose
language. The report terminology uses four levels of abstraction to describe the
logical implementation and specification of functions. To obtain a low-level
function model (level 2) automatic decompiler translates the machine code (level 1)
into recursive functions on the HOL4 language, and also generates their
specifications. The use of recursion, in this case, avoids the need to define loop
invariants. The user can then focus on interactively proving the properties of the
generated function using the HOL4 proof assistant.

For verification, the user also needs to describe the high-level model of the function
(level 3), as well as the specification of the function for (level 4). Further, by using
relations between levels, user proves that the machine code model complies with the
functional specification. In contrast to the interactive HOL4 approach, the approach
used in the author's study allows the presence of ACSL specifications to carry out
all stages in automatic mode. Also in the author's approach to proving the
correctness of machine code is not necessary to have a logical model of the behavior
of the function in a high-level language. This degree of automation is achieved
including the use of automatic SMT-solvers, in contrast to the interactive proof
assistant HOL4. Particularly worth noting is the approach to the translation of
programs into recursive functions. The use of high-level language loop invariants at
102



TTyrpo IT.A. Comernenne ACSL criermukarmii ¢ MarmaHbIM KozioM. Tpyost ACIT PAH, Tom 30, Bbi. 4, 2018 1., c1p. 95-106

the machine code level is extremely difficult due to the influence of various
compiler optimizations. The recursive functions may help to solve these problems.

A number of papers also describe the use of model checking [24] approach for
formal verification of machine code. Therefore, in the paper [25] for verification of
machine code of the microcontroller Motorola M68hc11 is used Bogor framework
[26]. This approach does not imply the presence of function contracts but is based
on the use of formally specified behavior models of the system as a whole. As a
result, it can be said that the scope of the requirements to be tested varies with the
use of deductive verification and model checking.

6. Conclusion

Most of the work that is reviewed specifies the behavior of machine code
instructions manually in the logical language. However, in order to simplify and
improve the reliability of processor models, the author proposed to describe them in
the NML language, designed specifically for such purposes, with the subsequent
automatic translation of the model into logical languages. The use of this approach
is also facilitated by the presence of a large set of tools in the MicroTESK tool to
work with NML, including the NML to SMT-LIB translator. The particularity of
ACSL specifications translation to WhyML code, for the case of verification of
machine code, such as the need to separate the specification from the behavior
model, as well as the importance of the introduction and implementation of the
register type.

The observance of such rules and guidelines will allow for automatic merging of
function specification and machine code behavior model and thus avoid the need for
manual specifying machine code behavior model on the logical language, as
required in the project why3-avr. There were proposed two approaches to merge of
code specifications and behavior models: at the level of WhyML, and at the level of
the SMT-LIB. The first approach allows to use SMT-LIB code generated directly
from NML model that help us to avoid extra complexity coming from double
translation NML to WhyML and then WhyML to SMT-LIB. The second approach
allows to use all the features of the Why3 tool, such as interactive transformations
and support of various provers and solvers.

The use of the methods and approaches described in this paper will allow you to
fully automate deductive verification of machine code without loops for compliance
with the contract specification in ACSL language.

References

[1]. MicroVer — Deductive Verification Tool for Machine Code. Available at:
https://forge.ispras.ru/projects/microver, accessed 20.07.2018

[2]. Leroy Xavier. A Formally Verified Compiler Back-end. Journal of Automated
Reasoning, vol. 43, issue 4, 2009, pp 363-446

[3]. CompCert — The CompCert C compiler. Available at: compcert.inria.fr, accessed 13-02-
2018

[4]. GCC Releases. Available at: http://www.gnu.org/software/gcc/releases.html, accessed
13-02-2018

103



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

[5]

[6].
[7].

(8].

[9].

[10].
[11].

[12].

[13].

[14].

[15].

[16].
[17].
[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

[26].

. Butterfield A., Ngondi G., Kerr A. A Dictionary of Computer Science (ed. 7), Oxford
University Press, 2016, 608 p.

ACSL specification. Available at: http://frama-c.com/acsl.html, accessed 13-02-2018
Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. In Proceedings of the 6th Spring/Summer Young
Researchers’ Colloquium on Software Engineering (SYRCoSE), 2012

C Barrett, R Sebastiani, S Seshia, and C Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability, vol. 185 of Frontiers in Artificial Intelligence and
Applications, 10S Press, Feb. 2009, pp. 825-885

EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors,
Rev. 1 (EIS 2.1). Available at:
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf, accessed 13-02-
2018

Filliatre JC., Paskevich A. Why3 — Where Programs Meet Provers. Lecture Notes in
Computer Science, vol. 7792, 2013, pp. 125-128

M. Mandrykin, A. Khoroshilov. A Memory Model for Deductively Verifying Linux
Kernel Modules. Lecture Notes in Computer Sciences. vol. 10742, 2018, pp. 256-275
Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
Boris Yakobowsk. Frama-c: A Software Analysis Perspective. Formal Aspects of
Computing, vol. 27, issue 3, 2015, pp 573-609

Jessie3 at Why3 source repository. Available at:
https://gitlab.inria.fr/iwhy3/why3/tree/master/src/jessie, accessed 12.04.2018.

Barrett C., Fontaine P., Tinelli C. The SMT-LIB Standard Version 2.6. Available at:
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf, accessed
12.04.2018

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds. CVC4. Lecture Notes in Computer
Science, vol. 6806, 2011, pp. 171-177

Schoolderman M. Verifying Branch-Free Assembly Code in Why3. Lecture Notes in
Computer Science, vol. 10712, 2017, pp. 66-83

Why3-avr project repository. Availible at: https://gitlab.science.ru.nl/sovereign/why3-
avr, accessed 12.04.2018.

Myreen M.O.: Formal verification of machine-code programs. Ph.D. thesis, University
of Cambridge, 2009

Konrad Slind and Michael Norrish. A brief overview of HOL4. Lecture Notes in
Computer Science, vol. 5170, 2008, pp. 28-32

Anthony Fox. Formal specification and verification of ARMG6. Lecture Notes in
Computer Science, vol. 2758, 2003, pp 25-40

Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework.
Technical Report CMU-CS-03-108, Carnegie Mellon University, 2003.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006, pp. 42-54

Yves Bertot. A short presentation of Cog. Lecture Notes in Computer Science, vol.
5170, 2008, pp. 12-16

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen.
Systems and Software Verification: Model-Checking Techniques and Tools. Springer,
2001, 190 p.

Edelman Joseph R. Machine Code Verification Using the Bogor Framework. Master
Thesis, Brigham Young University, 2008

Bogor framework homepage. Available at: http://bogor.projects.cs.ksu.edu, accessed:
13.02.2018

104



TTyrpo IT.A. CoBmernerre ACSL criermduxaimii ¢ MatuHEBIM KoztoM. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 1., ctp. 95-106

CoBwmeweHne ACSL cneuymncpukaumm ¢ MaWMHHbLIM KOQOM

I1.A. Ilympo <pavel.putro@ispras.ru>
Hayuonanvhuiii uccnedosamenvcxuil ynusepcumem ““‘Boicuias wikona skonomuru”,
101000, Poccus, e. Mockea, yn. Macrhuyxas, 0. 20

AnHotaums. Ilpu pa3paboTke NporpaMM Ha $3bIKaX BBICOKOTO YPOBHS, pa3paboT4MKam
HPUXOJMUTCS JIeTaTh HPEITNONOKEHNE O KOPPEKTHOCTH KoMmuisATopa. OZHAKO 3TO MOXKET
OBITH HENPHEMJIEMO JUISl KPHUTHYECKH BaXKHBIX CHCTeM. ITOCKONBKY HA JaHHBIH MOMEHT He
CYILIECTBYET MOJIHOLECHHBIX KOMIMIISTOPOB, IJIsI KOTOPHIX KOPPEKTHOCTh JIOKa3aHa, aBTOP
TpeUIaraeT pemars 3Ty IpooiieMy MyTEM JI0Ka3aTelbCTBAa KOPPEKTHOCTH CreHepHPOBAHHOTO
MAaIIMHHOTO KOJa METOJaMH JeIyKTHBHOH Bepu(UKanuu. s TOCTHXKEHHs NAaHHOW LeNH
HEOOXOIMMO pENINTh PSR 3a7ady, OJHOM M3 KOTOPBIX SIBISICTCS CIUSHUE MOJEIH
crierUKAUN Tpe]- U MOCTYCIOBUIA ¢ MOJEbIO MOBEJCHUSI MAIIHHOTO Kojxa. B maHHOM
CTaThe INPEACTABICH MNOAXOJ K IPOBENCHHIO CIUAHMA crerubukanuid st ciaydas Cu
¢ynakuuit 6e3 nukinoB. CyTe MoAXola 3aKII0YAaeTCs] NOCTPOCHUH MOJENEH KaKk MAaIlliHHOTO
KoJa, TaKk M ero crenudukanuy Ha eAWHOM JIOTUYECKOM s3bIKe, M Hcroib3oBaHuK ABI
LETEBOTO IPOLECCOopa Ul CBA3BIBAHHS MAIIHHHBIX PETHCTPOB C MapamerpaMu (QyHKIUH
BBICOKOTO YpOBHs. J[Js yCIIeHON peain3anny Takoro Moaxoaa HeoOXOUMO MPEINpUHTh
psix Mep 10 00ECHEeYEeHHI0 COBMECTHMOCTH BBICOKOYPOBHEBBIX CIEIM(MUKAIMN C MOJEIBI0
HOBEJICHUsI MaIMHHOTO Kozaa. K Takum MepaM, B 4aCTHOCTH, OTHOCSITCSI HCIIOIb30BaHHE TUITA
perucTpa B BBICOKOYPOBHEBBIX CHEHU(UKALUIX, TPAHCISIMSA Ipeq- U IOCTYCIOBUH B
a0cTpakTHBIC TpeAMKaThl. Takke B CTaThe MPOU3BOAUTCS W OOOCHOBBIBAETCS BBHIOOD
JOTHYECKOTO s3bIKa JUIsi TOCTPOCHMS MOJENel, BBIOMpAIOTCs Hanbosee MOAXOMSIINE
HHCTPYMEHTHI ISl peaIM3alliy MOAXO0a CIMSHHUS CHELU(UKAIMi U MPOU3BOAUTCS OLCHKA
paboThl CHCTEMBI JIEAYKTHBHONW BepH(UKALMH MAIIMHHOTO KOJA, TIOCTPOCHHONW Ha OCHOBE
HPEIUIOKEHHOT0 TMOJX0/a, C HCIIOJIb30BAaHUEM TECTOBBIX HPHMEPOB IOJTYYCHHBIX IyTEM
xoMnwriuy Cu mporpamm 6e3 IHKIIOB.

KnioueBblie ciioBa: nenyKTuBHas Bepudukanms, (GopMalbHbIE METOIbI; MAIIMHHBIA KOJ,
ACSL.

DOI: 10.15514/ISPRAS-2018-30(4)-6

Jas nuruposanus: [Tyrpo I1.A. CoBmemenne ACSL crienudukanmii ¢ MaITMHABIM KOIOM.
Tpyner UCIT PAH, Tom 30, Bemm. 4, 2018 r., ctp. 95-106 (Ha anrmmiickoMm s3eike). DOI:
10.15514/ISPRAS-2018-30(4)-6

Cnucok nutepaTtypbl

[1]. MicroVer — Deductive Verification Tool for Machine Code, doctymHo mo ccbuike:
https://forge.ispras.ru/projects/microver, nara obpamenus 20.07.2018

[2]. Leroy Xavier. A Formally Verified Compiler Back-end. Journal of Automated
Reasoning, vol. 43, issue 4, 2009, pp 363-446

[3]. CompCert — The CompCert C compiler. Joctynxo mo ccsutke: compceert.inria.fr, nara
obpamenus 13-02-2018

[4]. GCC Releases. Hocrynuo 1o ceeuike: http://www.gnu.org/software/gcc/releases.html,
nara obpamenus 13-02-2018

[5]. Butterfield A., Ngondi G., Kerr A. A Dictionary of Computer Science (ed. 7), Oxford
University Press, 2016, 608 p.

[6]. ACSL specification. Jocrynro mo cceuike: http://frama-c.com/acsl.html, nara
obpamenus 13-02-2018

105



Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106

[71.

[8].

(9.

[10].
[11].

[12].

[13].

[14].

[15].

[16].
[17].
[18].
[19].
[20].
[21].

[22].

[23].

[24].

[25].

[26].

106

Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. In Proceedings of the 6th Spring/Summer Young
Researchers’ Colloquium on Software Engineering (SYRCoSE), 2012

C Barrett, R Sebastiani, S Seshia, and C Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability, vol. 185 of Frontiers in Artificial Intelligence and
Applications, 10S Press, Feb. 2009, pp. 825-885

EREF: A Programmer’s Reference Manual for Freescale Power Architecture Processors,
Rev. 1 (EIS 2.1). JTocTymHO 1O CChUIKE:
http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf, nata obpamiexns
13-02-2018

Filliatre JC., Paskevich A. Why3 — Where Programs Meet Provers. Lecture Notes in
Computer Science, vol. 7792, 2013, pp. 125-128

M. Mandrykin, A. Khoroshilov. A Memory Model for Deductively Verifying Linux
Kernel Modules. Lecture Notes in Computer Sciences. vol. 10742, 2018, pp. 256-275
Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
Boris Yakobowsk. Frama-c: A Software Analysis Perspective. Formal Aspects of
Computing, vol. 27, issue 3, 2015, pp 573-609

Jessie3 at Why3 source repository. JIocTyITHO MO CChIIKE:
https://gitlab.inria.friwhy3/why3/tree/master/src/jessie, nata obpamenus 12.04.2018.
Barrett C., Fontaine P., Tinelli C. The SMT-LIB Standard Version 2.6. JocrymHo mo
cesuike: http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf, nara
obpamenus 12.04.2018

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi¢, Tim King, Andrew Reynolds. CVC4. Lecture Notes in Computer
Science, vol. 6806, 2011, pp. 171-177

Schoolderman M. Verifying Branch-Free Assembly Code in Why3. Lecture Notes in
Computer Science, vol. 10712, 2017, pp. 66-83

Why3-avr project repository. Availible at: https:/gitlab.science.ru.nl/sovereign/why3-
avr, nara oopamenus 12.04.2018.

Myreen M.O.: Formal verification of machine-code programs. Ph.D. thesis, University
of Cambridge, 2009

Konrad Slind and Michael Norrish. A brief overview of HOL4. Lecture Notes in
Computer Science, vol. 5170, 2008, pp. 28-32

Anthony Fox. Formal specification and verification of ARMG6. Lecture Notes in
Computer Science, vol. 2758, 2003, pp 25-40

Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework.
Technical Report CMU-CS-03-108, Carnegie Mellon University, 2003.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006, pp. 42-54

Yves Bertot. A short presentation of Coq. Lecture Notes in Computer Science, vol.
5170, 2008, pp. 12-16

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen.
Systems and Software Verification: Model-Checking Techniques and Tools. Springer,
2001, 190 p.

Edelman Joseph R. Machine Code Verification Using the Bogor Framework. Master
Thesis, Brigham Young University, 2008

Bogor framework homepage. JloctynHo mo cceuike: http://bogor.projects.cs.ksu.edu,
nara oopamenus 13.02.2018



Prosega/CPN: An Extension of CPN Tools
for Automata-based Analysis and
System Verification

1J.C. Carrasquel <julio.carrasquel@yahoo.com>
’A. Morales <ana.morales@ciens.ucv.ve>
*M.E. Villapol <maria.villapol@aut.ac.nz>
!a Sapienza University of Rome, Department of Computer, Control, and
Management Engineering, Via Ariosto 25, Rome, 00185, Italy
“Central University of Venezuela, School of Computer Science,
Av. Paseo Los llustres, Caracas, 1040, Venezuela
$Auckland University of Technology, School of Engineering, Computer and
Mathematical Sciences, 55 Wellesley Street East, Auckland, 1010, New Zealand

Abstract. The verification and analysis of distributed systems is a task of utmost importance,
especially in today’s world where many critical services are completely supported by
different computer systems. Among the solutions for system modelling and verification, it is
particularly useful to combine the usage of different analysis techniques. This also allows the
application of the best formalism or technique to different components of a system. The
combination of Colored Petri Nets (CPNs) and Automata Theory has proved to be a
successful formal technique in the modelling and verification of different distributed systems.
In this context, this paper presents Prosega/CPN (Protocol Sequence Generator and
Analyzer), an extension of CPN Tools for supporting automata-based analysis and
verification. The tool implements several operations such as the generation of a minimized
deterministic finite-state automaton (FSA) from a CPN’s occurrence graph, language
generation, and FSA comparison. The solution is supported by the Simulator Extensions
feature whose development has been driven by the need of integrating CPN with other formal
methods. Prosega/CPN is intended to support a formal verification methodology of
communication protocols; however, it may be used in the verification of other systems whose
analysis involves the comparison of models at different levels of abstraction. For example,
business strategy and business processes. An insightful use case is provided where
Prosega/CPN has been used to analyze part of the IEEE 802.16 MAC connection
management service specification.

Keywords: formal methods; coloured Petri nets; CPN tools; finite-state automata; protocol
verification.

DOI: 10.15514/ISPRAS-2018-30(4)-7

For citation: Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN
Tools for Automata-based Analysis and System Verification. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 107-128. DOI: 10.15514/ISPRAS-2018-30(4)-7

107



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

1. Introduction

The verification of distributed systems and the assurance of their correctness is a
task of utmost importance; specially in today’s world where many critical services
are completely supported by computer technologies. Among the solutions for
system modelling and verification, Petri Nets [1] play a major role since its
capability of graphically visualize systems, and for maintaining the formal rigor, so
it allows to perform a convenient analysis of the behavioral properties of a system.
Thus, the formalism of Petri Nets has been extended to other models in order to
enrich their expressiveness and practicability. Particularly, we consider Coloured
Petri Nets (CPNs) [2] where data types (colors) may be associated to net elements.
CPN Tools [3] is a consolidated software tool for editing, simulating, and analyzing
CPN models.

However, when dealing with a higher complexity of the system, it may be useful to
combine the usage of different analysis techniques. This also allows the application
of the best formalism or technique to different components of a system. In the
context of Colored Petri Nets, the last version of CPN Tools includes the Simulator
Extensions whose development has been driven by the need of integrating CPN
with other formal methods [4]. In particular, we consider the integration of CPNs
and Finite-state Automata (FSA) which has been proved to be useful for the
validation of different protocols and communication systems [5] [6] [7].

For instance, given a CPN’s occurrence graph (OG), the arcs through a path in the
OG may be seen as the sequence of service primitives that a user (i.e. another
system entity in a higher layer) invokes in order to request some action by a service
provider. The nodes in the OG may be considered as changes of state in the system
due to the services invocations. Finally, some nodes of the OG may represent halt
states, meaning the termination of a specific process. Hence, the OG can be seen as
a FSA, which can be analyzed using well-known algorithms and theorems.

There are several tools for building, combining, optimizing, and searching Finite-
state Automata. However, in order to apply them for analyzing CPNs and
occurrence graphs, these ones must be converted into FSA specific formats (i.e. see
[5] [6]). Using several tools may complicate the verification process.

Thereby, we developed a solution called Prosega/CPN (Protocol Sequence
Generator and Analyzer). The tool aims to bridge conveniently the formalism of
CPNs with Finite-state Automata, taking advantage of the Simulator Extensions
feature in CPN Tools. Thus, the software provides a mechanism for transforming a
CPN’s occurrence graph into a minimized deterministic FSA as well as other
operations for language generation and FSA comparison. Prosega/CPN has been
conceived to support the protocol verification methodology proposed by Billington
[8]. However, the tool may be useful to support the verification of other systems
whose strategy may involve the usage of FSAs, or the comparison of models at
different levels of abstraction; for example, business strategy and business
processes.

108



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

The remainder of this paper is structured as follows. Section 2 introduces the
literature related to our work. Section 3 presents some formal definitions for
understanding the models managed by Prosega/CPN. Sections 4 and 5 describe the
tool functionalities and architecture respectively. Section 6 describes a use case
where the tool has been used to analyze part of the IEEE 802.16 MAC connection
management service specification. Finally, Section 7 presents the conclusions.

2. Related work

Prosega/CPN has been developed within the context of system verification through
the formalism of Coloured Petri Nets (CPNs) and Finite-state Automata (FSA). The
tool has been conveniently developed as an extension of CPN Tools [3] since it
performs several operations on FSAs generated from a CPN model. i.e. the
reduction of a CPN’s occurrence graph into a FSA. Hence, through the development
of Prosega/CPN we have been focused in three topics within the literature:

e Works dealing with the development of extensions for CPN Tools [4] [9]
[10] [11].

e Tools and other solutions for the analysis and manipulation of FSA [12]
[13] [14] [15] [16].

o Works proposing a system verification methodology using CPNs and FSA,
and the use cases in which it has been applied [5] [6] [7] [8] [17], and other
scenarios where both formalisms have been used together [18] [19] [20].

CPN tools has a history for communicating with external solutions; its architecture
provides a set of communication primitives for connecting external software to the
CPN simulator engine. As an initial effort, it was developed Comms/CPN [9], a
library for Java and C/C++ which makes it possible for CPN Tools to communicate
based on TCP/IP with external application and processes. The BRITNeY Suite [10]
is other solution which provides model visualizations in an external tool, and more
recently Access/CPN [11] that provides a channel to interact with the CPN Tools
simulator engine from external Java programs. However, while these previous tools
have made it easy to interact with CPN Tools, they have not made it possible to
extend the software. Thereby, it was developed the Simulator Extensions [4] feature
included in the last version of CPN Tools. This component provides a mechanism
for adding new functionalities within the CPN Tools Graphical User Interface
(GUI), thereby allowing integrating other related formalisms with CPN models; as a
result, it has been possible to handle other models in the tool such as low-level
Place/Transition nets, Declare models, and drawing message sequence charts from
model executions [4].

On the other hand, Finite-state Automata (FSA) have been used in a much wider
spectrum of fields than CPNs; as an important tool for FSA manipulation we
highlight the FSM Library from AT&T Labs [12] which is a collection of Unix
software tools for creating and manipulating finite-state machines. Despite the
library is quite general purpose, it was designed for speech processing applications

109



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

such as speech recognition/synthesis; FSM Library was used as well in previous
works regarding the verification of communication systems based on CPNs and
automata [5] [6]. Some of the researchers of the AT&T FSM project developed later
an enhanced version called OpenFST [13], which is an open-source alternative that
also allows to construct finite-state transducers, and it provides a C++ template
library. Within the range of tool solutions for FSA manipulation, we may also find
Foma [14], the FAdo project [15] and the specialized pedagogical tool JFLAP [16]
among many others.

Bridging CPNs and FSA may be useful for verification of systems of very high
complexity. In particular, Billington [8] proposed a CPN and FSA approach for the
verification communication systems that has proven to be successful; namely, in the
verification of the Resource Reservation Protocol (RSVP) [5], the Wireless
Application Protocol (WAP) [6], the Transmission Control Protocol (TCP) [7], and
the Internet Open Trading Protocol (IOTP) [17], among other cases. Between other
domains in which both formalisms have been applied together we may find the
verification of web-services composition [19] [20] or vehicular traffic control
systems [18], just to mention a few.

3. Formal Definitions

This section presents some formal definitions of the models and data structures that
are manipulated through the functionalities of CPN Tools and Prosega/CPN. In
particular, it is formulated how it can be derived an occurrence graph (OG) from a
CPN model, and afterwards is explained how can it be generated a Finite-state
Automaton (FSA) from a CPN’s occurrence graph. The following formulations are
based in the work done in [8]. Albeit CPNs are managed in this work; for the formal
definition it has been rather convenient to generalize the type into a High-level Petri
Net (i.e. for proving further theorems regarding the relationship between an OG and
a FSA as described in [8]). Hence, we firstly take the definition of a High-level Petri
net (HLPN) [21].
Definition 1. A High-level Petri Net is a structure of the form
HLPN = (P,T,D; Type, Pre, Post, my) where:

e Pisafinite set of Places;

e Tis afinite set of Transitions such thatP N T = @
¢ Dis a non-empty finite set of non-empty domains where each element of D is
called a type.
e Type:P UT — Disa function used to assign types to places, and to determine
transition modes.
e m, € uPLACEis a multi-set called the initial marking of the net such that
UPLACETis a set of all possible multi-sets of PLACE
e Pre,Post:TM — uPLACEare the pre and post mappings with
o TM = {(t,m)|t € T,m € Type(t)}the set of transition modes.
e PLACE = {(p,9)|p € P, g € Type(p)}the set of elementary
places.

110



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

For the analysis of a High-level Petri net it is generated an occurrence graph (OG).
We consider that an OG can be defined as a labelled and rooted directed graph,
where the nodes of the graph represent markings of the Petri Net, and the directed
arcs represent the transition modes (or binding elements [2]) that can occur in all
executions from the initial marking. On the other hand, the root of the graph refers
to a node, which is considered as the initial state. In addition, the arcs of an OG may
be labelled by the transition modes. Thus, we start by defining a labelled and rooted
directed graph, and then we give the definition of an OG associated to a HLPN.
Definition 2. A labelled directed graph, with vyas the root node, is a triple G =
(V, L, E) where:

o Vis afinite set of vertices or nodes;v, € Vrepresents the root or initial node.

e Lis aset of labels;

e E CV xVisasetof labelled directed edges.
Definition 3. An occurrence graph of a HLPN with an initial markingv,is a labelled
and rooted directed graphOG = (V,TM, A)where

o Visafinite set of vertices or nodes reachable fromm(the reachability set);

m, € Vrepresents the initial marking (root node);
e TMis the set of transition modes of the HLPN;

o A= {(m, tm,m) eV XTM xV'|lm = m’}is the set of arcs (directed
edges) labelled by transition modes.

Remark. m inm'indicates the ocurrence of a transition mode tm € TM in a
markingmwhich results in a new markingm’

However, when we are only interested in the transition names, then the arcs of the
OG are just labelled with such transitions names rather than the transition modes
(binding elements). For example this is useful when it is just required to understand
which user observable events (service primitives) may lead from a state of the
system to another one; instead of transition modes which involve the parameters
binded to such events. In addition, when we are also interested in the identification
of the markings for the nodes of the OG, rather than the marking details, we
introduce an injection I: [m,] — Nsuch that this function maps the set of reachable
markings from mg(denoted as[m,]) into the set of natural numbers. Giving the
described abstractions for transitions and markings, we consider the definition of an
abstract OG.

Definition 4. An abstract OG of a HLPN with an initial marking m, is a labelled and
rooted directed graphOG = (V, T, A)where

o V ={I(m)|m € [mg]} is the set of nodes;

e I(mg) € V represents the root or initial node.

e Tis the set of transitions of the HLPN ;
(t;m)ETM ]
¢« A= {(I(m),t,l(m’)) EVXTXV'Im - m'} is the set of arcs

labelled by transition.

111



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

We point out that the abstract occurrence graph OG defined above is finite. i.e. It
has a finite number of states. Indeed this is an important fact when dealing with real
scenarios. This means that the corresponding Petri Net must be a bounded net [1],
and hence a preliminary boundedness analysis on the Petri Net is performed.
Finally, it is presented a mapping from an abstract OG (Definition 4) into a Finite-
state Automaton FSA. We define a function Prim: T — SP U {&} that maps each
transition of the HLPN to either an identifier name (i.e. an user observable event or
service primitive name), or to an epsilon (i.e. an empty move); SP is the set of
identifiers (for the user observable events or service primitive names) for the system
that we are describing.

Definition 5. A Given an abstract occurrence graph0G = (V, T, A)it is derived the
corresponding Finite-state AutomatonFSA = (V, SP, Agp, vy, F)where

o Vis the set of nodes of the abstract OG (the states of the FSA);
e SPis the set of identifiers (for the user observable events or service primitive
names) of the system of interest (the alphabet of FSA);
o Asp = {(v, Prim(t),v")|(v,t,v") € A}is the set of transitions labelled by
elements of SP or epsilons (the transition relation of the FSA);
e wpycorresponds to the abstract initial marking (initial state of the FSA).
e F C Vthe set of final (acceptance) states.
Prosega/CPN performs the conversion of an OG as described in Definition 4 into a
FSA as described in Definition 5. Moreover, this mapping between OG and the FSA
allows the tool conveniently manage the generation of the language and the
comparison between other FSAs.

4. Functionalities

Prosega/CPN is an extension in CPN Tools. Thus, the user interacts with the
application using a Graphical User Interface (GUI) through a tool palette added to
CPN Tools (see fig. 1) - available under the Tool box entry [3]. The tool supports
the generation of a minimized deterministic Finite-state Automaton (FSA) derived
from the CPN’s occurrence graph, the language generation, and the comparison
between two different FSAs. We proceed to explain these functionalities in detail.

MNet

Simulation Prosega/CPN
State space

Style RUN
View

Prosega/CPN
Development

IN- |
LANG‘DIFF =

Fig. 1. Tool palette of Prosega/CPN

112



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

4.1 FSA Generation

Once the occurrence graph (OG) from a CPN model is generated using the CPN
Tools simulator [3], its associated Finite-state Automaton (FSA) can be generated
and reduced using the RUN tool (see Fig. 1). To this aim, the following steps are
performed: getting the transitions, and dead markings of the OG, assigning
identifiers to transitions (i.e. constructing the mapping Prim defined in Section 3),
reducing the FSA, and displaying the results. Here, we consider the structure of an
abstract OG where the nodes are identified by numbers, which represent the
markings and the arcs are just labelled with the transitions rather than the binding
elements (see Definition 4).

Firstly, the tool communicates with the CPN Tools simulator in order to obtain all
the transitions and the dead markings (see Section 5). The user interacts with the
Prosega/CPN GUI to assign identifiers (corresponding to user observable events or
service primitive names) to the model transitions (i.e. mapping elements from a set
SP). The character 0 is considered as an epsilon (€). Hence, any transition assigned
with 0 is considered an epsilon transition (or empty move). Then, the user chooses
the set of terminal states F for the FSA. which may include nodes representing the
dead markings or other nodes in the OG. Thereby, it is obtained a FSA in line with
Definition 5.

|4 Prosega/CPN ([E=8(E=R "%

Minimized Deterministic FSA Generation

Please enter an identifier (Id) for each transition listed. Also, you may enter the terminal states. Othenwise, you may want
to importidentifiers and terminal states using the Import buttons.

Arc Identifiers Terminal States Options

# |Page Transition I

State Consiger dead-mariings as part of ()
12 CreatConnecti.. MACCrConnA. ‘

i the list ofterminal states:

13 CreatConnecti.. MACCrConnCt
14 CreatConnecti.. MACCrConn...
15 CreatConnecti.. MACCrConn...
16 CreatConnecti.. MACCrConnl...
17 CreatCannact  MACCACARR

Arc’s id pattern: @) int () B-letter string

Ano o e
©w~m o
AW
BN

|_Clear | | Add | | Remove |

| import | Identifiers bt | Import | Terminal_States tt

Submit Cancel |

Fig. 2. Intial Prosega/CPN in terface where the user can assign Ids to transitions and enter
terminal states

For instance, fig. 2 shows the Prosega/CPN interface which supports the described
operation. In particular, it is defined a FSA given a CPN’s occurrence graph
extracted from the use case in Section 6. The user assigns identifiers for the CPN
transitions. For example, the identifier 1 to the transition MACCrtConnReq, which
is in the CPN model page CreatConnection. Later, the user chooses the following
nodes of the OG as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some are not
displayed in the figure due to window size limitation). Afterwards, the modelled
FSA is reduced by following the algorithm described in [22], which consists in
performing the following operations over a FSA:

113



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

e removal of epsilon transitions (remove empties);

e removal of non-determinism (determinization);

o reduction by identifying and merging equivalent states (minimization).
The algorithm produces as output a reduced deterministic FSA with a minimal
number of states that is equivalent to the input automata. Finally, an interface
showing the results of the FSA reduction is displayed to the user as shown in fig. 3.

| = Prosega/CPN =
FSA Display and Language Generation

The resulting minimized deterministic FSA is shown below.

FSAlnfo FSA Image Preview Identifiers

Information Value
fstiype vector

Page Transition C]
ChangeConnecti

ConnfrRejected

o0

arctipe standard
Input symboltable  none ()
output symbol table  none B
#of states 1 ==
#ofarcs 17
Inttal state 6 = B L L 2
#offinal states 2 1 /Ty s s &
#ofinputioutputep.. 0 Q U X ~ !
#ofinputepsiions 0 5 3 = 10
# of output epsilons = L =
#ofaccessivle sta.. 11 12
#ofcoaccessivle . 11 1
#0of connected stat.. 11

#of connectedco.. 1 1
#ofstronglyconn 1

input matcher ves v Openimage | | Generate Language | | ExportFSA

o~ mawN |

geConnecti
CreatConnection
CreatConnection
CreatConnection
3 CreatConnection
pows| |14 CreatConnection

15 CreatConnection
16 CreatConnection

clio

| et

Fig. 3. Interface showing the results of the FSA reduction process

The interface shows general information about the reduced FSA (FSA Info), such
as initial state and number of arcs, which may be relevant for the FSA analysis. It
also includes a graphical representation of the FSA (FSA Image Preview), and the
established mapping between the identification numbers/names assigned by the user
and the transition names, which may be useful for debugging and verification of the
model.

4.2 Language generation

The language accepted by a FSA can be generated by using either the LANG tool in
Fig. 1 or the Generate Language button in Fig. 3. The interface shown in Fig. 4 is
displayed to the user after it clicks on the LANG tool. Then the user can choose
both the FSA, in plain text or in the compiled format [13], for which the language
will be generated and the corresponding symbol table file—for mapping the arc
inscriptions with the symbols selected by the user.

114



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

|2/ Prosega/CPN [o)® =
FSA Language Generation

Please import both the FSA and the corresponding symbol
table file.

FSA Files Format

O plain-text ()

© compiled binary (fst)
FSA File
FSA | Import | NoSelectedFile.

Symbols Table File

|_Import | No Selected File

| supmit Cancel

Fig. 4. Language generation interface

The language generator module generates the language L of the FSA by extension;
if L is finite, the whole sequences are printed; otherwise a subset of the language, L’
€ L is generated, as illustrated in fig. 5. In particular, L’ is a set of symbol
sequences whose symbols belong to different arcs in the FSA. Notice that some
arcs of the FSA may be labelled with the same symbol. However, in the generation
of each sequence, each arc of the FSA is visited just once.

Indeed, for generating each sequence accepted by the automaton it was developed
an algorithm based on iterative Depth-first Search (DFS), which was implemented
in the language generator component of Prosega/CPN (as mentioned in Section 5).
This component performs DFS between the initial state of the FSA, to each of the
halt states. Hence, the symbols of the arcs visited through the path from the initial
state to a specific halt state are printed, thereby representing a sequence accepted by
the automaton. In addition, this module supports a generator of random sequences
of the language symbols, as shown in Fig. 6, which may be useful when the
language is infinite. For example, in Fig. 5 and 6, we can see the following sequence
of language symbols: 1, 5 which corresponds to the sequence of actions
(transitions): MACCrtConnReq, MACCrtConnCf2 (as shown in the interface in fig.
4, where the user assigned an Id (language symbol) to each transition).

115



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

L2/ Prosega/CPN 5=
[ Generate Languags | Generate Random

Iflanguage (s infinite oniy some anguages symbol sequences will be shown.
Otherwise, the whole language is displayed

ouzput

6--8
15

1238
12347801011121314
1234710112134
123411121314

Gord

1234

123478910
12347801011121218
1234789101115
1234710
123471011121316

Generale Language | | ExportLanguage | | Clear |

Exit

Fig. 5. Interface showing part of the language accepted by the FSA of Fig. 3

In particular, for generating each random sequence it is computed a random walk in
the FSA from the initial state to any of the halt states. Whenever a halt state is
visited, the walk will be terminated with a probability p/100 s.t 0 < p < 100, and the
sequence of symbols, which were collected throughout the visited path will be
printed. Thus, in the Generate Random interface (fig. 6), the user can manipulate the
average size of the randomly generated sequences of language symbols by entering
the halt-rate parameter value p. Therefore, if the value p is close to 0, the number of
language symbols in each sequence may be big, while if p is close to 100, then the
number of language symbols in each sequence may be small, thereby determining
the length of each sequence. i.e. since the halt-rate parameter value in fig. 6 is 55, in
that case the sizes of the sequences are medium.

|/ Prosega/CPM = & ==
[ cenerate Language | Generate Random
Random-generated language symbol sequences will be shown.
Use the halt.ata paramatar fo manipulate the average size of the seguances of
language symbols It must be setto a value between 0 and 100 If the value is close to 0

the sizes ofihe sequences may be big while fitis cose to 100 the size of the sequences may be small

output

1234710

1234

1234

12341115

15

15

1234111213167801078810710 111511121316

1234111213167881078010710 111511121316 v

55 halt.rate p (0 p < 100) defauit 100

Generale Random | | Delete | | Clear | | Export Quiput |

Exit

Fig. 6. Interface showing some randomly generated sequences of language symbols

116



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

() ProsegascPN ol @ =
Resulting Difference FSA
The resulting difference FSA is shown below.

Difference F SA Image Preview

Openimage | | Generate Language | | ExportFSA

Exit

Fig 7. The interface shows the resulting difference FSA given two automata as parameters

4.3 FSA Difference

The user can use the DIFF tool to calculate the difference between two automata, F
A and F B. This functionality, whose output interface is illustrated in fig. 7,
generates a new automaton F C which only accepts the sequence of symbols
accepted by the first automaton F A , and that are not accepted by the second one F
B . In particular, F B must be an epsilon-free, deterministic finite automaton. This is
useful to understand the sequences of languages symbols in which may differ two
models; in this sense, as seen in fig. 7, this functionality allows to generating the
language of F C for getting such sequences in which may differ two models.

5. Architecture

Prosega/CPN is implemented in Java programing language, so we use the new
feature in CPN Tools 4 called Simulator Extensions [4] to add the software
functionalities. Fig. 8 shows the software architecture, which illustrates the relation
ship among all the components of our tool, CPN Tools and the third-party
components. Communication between the CPN Tools GUI and the simulator, and
between the simulator and the Simulator Extensions is supported by the BIS
(Boolean - Integer - String) protocol. Each protocol message is encoded using a
number of booleans, integers, and strings as explained in [23]. In order to facilitate
the development of Prosega/CPN we use some third-party libraries, which
implement many of the functions to manage and display the automata.

In particular, we utilize OpenFST [13] [24] for FSA reduction and FSA difference,
and Graphviz [25] for drawing the automata. On the other hand, we wrote the code
for language generation (fsm2language) in C programming language [26]. The
fsm2language implements the procedures for language generation and the
computation of random sequences accepted by a FSA that were described in Section
4. The bridge between the fsm2language component and the Prosega/CPN tool is

117



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

supported by JNI (Java Native Interface), which enables a Java program to call
native libraries written in C/C++ programming language.

CPN Tools fsm2language

Lo |
BIS BIS
au o Simuiator e Smulator L1 | procega/cPN ||
extensions

Fig. 8. Prosega/CPN Architecture

6. Use Case

The IEEE 802.16 standard [27] is responsible for specifying and describing the air
interface of Broadband Wireless Access Systems (BWA), and point-multipoint
fixed/mobile wireless metropolitan area network. The standard is limited to the
description of the Medium Access Control (MAC) and physical (PHY) layers. In
overall, IEEE 802.16 provides great benefits for providing mass broadband wireless
connectivity, allowing user mobility, mesh-mode network support, and even has
been thought as an alternative for Internet-of-Things deployments. However, due to
its inherent complexity, there are several parts of the specification that turn out to be
ambiguous, difficult to understand and imprecise. In this context, Morales et al. [28]
[29] has contributed establishing a formal model for a module of IEEE 802.16. In
particular, it developed a formal verification of the MAC connection management
service specification. To this aim, the Prosega/CPN tool has been used in
conjunction with the Billington’s protocol verification methodology [8]. Fig. 9
illustrates the steps of the methodology; we proceed to explain such steps, and how
they have been applied within our use case using CPN Tools and Prosega/CPN.

Verification against service specification Verification of general properties

| Protocol Definition |

!

|
|
|
| |
| |
! [ Protocolcen |
P x
|
|
|
|
|
|
|

| 0G of the Protocol CPN |

I Service Language I | Protocol Language H—v—

[ I
LA ]

|
|
| | 4
(Language Comparison ) | : ‘ 0OG analysis
|

Fig. 9. Steps within the protocol verification methodology proposed in [8].

|
|
|
|
|
|
|
| OG of the Service CPN
|
|
|
|
|
|
|

6.1 Service Definition

In fig. 9, the dashed box in the left represents the first step which consists in
modelling the service specification of the system, and to define the services that it

118



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

aims to provide (either to a higher layer or to another system entity). In the scenario
of the IEEE 802.16 MAC layer, the service specification consists in a set of service
primitives that the MAC sub-layer, responsible for connection management
procedures, provides to the sub-layer on top of it. Each of these primitives
correspond to one of the following procedures: The establishment of a connection
between communication peers, the connection maintenance (i.e. management of the
dynamic network resources) and the termination of the connection by any of the
communication peers.

6.2 Service CPN and OG

Using CPN Tools, it is created the CPN model of the service specification. fig. 10
presents the CPN main page which shows a top view of the model [2]. This top
module is linked with the pages that model the service primitives that correspond to
the establishment, maintenance, and termination of a connection through the
transitions CreatConnection, ChangeConnection, and TerminateConnection
respectively. Each of these pages of the model can be checked in [28]. Afterwards,
it is generated the CPN’s occurrence graph (OG), shown in fig. 11, which is the
input for the FSA reduction feature of Prosega/CPN.

(rarors)

MsjReq

| oo |

> CreatConnection

‘| | ChangeConnection

ChaggeConnectign

1" (NonConect) 1" (NonConect)

RegMAC . (" RespMAC
Statel Statea
—|

TerminateConnection

[TerminateCongietion

-

RpToRq
MsjRsp

Fig. 10. CPN model representing the hierarchical view for the processes of creation, change
and termination of connections between peer MAC entities in the IEEE 802.16 service
specification

119



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

6.3 FSA Reduction

Once the service OG is generated, it is modelled as a FSA in line with Definitions 4
and 5. To this aim, it is used the RUN tool of Prosega/CPN for converting the OG
into a FSA (as presented in fig. 2). For each transition of the CPN model, it is
assigned a number value which represents the associated service primitive identifier
(Id) (resembling the function Prim described in Section 3). Transitions that are
considered as empty moves (or internal events) are labelled with O (epsilon
transitions). Later, there are assigned the terminal states. The assignation performed
between all the model transitions and the service primitive identifiers as well as the
decision of the terminal states can be fully checked in [28]. Afterwards, the FSA is
minimized following the procedure explained in Section 4. Fig. 12 presents the
minimized deterministic FSA (exported from the output/analysis interface of the
RUN tool previously presented in Fig. 3.

Table. 1. Service primitivies on the IEEE 802.16 MAC Layer and their corresponding
identification number [22]

Service Primitive Id
MAC_CREAT_CONNECTION.Request

MAC_CREAT_CONNECTION.Indication
MAC_CREAT_CONNECTION.Response
MAC_CREAT_CONNECTION.Confirmation 4,5, 6
MAC_CHANGE_CONNECTION.Request 7
MAC_CHANGE_CONNECTION.Indication
MAC_CHANGE_CONNECTION.Response

MAC_CHANGE_CONNECTION.Confirmation 10
MAC_TERMINATE_CONNECTION.Request 11
MAC_TERMINATE_CONNECTION.Indication 12
MAC_TERMINATE_CONNECTION.Response 13

MAC_TERMINATE_CONNECTION.Confirmation 14,15, 16

120



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

Fig. 11. OG of the CPN model representing the IEEE 802.16 MAC connection management
service specification.

121



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

Fig. 12. Minimized deterministic FSA generated from the OG illustrated in fig. 11

6.4 Language Generation

The service language (the set of sequences of service primitives) is generated using
Prosega/CPN as explained in Section 4 —utilizing FSA minimization (RUN tool)
and FSA language generation (LANG tool). Fig. 5 presented some sequences that
are accepted by the FSA. In addition, Table. 1 shows the identifier selected for each
primitive service [28]. For example, the sequence of language symbols 1, 2, 3, 4, 7,
8, 9, 10 represent the service primitives invoked by the protocol entity in top of the
MAC for the successful establishment and maintenance (change of a
communication resource) of the connection. In overall, the minimized FSA
generated by Prosega/CPN provides a compact description of the possible
sequences of service primitives, and allows to remove complexity from the model,
which allows the language to present a clear specification of the service that the
system provides.

6.5 Further Steps

The second part of the methodology (dashed box in the right of Fig. 9) concerns to
the modelling of the protocol, and its comparison against the service specification
through language equivalence. These further steps are still in progress within the
research work [28]. The modelling of the protocol consists in constructing the CPN
model, which describes the protocol procedures which are performed when a
service primitive is invoked by a higher entity of the system. Later, it is generated
the OG associated to this CPN model. On the one hand, behavioral properties of the
protocol may be analyzed through the OG. On the other hand, the OG may be
reduced into a minimized deterministic FSA. i.e. using again the RUN tool of
Prosega/CPN.

Then, the FSA of the service specification may be compared with the FSA of the
protocol. i.e. using the DIFF function of Prosega/CPN — see fig. 7. Finally, the
language of the difference FSA may be generated in order to determine language
equivalence between the service and the protocol. Thus, we can determine the
sequences of service primitives, which are in the protocol specification but are not
in the service specification. It is important to know if the service specification meets
the protocol specification, since it is not desirable to have a service requirement
122



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

from the service user which cannot be met by the protocol. In addition, it may not
be wanted a service provided by the protocol which actually it is never required by
the user.

7. Conclusion

This work has presented Prosega/CPN. The tool is an extension of CPN Tools for
supporting several operations for FSA-based analysis and system verification. The
tool provides a feature for generating a minimized deterministic Finite-state
Automaton (FSA) from a CPN’s occurrence graph (OG). It includes as well
operations for language generation, and for automata comparison. These
functionalities are supported taking advantage of consolidated third-party
components such as OpenFST and Graphviz. In addition, we developed a module
for language generation.

Prosega/CPN has been integrated within the CPN Tools GUI using the Simulation
Extensions (new feature in the last version of CPN Tools) component whose
development has been driven by the demand of many research works to suitably
integrate Colored Petri Nets with other formalisms [4]. In particular, the integration
between CPNs and FSA was not existing within CPN Tools, and the application of
this multi-formalism strategy has shown its merits in many published papers,
specially from the domain of protocol verification.

Furthermore, other works may be benefited from this FSA-based verification; for
example, as presented in our use case, the analysis of an equivalent reduced FSA
provides a compact and clear description of the possible user observable events
(service primitive calls) rather than to deal with the analysis of the OG, thereby
allowing to reduce the time complexity when it may be required to check the
behavioral properties of the system through the FSA.

As future work, the tool will keep providing support within the further steps of the
formal verification work of the IEEE 802.16 standard, regarding to the MAC
connection management procedures. On the other hand, as another further direction
for the tool enhancement, the tool has been thought to be tested in other domains;
indeed, as it has been stated, Prosega/CPN can be used in other cases where FSA
may be required, and within the verification of other systems whose analysis may
involve the comparison of models at different levels of abstraction.

This future work on other use cases will be able to keep maturing the tool. i.e.
integrating new operations/features for automata manipulation, and testing the tool
performance in terms of scalability, among other key facts. In addition, it has been
considered to keep exploiting more capabilities offered by the Simulator Extensions
channel; for example, to be able draw and manually edit a FSA in the CPN Tools
canvas, instead of only using the Graphviz support for automata drawing.

123



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

References

[1]. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
vol. 77, no. 4, April 1989, pp. 541-580

[2]. K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Berlin, Heidelberg: Springer-Verlag, 2009

[3]. CPN Tools — A tool for editing, simulating, and analyzing Coloured Petri Nets.
Available at: http://www.cpntools.org/, accessed: 20.06.2018

[4]. M. Westergaard. CPN Tools 4: Multi-formalism and Extensibility. In Application and
Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-Verlag, 2013, pp.
400-409

[5]. M. E. Villapol. Modelling and Analysis of the Resource Reservation Protocol Using
Coloured Petri Nets. Ph.D. dissertation, University of South Australia, Australia,
December 2003

[6]. S. Gordon, L. M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless
Transaction Protocol, In Application and Theory of Petri Nets and Concurrency. Berlin,
Heidelberg: Springer-Verlag, 2002, pp. 182-202

[7]. B. Han. Formal Specification of the TCP Service and Verification of TCP Connection
Management. Ph.D. dissertation, University of South Australia, Australia, April 2004

[8]. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. Berlin, Heidelberg: Springer-Verlag, 2004, pp. 210-290.

[9]. G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication Infrastructure for
External Communication with Design/CPN. In Proc. of the Third Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB-554,
pages 75-91

[10]. M. Westergaard and K. B. Lassen. The BRITNeY Suite Animation Tool. In
Applications and Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 431-440

[11]. M. Westergaard. Access/CPN 2.0: A High-Level Interface to Coloured Petri Net
Models. In Application and Theory of Petri Nets and Con- currency. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 328-337

[12]. AT&T Researchers — Inventing the Science Behind the Service. Available at: http:
Ilwww.research.att.com/evergreen/portfolio/, accessed: 20.06.2018

[13]. OpenFST Library. Available at: http://www.openfst.org/twiki/bin/view/FST/WebHome,
accessed: 20.06.2018

[14]. M. Hulden. Foma: A Finite-state Compiler and Library. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics:
Demonstrations Session. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2009, pp. 29-32

[15]. A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUIltar: Tools for
Automata Manipulation and Visualization. In Implementation and Application of
Automata. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 65-74

[16]. S. H. Rodger. JFLAP: An Interactive Formal Languages and Automata Package. USA:
Jones and Bartlett Publishers, Inc., 2006

[17]. C. Ouyang and J. Billington. Formal Analysis of the Internet Open Trading Protocol. In
Applying Formal Methods: Testing, Performance, and M/E-Commerce. Berlin,
Heidelberg: Springer-Verlag, 2004, pp. 1-15

[18]. S. Barzegar, M. Davoudpour, M. R. Meybodi, A. Sadeghian, and M. Tirandazian.

Traffic Signal Control with Adaptive Fuzzy Coloured Petri Net Based on Learning

124



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

[29].

Automata. In Annual Meeting of the North American Fuzzy Information Processing
Society, July 2010, pp. 1-8

N. Danapaquiame, E. llavarasan, N. Kumar, and S. K. Dwivedi. Ratification strategy for
web service composition using CPN: A survey. In Proc. of the IEEE International
Conference on Computational Intelligence and Computing Research, December 2013,
pp. 1-4

J. Zhu, K. Zhang, and G. Zhang. Verifying Web Services Composition based on LTL
and colored Petri Net. In Proc. of the 6th International Conference on Computer Science
Education, August 2011, pp. 1127-1130

ISO/IEC. High-level Petri Nets — Part 1: Concepts, Definitions and Graphical Notation.
Software and Systems Engineering, ISO/IEC FDIS 15909-1. Final Draft International.
W. A. Barrett and J. D. Couch. Compiler Construction: Theory and Practice. Chicago,
Illinois: Science Research Associates Inc., 1979

M. Westergaard. CPN Tools 4 Extensions: Part 4: Advanced Communication and
Debugging. Available at: https://westergaard.eu/2013/11/cpn-tools-4-extensions-part-4-
advanced-communication-and-debugging/, November 2013, Blog entry/, accessed:
20.06.2018

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A General and
Efficient Weighted Finite-State Transducer Library. In Implementation and Application
of Automata. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 11-23.

Graphviz — Graph Visualization Software. Available at: http://www.graphviz.org//,
accessed: 20.06.2018

J. C. Carrasquel. Java/PROSEGA: An extension in CPN Tools for generating languages
accepted by FSA and minimized deterministic FSA from a state space. Central
University of Venezuela, Caracas, Venezuela, Tech. Rep., October 2015.

IEEE 802.16 Working Group on Broadband Wireless Access Standards. IEEE Std.
802.16e-2005. Local and Metropolitan Area Network. Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems

A. V. Morales and M. E. Villapol. Towards Formal Specification of the Service in the
IEEE 802.16 MAC Layer for Connection Management. In Proceedings of the 9th
WSEAS International Conference on Computational Intelligence, Man-machine
Systems and Cybernetics. World Scientific and Engineering Academy and Society
(WSEAS), 2010, pp. 140-146

A. V. Morales and M. E. Villapol. Reviewing the Service Specification of the IEEE
802.16 MAC Layer Connection Management: A Formal Approach. CLEI Electronic
Journal, vol. 16, August 2013, pp. 1- 12

125



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

Prosega/CPN: pacwupenmne CPN Tools gnsa aBTomaTtHoro
aHanu3a n sepudurkaumm cuctem

'X. C. Kappackenw <julio.carrasquel @yahoo.com>
’A. Mopanec <ana.morales@ciens.ucv.ve>
M. E. Bunnanons <maria.villapol@aut.ac.nz>
YPumcruii yuugepcumem Jla Canuenya, omoen KOMnbIOMEPHOU, KOHMPOIbHOU U
ynpasnenueckou undcenepuu, yi. Apuocmo 25, e. Pum, 00185, Umanus
Llenmpanvnuiii ynusepcumem Benecysnvl, Lllkona komnviomepnvix Hayx,
npocn. Ilaceo Jloc-Uniocmpec, e. Kapakac, 1040, Benecyana
*Oxnenockuti mexmonoeuuecxuti ynusepcumem, LLkona unoxcenepui,
KOMNBIOMEPHBIX U MAMEMAMUUECKUX HAYK,
ya. Yauncnu-cmpum-eocmok 55, 2. Oxnend, 1010, Hosas 3enanous

AnHoTamms. Bepudukanys u aHamu3 pacrpeneileHHBIX CHCTEM SBISIOTCS UYpe3BBIYAiHO
Ba)KHBIMH 33/1auaMHi, 0COOEGHHO ceifuac, KOr/ia MHOTHE KOMITBIOTEPHBIE CHCTEMbI Pean3yioT
KPUTHYECKH Ba)XHBIE CEpBHCHL. JIJIsI MOJCNHPOBAHUS M BepU(UKALUM CHCTEM IIOJIE3HO
coueTaTh pa3Hble METO/IbI aHANIM3a. B 4aCTHOCTH, 3TO MO3BOJISAET IPUMEHATH TOT (HOPMATH3M
W Ty TEXHUKY aHaju3a, KOTOpBIE Jy4lle MOAXOIAT M1 TOTO WIM HHOTO KOMIIOHEHTa
cucreMbl. KomOuHarus u3 packpaniennbix cereil Ilerpu (CPN, Coloured Petri Nets) u
KOHEYHBIX ~aBTOMATOB  IIPEJCTAaBISAET CO00H  ycmemHylo (GOpMalbHYIHO  METOJHUKY
MOJICIMPOBAHNUS ¥ BepU(PHKALNK pacIpe/ielIeHHbIX CUCTEeM. B CBsI3M ¢ 3TUM B JaHHOM CTaThe
paccmarpuBaercst uacrpyment Prosega/CPN (Protocol Sequence Generator and Analyzer),
paciuperne  CPN  ToOlS st moiyiep)KKd  aBTOMATHOTO aHAM3a W BepU(PUKAIUU.
WHCTpyMEHT peanu3yeT HECKOIbKO (YHKIMH, TAKMX KakK TeHepalys MUHHMH3HPOBAHHOTO
JIETepMHUHUPOBAHHOTO KOHEYHOro aBTOMara m3 rpada moctmkumoctd (occurrence graph)
packpareHHo# cetu IleTpH, reHepauus si3bIKa U COMOCTABICHHE KOHEYHBIX aBTOMATOB. DTO
pemenne momuepxkuBaeTcs  ¢yHknmerdr Simulator Extensions, pa3BuTHEe  KOTOpPOit
00yCIIOBICHO HEOOXOMMMOCTBIO HHTETpallMM pacKpauleHHbIX ceTeil Iletpu ¢ apyrumu
¢dopman3mamu. VHCTpyMEHT NpeaHasHaueH Ul MOIJEPKKH (OpMajbHONH METOHOJIOTHU
BepU(UKaIuy KOMMYHHKAIIHOHHBIX MPOTOKOJIOB; OJHAKO OH MOXKET HCIIOJb30BATBHCS JUIS
BepUUKauKM OPYruX CHCTEM, aHAJIM3 KOTOPBIX BKIIIOYAET CPaBHEHHE MOJeEJeil Ha pa3HbIX
YPOBHSIX aOCTpakiM, HampuMmep, OHW3HEC-CTpaTerHii W OW3Hec-mpoIeccoB. B  craThe
MpUBEEeH MOAPOOHBIA mpuMmep, B KOTopoMm umHCTpyMeHT Prosega/CPN wucrmoms3yercst st
aHaJIM3a YacTH CIeUU(HUKANK CIIyKObI ynpasnenus coenuaenusivu MAC |IEEE 802.16.

KaroueBbie cioBa: (opmanbHbie MeTonsl; packpamenubie cetu Ilerpu; CPN  Tools;
KOHEYHBIE aBTOMAThI; BepU(HUKAIHs IPOTOKOJIOB.

DOI: 10.15514/ISPRAS-2018-30(4)-7

Jas umrupoBanmsi: Kappackens X. C., Mopanec A., Buianoas M. E. Prosega/CPN:
pacmupenne CPN Tools mist aBromMatHoro ananusa u Bepudukaiuu cucreM. Tpyast UCII
PAH, tom 30, Bem. 4, 2018 r., crp. 107-128 (ma aurmmiickom s3eike). DOI:
10.15514/ISPRAS-2018-30(4)-7

126



Kappackens X. C., Mopainec A., Buanosns M. E. Prosega/CPN: pacumperne CPN Tools juist aBTOMaTHOro aHasiu3a i
cucTeMbl poBepku. Tpyowr UCIT PAH, tom 30, Bbin. 4, 2018 1., ctp. 107-128

Cnucok nutepatypbl

[1]

[2].
[3].
[4].

[5].

[6].

[71.

(8].

[a].

[10].

[11].

[12].
[13].

[14].

[15].

[16].

[17].

. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
vol. 77, no. 4, April 1989, pp. 541-580

K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Berlin, Heidelberg: Springer-Verlag, 2009

CPN Tools — A tool for editing, simulating, and analyzing Coloured Petri Nets.
JTocrymHo o cepuike: http://www.cpntools.org/, nara o6pamenus: 20.06.2018

M. Westergaard. CPN Tools 4: Multi-formalism and Extensibility. In Application and
Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-Verlag, 2013, pp.
400-409

M. E. Villapol. Modelling and Analysis of the Resource Reservation Protocol Using
Coloured Petri Nets. Ph.D. dissertation, University of South Australia, Australia,
December 2003

S. Gordon, L. M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless
Transaction Protocol, In Application and Theory of Petri Nets and Concurrency. Berlin,
Heidelberg: Springer-Verlag, 2002, pp. 182-202

B. Han. Formal Specification of the TCP Service and Verification of TCP Connection
Management. Ph.D. dissertation, University of South Australia, Australia, April 2004

J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. Berlin, Heidelberg: Springer-Verlag, 2004, pp. 210-290.

G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication Infrastructure for
External Communication with Design/CPN. In Proc. of the Third Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB-554,
pages 75-91

M. Westergaard and K. B. Lassen. The BRITNeY Suite Animation Tool. In
Applications and Theory of Petri Nets and Concurrency. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 431-440

M. Westergaard. Access/ICPN 2.0: A High-Level Interface to Coloured Petri Net
Models. In Application and Theory of Petri Nets and Con- currency. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 328-337

AT&T Researchers — Inventing the Science Behind the Service. ToctymHo 10 cchuIKe:
http: //lwww.research.att.com/evergreen/portfolio/, nara o6pamenus: 20.06.2018
OpenFST Library. HocrymHo o CCBLIKE:
http://www.openfst.org/twiki/bin/view/FST/WebHome, narta o6pamenus: 20.06.2018

M. Hulden. Foma: A Finite-state Compiler and Library. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics:
Demonstrations Session. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2009, pp. 29-32

A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUltar: Tools for
Automata Manipulation and Visualization. In Implementation and Application of
Automata. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 65-74

S. H. Rodger. JFLAP: An Interactive Formal Languages and Automata Package. USA:
Jones and Bartlett Publishers, Inc., 2006

C. Ouyang and J. Billington. Formal Analysis of the Internet Open Trading Protocol. In
Applying Formal Methods: Testing, Performance, and M/E-Commerce. Berlin,
Heidelberg: Springer-Verlag, 2004, pp. 1-15

127



Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

[28].

[29].

128

S. Barzegar, M. Davoudpour, M. R. Meybodi, A. Sadeghian, and M. Tirandazian.
Traffic Signal Control with Adaptive Fuzzy Coloured Petri Net Based on Learning
Automata. In Annual Meeting of the North American Fuzzy Information Processing
Society, July 2010, pp. 1-8

N. Danapaquiame, E. llavarasan, N. Kumar, and S. K. Dwivedi. Ratification strategy for
web service composition using CPN: A survey. In Proc. of the IEEE International
Conference on Computational Intelligence and Computing Research, December 2013,
pp. 1-4

J. Zhu, K. Zhang, and G. Zhang. Verifying Web Services Composition based on LTL
and colored Petri Net. In Proc. of the 6th International Conference on Computer Science
Education, August 2011, pp. 1127-1130

ISO/IEC. High-level Petri Nets — Part 1: Concepts, Definitions and Graphical Notation.
Software and Systems Engineering, ISO/IEC FDIS 15909-1. Final Draft International.
W. A. Barrett and J. D. Couch. Compiler Construction: Theory and Practice. Chicago,
Ilinois: Science Research Associates Inc., 1979

M. Westergaard. CPN Tools 4 Extensions: Part 4: Advanced Communication and
Debugging. Jloctymao 1o cceuike:  https://westergaard.eu/2013/11/cpn-tools-4-
extensions-part-4-advanced-communication-and-debugging/, November 2013, Blog
entry/, nara oopamenus: 20.06.2018

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A General and
Efficient Weighted Finite-State Transducer Library. In Implementation and Application
of Automata. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 11-23.

Graphviz -  Graph  Visualization  Software.  ocTymHO 1O  CCBUIKE:
http://www.graphviz.org//, nara o6pammenus: 20.06.2018

J. C. Carrasquel. Java/PROSEGA: An extension in CPN Tools for generating languages
accepted by FSA and minimized deterministic FSA from a state space. Central
University of Venezuela, Caracas, Venezuela, Tech. Rep., October 2015.

IEEE 802.16 Working Group on Broadband Wireless Access Standards. IEEE Std.
802.16e-2005. Local and Metropolitan Area Network. Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems

A. V. Morales and M. E. Villapol. Towards Formal Specification of the Service in the
IEEE 802.16 MAC Layer for Connection Management. In Proceedings of the 9th
WSEAS International Conference on Computational Intelligence, Man-machine
Systems and Cybernetics. World Scientific and Engineering Academy and Society
(WSEAS), 2010, pp. 140-146

A. V. Morales and M. E. Villapol. Reviewing the Service Specification of the IEEE
802.16 MAC Layer Connection Management: A Formal Approach. CLEI Electronic
Journal, vol. 16, August 2013, pp. 1- 12



Simulation-based Verification of
System-on-Chip Bus Controllers

! M.M. Chupilko <chupilko@ispras.ru=>
2E.A. Drozdova <drozd_96@mail.ru>
! Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
% Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. The paper presents an approach to verification of commutation components of
Systems-on-Chip. The core idea is to verify bus controllers and supporting interface parts
connected to a reference model at unit-level. The reference model in the approach is
suggested to be written in SystemC so that to be easily adjusted to the required bus
parameters. The in-house prototype implementing the approach has been applied to the
verification of a Verilog model of Wishbone controller. There is a possibility to extend the
approach to support other busses and protocols by development of the interface library.

Keywords: unit-level verification; C++TESK
DOI: 10.15514/ISPRAS-2018-30(4)-8

For citation: Chupilko M.M., Drozdova E.V. Simulation-based Verification of Hardware
Bus Controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 129-138. DOI:
10.15514/ISPRAS-2018-30(4)-8

1. Introduction

This paper is devoted to a problem of a technology of unit-level verification of
commutation parts of hardware description level (HDL) models. Each System-on-
Chip (SoC) in fact is an HDL model, where IP blocks (intellectual property,
proprietary functional units), being parts of the system, are connected according to
some traditional communication protocol (Wishbone [1], OCP-IP [2], or something
else). To verify it, one has to obtain a golden model to be referred to in the
verification process, either to create such a model. In case of IP blocks, their
reference models are usually provided by their vendors. In case of the commutation
part connecting IP blocks, the situation is more difficult. There might be a standard
bus controller with a predefined bus width, or, that is more common, there will be
an implementation of the standard protocol. The integration problem also looks
quite important, as physical layer of the bus protocol is not the only thing that can
be erroneous, but the incompatible logic of data transfers between different IP
blocks also might be a weak point.

129



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

In this research, we propose a technology of a unit-level verification of
communication models, using a SystemC reference model provided by a vendor or
created manually. C++TESK [3], C++ library of macros meeting all typical
requirements of unit-level verification, including reference modeling, stimulus
generation, and coverage estimation, is selected as a basic tool for the technology
implementation. This tool supports reference model development at least in two
ways: in terms of its macro library and easy attachment to any C++-code.

The rest of this paper is divided into five sections. Section 2 contains more
information about communication protocols, including information about
Wishbone. Section 3 describes related works in the field of verification. Section 4
presents a proposed approach to unit-level verification. Section 5 studies an
example of the approach application. Section 6 discusses the results of the work and
outlines directions of future research and development.

2. Communication protocols and Wishbone standard

As such, each communication protocol is a system of rules allowing several entities
to transmit data to each other. More specific definition includes descriptions of
possible entities and fixes a physical parameters of transferring. Typically, when
speaking about communication part of SoC, one means transmission layer between
active (e.g., processor blocks) and passive (e.g., RAM) blocks inside of SoC. To
implement the standard interface for data transmission between IP-blocks, a bus
controller is used. The aim of the standard interface is to decrease the number of
integration problems and support possible re-use.

There are different ways to connect IP-blocks together. The simplest one is a point-
to-point connection. As an example of point-to-point connection, let us consider
OCP-IP [2] (Open Core Protocol International Partnership, see fig. 1), which is a
medium layer between blocks and the bus. OCP is oriented to typical master (active
component) — slave (passive component) communication. The protocol was
proposed several years ago as a first step in development of a single standard and
flexible solution in communication.

Another standard of communication in SoC is Wishbone [1]. Being widely
distributed, it was selected in this work for being an example for test system
development. The Wishbone standard specifies a standard interconnection between
computational IP cores. It supports interconnection of few IP cores using such
methods as a point-to-point, a shared bus (see fig. 2), a crossbar switch (see fig. 3),
and a switched fabric. The first one represents a simple interconnection between two
IP cores where the one called Master initiates the data exchange and another one
called Slave responds to this call. The second method supports binding of more than
two blocks in a consequent order. This method is efficient when the data should be
transferred from one IP core to another repeatedly. The third and the fourth methods
are similar, also representing the interconnection between several IP cores. In both
of them, there is a common bus, connecting more than two Master and Slave cores.
The Master core can evoke any Slave connected to this bus but the only one at the

130



Yynunko M.M., ipo3zosa E.A. Jlunamudeckast BepuuKanuss KOHTPOJUICPOB IIHH CUCTeM-Ha-kpucramie. Tpyast ACIT

PAH, Tom 30, BeIm. 4, 2018 1., cTp. 129-138

cycle. Using the crossbar switch method, several Master-Slave cores can be
interconnected simultaneously; using the switch fabric — only one pair of cores is

connected.

CLOCK

REQUEST >

ACCEPT REQUEST

WRITE DATA >

ACCEPT WR DATA

MASTER

RESPONSE

<

ACCEPT RESPONSE

K READ DATA

SLAVE

RESPONSE

DATAFLOW SIGNALS

Fig. 1. Open core protocol architecture

From this review, one can derive the following ideas. First, due to the point-to-point
connection being the basics of communication in all cases, when testing a bus
controller, IP core interfaces should be also taken into consideration. Second, the
bus controller is limited in its types of requests (mainly, send and receive); the most
important for testing situations seem to be with handling of protocol violations and
prevent collisions in bus access.

WISHBONE WISHBONE
MASTER MASTER
g VB!
SHARED BUS
¥ k. J
WISHBONE WISHEONE WISHBONE
SLAVE SLAVE SLAVE
g 15R! 150

Fig. 2. Wishbone Shared Bus Interconnection

131



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

WISHBONE WISEBONE
MRSTER MRSTER
T e
x NOTE: DOTTED LINES E S
| INDICRTE CNE POSSIELE |
| OOMNECTION OFTION |
b—————— < CROSSEAR SWITCH |

| INTERORMECTICN |
F——————— Mem—m e ——— -
T I
| |
+ - |
WISHBONE WISHBONE WISHBONE
SLAVE SLAVE SLAVE
= 2R [l

Fig. 3. Wishbone Crossbar Switch Interconnection

3. Related work

The task of SoC verification is typically considered as a problem of a mainly unit-
level verification. In this case, a design under test (DUT) is taken separately from its
environment. Stimuli are applied and reactions to check are received via DUT
wires.

Test

Environment Scoreboard
P

= 1
g
-

Agent -
Manitor Generator of
Transaction
. Sequences
Coverage| Y

Collector ‘\

.“ e

puT

Fig. 4. UVM Test Architecture

Among many unit-level verification approaches, UVM (Universal Verification
Methodology) created by Accelera is the most popular. It represents the union of
Open Verification Methodology (OVM), Advanced Verification Methodology
(AVM) and Universal Reuse Methodology (URM). UVM is a library built upon the
SystemVerilog language that provides some basic classes such as the class
constructing the testbench structure, the class serving as a basic data structure, the
class defining transactions to be passed through components of UVM. This
methodology can be used for a constrained random, a coverage-driven, an assertion-
based, and emulation-based verification. The UVM testbench structure is as follows
(see fig. 4 schematically depicturing UVM test). To begin with, there is the DUT.
132



Yynuiako M.M., lpo3niosa E.A. Jlunamuueckast BepupHKalus KOHTPOJUIEPOB MINH cucTeM-Ha-kpuctamie. Tpyust XCIT
PAH, Tom 30, BeIm. 4, 2018 1., cTp. 129-138

The transaction sequencer block serves to interact with the DUT by generating
sequences of bits to be transmitted to the DUT. The monitor block is responsible for
listening the communication of the DUT and the sequencer, and gets responses from
the DUT. The block called scoreboard compares and evaluates all the information
that the monitor is receiving from the DUT and the prediction made by the monitor,
describing which output is expected to be taken from the DUT. Sequencers,
monitors, and coverage collectors together are called agents. An agent and a
scoreboard form the environment. At the same time, there is no any explicit method
for a making a golden-model as itself, it is up to engineers. The SystemVerilog
language is also more a congregation of different methods to describe properties to
be checked, rather than a general-purpose programming language convenient for the
golden-model development.

Simulator

v .-
—‘Adapter ¢ Stimuli

Test oracle Stimulus generator

Coverage
e e |- X
State

}‘I Reaction matcher |

Y

buv

Verdict Test coverage
Reactions collector

A J Y

'7 Diagnostics subsystem
Reactions

Reactions

Fig. 5. Verification Environment Architecture

Another approach to unit-level verification is C++TESK Testing Toolkit [3-4],
which is represented by a library of C++ macros. The methodology can be used for
constrained random and coverage-driven verification. The C++TESK testbench
structure (see fig. 5) is similar to the UVM testbench structure but there are some
distinctions. According to a selected strategy, C++TESK’s stimulus generator
chooses one of the predefined stimuli to be sent to the DUT and to the reference
model expressed explicitly. The comparator gets the output from the model and
from the DUT, compares it and evaluates the coverage. C++TESK is compatible
with SystemC, aimed to reference models development, which is one of the key
advantages comparatively with UVM.

4. Proposed approach

As it has been already mentioned, either each bus controller is represented by a
SystemC model as well as by an RTL description or there is only RTL code and no

133



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

reference model at all. The conformance between the abstract (SystemC) reference
model and the RTL description should be established. Following a simulation-based
tradition, it is to be done by verifying both sides against the same specification or by
verifying the RTL description against the (SystemC) reference model.

To perform verification, a C++TESK Testing Toolkit has been selected, being a
C++ library with all necessary classes and macros for specifying design behavior,
generating stimuli, and checking reactions. A C++TESK-based verification
environment is structured as shown in fig. 5.

The central component of the verification environment is a test oracle, which is
responsible for checking whether the DUT behaves properly. It typically includes a
reference model that takes stimuli as an input and produces reference reactions as an
output, and a reaction matcher that intercepts reference reactions and
implementations reactions provided by the DUT and composes reactions pairs.
Usually, the reaction matcher works independently for each output interface.

To transform high-level stimuli to the low-level ones and low-level reactions to the
high-level ones, the adapter is used. It consists of multiple interface adapters, each
being connected with a single input or output interface. An interface adapter
describes a simple protocol of putting a single stimulus or getting a single reaction.
A special component of the reaction matcher, called a reaction arbiter, specifies
reactions ordering. The task of the reaction arbiter is to choose a reference reaction
(if there are any) for a given implementation one. There are two main predefined
strategies: (1) model-based arbitration and (2) adaptive arbitration. The first strategy
implies that the reference model is an accurate enough to predict reaction order for
some output interface (the arbiter selects the next reference reaction stored in the
interface buffer). The second strategy is used when the reference model is time
inaccurate, in which case, given an implementation reaction, the arbiter searches for
a reference reaction being equal or similar to the given one. If some reactions are
mismatched, a diagnostics subsystem explains what is wrong with the DUT in terms
of incorrect, missing, and unexpected reactions.

Other components of a verification environment are a stimulus generator and a test
coverage collector. The stimulus generator creates stimuli by exploring the abstract
state space of the reference model. The generator is supplied with a set of available
stimuli and a function for abstract state calculation; it tries to apply each stimulus in
each reachable abstract state. Speaking about verification of a bus controller, it is
natural to consider e.g. the number of messages in the bus channel controllers as
being the abstract state (though any other abstraction is possible). Such an
adjustable stimulus generator allows to produce hard-to-get-into situations which
include those with missing messages in one long packet transmission. The test
coverage collector estimates the verification completeness basing on user-defined
functional coverage metrics, which is more efficient than simply code coverage.

The typical way of C++TESK usage for unit-level verification in case of its own
reference model is described in earlier papers (e.g. [3] or [4]), and the method of
connection to SystemC reference model should be developed. To be more precise,
SystemC model should include not only the model of DUT itself, but also the model
134



Yynuiako M.M., lpo3niosa E.A. Jlunamuueckast BepupHKalus KOHTPOJUIEPOB MINH cucTeM-Ha-kpuctamie. Tpyust XCIT
PAH, Tom 30, BeIm. 4, 2018 1., cTp. 129-138

of its environment, including full communication topology. It allows sending
complex requests, model collisions, and so on.

C++TESK Stimulus

Send stimuli Generator (Master) [ASerializing
as C++-objects stimuli
Y Y
SystemC Model DUT (RTL)
Ask SystemC

Model for more stimuli
as if Slave sends its
response

Listening

Deserializing
‘Lfor reactions

reactions

C++TESK Reference

Reactions Buffer Response

yes Needed?

C++TESK
Implementation
Reactions Buffer

Y

C++TESK
Comparator

Fig. 6. Architecture of C++TESK, DUT, and SystemC Models Interconnection

The following scheme of commutation between C++TESK and SystemC model is
proposed (see Figure 6). C++TESK stimulus generator substitute a master
component for the controller bus. Stimuli are applied to both SystemC model (via
function calls; to its selected master as if this master wants to send stimuli which the
generator applied instead of it) and to DUT (via procedural interface between C and
HDL-simulator; to the input master interface of DUT). SystemC computes the
behavior of all environment and creates reactions those are to be got from DUT and
checked, and those, which are in fact additional stimuli to DUT, e.g. responses from
slaves to DUT which are requested by the bus controller and which are substituted
by test environment. Output DUT reactions are checked against correspondent
SystemC reactions by C++TESK reaction comparator. To provide the program
interface between C++TESK and SystemC model, there is a top SystemC class
encapsulating all the interfaces between masters and slaves, and the model of bus
controller. This class is referenced to in the C++TESK golden model. In order to
register reactions from SystemC in proper C++TESK adapters (serializers for
stimuli and deserializers for reactions to be checked), there are special listeners of
SystemC model activities (more precisely, bool vector of new reactions on different
interfaces). When there is some new reaction, it is registered either to be applied to

135



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

DUT as a stimulus, or to be added into list of reference reactions to find
correspondent implementation reaction in given time.

5. Case study

To develop a prototype of the verification system and to make experiments with it, a
Verilog model of simple Wishbone controller has been taken. The controller
supports only point-to-point connection. A correspondent SystemC model has been
developed from scratch, taking into account the necessity to support different bus
sizes and different topologies of master-slave interconnections. The resulted class
(see the following listing to see the main part of it) has been attached to C++TESK
reference model as an object that should be stimulated by the stimulus generator,
and with a possibility of sending reactions that are to be checked against the Verilog
model. The whole aspects of the earlier proposed architecture including stimulus
generation, HDL implementation reaction checking, and coverage estimation have
been kept alive in the prototype of test system. Experiments show that the proposed
ideas really work and that future research into this field is required.

template <typename adr bus_size, typename data bus_size>
SC_MODULE (Controller) {
typedef Master<adr bus size, data bus size> master type;
typedef Slave<adr bus size, data bus size> slave type;
// types for containers with masters and slaves
typedef std::map<master_ type*> masters_type;
typedef std::map<slave_type*> slaves_type;

SC_HAS PROCESS (Controller);
Controller(sc_module _name _name, bus_mode mode,
masters_type &masters, slaves type &slaves):
sc_module (name), mode (mode) ;
// to register all system’s masters and slaves
// and to bind all masters and slaves to the controller
void register master (master_ type &master);
void register slave (slave_type &slave);
// to listen for request messages
void request listener();

6. Conclusion

The approach of verification of communication parts of SoC by means of adjustable
SystemC reference models and by means of C++TESK’s stimulus generator,
reaction matcher, and coverage collector has been proposed. Description of the
approach includes the architecture of test systems. The idea has been checked in
form of a test system prototype for a Verilog model of Wishbone controller. This
research should result in the creation of a SystemC library of adjustable models of
widely distributed bus standards.

136



Yynuiako M.M., lpo3niosa E.A. Jlunamuueckast BepupHKalus KOHTPOJUIEPOB MINH cucTeM-Ha-kpuctamie. Tpyust XCIT
PAH, Tom 30, BeIm. 4, 2018 1., cTp. 129-138

References

[1]. Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture
for Portable IP Cores. Revision: B.3. Available at:
https://cdn.opencores.org/downloads/whspec_b3.pdf, accessed 20.07.2018

[2]. Open Core Protocol Specification 3.0. Available at:
http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip,
accessed 20.07.2018

[3]. M. Chupilko, A. Kamkin. A TLM-Based Approach to Functional Verification of
Hardware Components at Different Abstraction Levels. In Proceedings of the Latin
American Test Workshop (LATW), 2011, 1-6 pp. DOI: 10.1109/LATW.2011.5985902

[4]. M. Chupilko, A. Kamkin. Runtime Verification Based on Executable Models: On-the-
Fly Matching of Timed Traces. In Proceedings of the Model-Based Testing Workshop
(MBT), 2013, pp. 67-81. DOI: 10.4204/EPTCS.111.6

OvHamMmunyeckas BepucuKaLmsa KOHTPONepoB LUUH
cUCTeM-Ha-KpucTtanne

Y M.M. Yynunxo <chupilko@ispras.ru>
2E A, Hposzooea <drozd_96@mail.ru>
1HHcmumym cucmemnozo npoepammuposanus um. B.I11. Heannuxoea PAH,
109004, Poccus, e. Mocksa, ya. Anexcanopa Condicenuyvina, 0. 25
2 Mockosckuii eocyoapcmeennulil ynugepcumem um. M.B. Jlomonocosa,
119991, Poccus, e. Mocksa, Jlenunckue copet, 0. 1

AHHoTammsi. B pabore mpeacTaBieH MOAXOJ K BepUMKALMKM KOMMYTAI[MOHHBIX
KOMIIOHEHTOB cHCTeM Ha Kpucraiuie. OCHOBHOH mzeeil mojaxopa sBIseTCs BepuduKaius
KOHTPOJUIEPOB M  MOIACPKUBAIOMIMX HMHTEPPEHCHBII OOMEH 4dacTelf YyCTpOWCTB Ha
MOJYJIBHOM ypPOBHE C ITOMOIIBIO MOJEINeH, HanmucaHHbIX Ha SystemC. DTajoHHBIE MOJIENH B
npeiaraeMoil TECTOBOM CHCTeMe JOJDKHBI OBITh JIETKO HAcTpauBaeMBIMH IOJ TpeOyeMble
napamerpel HIMHBL. [IpoToTHN peanu3anuu moaxoia ObUI NPUMEHEH s BepuHKaluu
Verilog-monmenu kontpomtepa wmuabl Wishbone. B monaxome 3amokeHa BO3MOXHOCTb
pACUIMPeHUs MNOAACPKKONH JPYTMX LIMH W IMPOTOKOJOB MOCPEACTBOM pa3pabOTKH
OoubmoTexn nHTEpQEHcoB.

KuroueBble ciioBa: MonyibHas Bepudukarms, C++TESK

DOI: 10.15514/ISPRAS-2018-30(4)-8

Jas uutupoBanus: Yymunko M.M., [posmoBa E.A. Junamudeckas BepuduKamus
KOHTPOJUIEPOB IIHMH cucTeM-Ha-kpuctaiute. Tpyast UCIT PAH, Tom 30, Bbim. 4, 2018 r., cTp.
129-138 (Ha anrmuiickom sizbike). DOI: 10.15514/ISPRAS-2018-30(4)-8

Cnucok nutepaTtypbl
[1]. Specification for the WISHBONE System-on-Chip (SoC) Interconnection Architecture

for Portable IP Cores. Revision: B.3. JoctymHo o
ceeuke:https://cdn.opencores.org/downloads/wbspec_b3.pdf, Jara oOpateHus:
20.07.2018

137



Chupilko M.M., Drozdova E.A. Simulation-based Verification of Hardware Bus Controllers. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 129-138

2.

3].

[4].

138

Open Core Protocol Specification 3.0. JloctynHO 1O CCBUIKE::
http://www.accellera.org/images/downloads/standards/ocp/OCP_3.0_Specification.zip,
nata oopamenus: 20.07.2018

M. Chupilko, A. Kamkin. A TLM-Based Approach to Functional Verification of
Hardware Components at Different Abstraction Levels. In Proceedings of the Latin
American Test Workshop (LATW), 2011, 1-6 pp. DOI: 10.1109/LATW.2011.5985902
M. Chupilko, A. Kamkin. Runtime Verification Based on Executable Models: On-the-
Fly Matching of Timed Traces. In Proceedings of the Model-Based Testing Workshop
(MBT), 2013, pp. 67-81. DOI: 10.4204/EPTCS.111.6



K CUHTEe3y aAanTUBHbIX pa3ninyarowmnx
nocnenoBaTesibHOCTEU AN KOHEYHbIX
daBTOMaTOB

t4.cC Teapoosckuti <tvardal@mail.ru>
123 i B. Eemywienxo <nyevtush@gmail.com>
! Hayuonanvmwiii uccredosamenvcruti Tomexuii I ocyoapcmeeHHbliL YHugepcumen,
634050, Poccuiickaa @edepayus, 2. Tomck, np. Jlenuna, 36
2HHcmumym cucmemnozo npoepammupoganus um. B.11. Heannuxoea PAH,
109004, Poccus, e. Mocksa, ya. A. Conxcenuysina, 0. 25
® Hayuonanvhbiii uccredosamensckuii yHugepcumem ‘“‘Bvicuias wikona IKOHOMUKy ”,
101000, Poccus, 2. Mockea, yn. Mscnuykasi, 0. 20

AnHoTanus. KoHeuHple aBTOMATHI MIUPOKO UCHONB3YIOTCS MIPU MOCTPOSHUH TPOBEPSIOMINX
TECTOB JUIi YNPABIAIOIMX CHCTEM C TapaHTHPOBAaHHOH MONHOTOH OOHApyXEHHS
HEHCTpaBHOCTeH. B psjme cimydaeB Takwe TECTHI AOCTHTAIOT ASKCHOHEHIMAIBHOW IUTHHBI
OTHOCHTEJIBHO pPa3MepoB aBTOMAaTa-CHelU(UKALMK, YTO MOTHUBHPYET HCCIEIOBAHMS IIO
ONTUMM3ALMM  MHPOBEPSIOIIUX  TECTOB. CylecTBOBaHHE  IOCIENOBaTeIbHOCTEH,
pa3IMYAOINX KXyl Mapy COCTOSHUM B aBTOMare-crelu(uKanul, MOXET CyIIECTBEHHO
COKpaTUTh AJMHY TecTa, €ClIM TaKue IOCIeJOBaTeIbHOCTH JOCTAaTOYHO KOopoTkue. bomee
TOTO, TIPH OIMCAHUH COBPEMEHHBIX CHCTEM YacTO MPUXOIWUTCS YIUTHIBATh OMIHOHATFHOCTh
HedopManbHO# crenuduKanuy, 1 COOTBETCTBEHHO, MCIOJIB30BAaTh METO/BI CHHTE3a TECTOB
JUISL HEIeTepPMHUHHPOBAHHBIX aBTOMATOB; IOCIEIHEe B OOIBIIMHCTBE CIIy9acB MOBBIMIAET
JUIMHY TECTOB. AJANTHBHBIE Pa3IMYAIONINEe ITOCIEA0BATEIbHOCTH CYMIECTBYIOT dalle, deM
0e3ycIIOBHBIC, W, KaK INPaBHJIO, MUMEIOT MEHBINYI0 JUIMHY, YTO JAeNlaeT MX BEIOOp Ooiee
IPEANOYTUTENBHBIM Ul CHHTE3a TeCTOB. B Hacrosmiel paboTe Mbl HCClieyeM CBOWCTBA
AIIaNTUBHBIX PA3IMYAIOUIMX IOCJIEA0BATENBHOCTEH M ONTUMHU3UPYEM METOJ IMOCTPOEHUS
TaKOBBIX JUIS TIOJIHOCTBIO ONpPEAENEHHBIX, BO3MOXKHO, HEIETEPMHHHPOBAHHBIX KOHEYHBIX
aBTOMAaToB. [IpennoskeHHBIH MOAXO0A OCHOBaH Ha OTPAHUUYEHHUH Pa3MEPOB pPas3sIMyaroIliero
aBTOMAaTa, MO KOTOPOMY CTPOUTCSI Pa3iIMYAIOIINH TECTOBBIH NMpUMeEp, CIyXamuil ynoOHON
(opMoOli TIpeACTaBICHUS ANANTHBHON pa3iMYaIOIell MOCIenoBaTeNbHOCTH. [IpoBenéHHEIe
OKCIEPHMEHTHI TO3BOJIMIIM OIEHUTH JUIMHY W BEPOSTHOCTH CYIIECTBOBAHHS aJlallTHBHBIX
Pa3NUYAIOINX IIOCIEA0BATEILHOCTEH U CIydalHO CreHepHpPOBAHHBIX aBTOMATOB C
Pa3IM4HON CTENeHbI0 HeAeTepMUHU3MA. Takxke B paboTe pacCMOTpEH CelHMalbHBIN KiIacc
TaK Ha3bIBAEMBIX aBTOMATOB 0€3 CIMSHHUH, KOTOPbIC OMHUCHIBAIOT IIMPOKHH KJIACcC pPealbHBIX
CHCTEM M 00J1aJIal0T «XOPOMIMMM» ISl CHHTE3a TECTOB CBOICTBAMH; B YACTHOCTH, JUISl TAKUX
aBTOMAaTOB MPaKTUYECKU BCEra CYIIECTBYIOT a/laNTHBHBIE pasnuJaroIue
TIOCJICIOBATEIFHOCTH, €CIIH AJISI KaXKI0H Iaphl «COCTOSHHE, BXOJHON CHMBOJD) CYIIECTBYET
He OoJtee Tpex pa3INYHBIX IIePEX0JOB, T.€. CTEIIeHb HeJleTepMUHNA3Ma B aBTOMATe He OoJIbIIe
Tpex.

139



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

Knw4eBbie cjioBa: KOHEUYHBII aBTOMaT, TECTOBBIN OpuMEp, aJalTHBHAsA pa3audaroiast
OCJICA0BAaTCIIbHOCTD

DOI: 10.15514/ISPRAS-2018-30(4)-9

Jas uurupoBanmsi: Teapmosckmii A.C., Eprymenko H.B. K cuHTE3y amanTHBHBIX
pa3InyalouX MoCiIeA0BaTeIbHOCTEH I KOHeUHbIX aBTomMaToB. Tpynst UCII PAH, Tom 30,
BbIm. 4, 2018 r., ctp. 139-154. DOI: 10.15514/ISPRAS-2018-30(4)-9

1. BeedeHue

Koneunpie aBroMarsl [1] mmpoko HCHONB3YIOTCS MPH HOCTPOCHHH TECTOB IS
YOPaBISIIOIIMX ~ CHCTEM  C  TapaHTUPOBAHHON  IONHOTOM  OOHapyXeHUs
HEHCIPaBHOCTEH. XOpOIIO U3BECTHHIMM METOAAMH CHHTE3a TECTOB sBistoTcst W-
meron [2] u ero pasiauuHble MOMUGHKAUKM Ui JACTCPMHHHPOBAHHBIX U
HEJIeTePMUHUPOBAHHBIX aBTOMAaToB [3, 4]. IIpu TecTHpOBaHWM HA OCHOBE KOHEYHO
ABTOMAaTHBIX MOJEJIeH TPOBEPSIOMUII TECT CTPOUTCA OTHOCHUTENBHO 3aJaHHOU
MOJIETIM HEMCIIPABHOCTH, ONPEACIIAIONIeH MHOXKECTBO HEKOH(MOPMHBIX peau3anu,
KOTOpble MOTYT OBITh OOHapy)X€Hbl TIO BBIXOJAHBIM pEAKLUSAM TeCTUPYeMOH
CHUCTCMBbI Ha BXOJHBIC IOCJIICAOBATCIIBHOCTHU TCCTA. KoneuHno-aBToMaTHEIE MCTOAbI
CHHTE3a TECTOB YacTO OCHOBAaHBI HAa MIACHTH()HKAIIMM COCTOSHHUN crienu(UKanuy,
OCYIIECTBIISIEMOH NPH IOMONIM O€3yCIOBHBIX MM AJANTHUBHBIX Pa3IHYAIONINX
nocienoBarenapHocTeil  [5]. BesyciioBHbIe pazinyYaromEe I0CIeA0BaTEIbHOCTH
(uKCcHpYIOTCS 10 Hadajga SKCIEPUMEHTa, B TO BpeMs KaK CIEAYIOIINI BXOIJHOH
CHUMBOJ B aJalTHBHON IOCIEAOBAaTEIbHOCTH 3aBUCUT OT PEAKLUU TECTHPYEMOU
CHUCTEMBI Ha IPEABIAYIINE BXOIHBIC BO3I[61?ICTBPI$[.

IloctpoeHHble 1O  KOHEYHOMY  aBTOMAaTy  TECTbl ~ MOTYT  JOCTUraTh
SKCHOHEHIWANbHOI JAIMHBI OTHOCUTEIBHO 4YHCIA COCTOSHUM HCCIEeLyeMOro
aBTOMaTa, dYTO BO MHOTOM OOYCJIOBIEHO BBICOKOW JJIMHON pa3In4aronIux
[IOCJIE0BATEIBHOCTEN U MOTUBUPYET UCCIIEJOBAHMS 110 ONTUMHU3ALUU METOJOB €€
nocTpoeHus. M3BecTHO, YTO MPOBEPSIOMINIT TECT MOXKET OBITh 3HAYUTEIHHO KOpOUe,
ecyu crienuduKanys 00IaaeT Mocae10BaTeIbHOCTRI0, KOTOPas pa3iindaeT KaKIylo
napy cocrosiuuii aBromata [3, 10], ogHako, Takue MOCIEIOBATEIFHOCTH HE BCETa
CYIIECTBYIOT. AJANTHBHBIE pa3IHYAIOMIAEe IOCIEIOBATEIBHOCTH CYIIECTBYIOT
yamie, 4eM Oe3yclloBHBIE, U Ooiiee TOro, OOBIYHO MMEIOT MEHBIIYIO IJIHHY, YTO
JienaeT ux Oosiee MPeANOYTHTENBLHBIM BHIOOPOM MPU CHHTE3€ TECTOB.

Jns  mocTtpoeHus aganTUBHOW — pa3iuyarolied  MOoCJIeI0BAaTEIbHOCTH  4acTo
UCNONB3YyeTCcd  JepeBo npeeMHUKOB. OnHako, g JepeBa NPEEeMHHUKOB
HEJICTEPMHUHMPOBAHHOTO aBTOMAara HE CYLIECTBYET HEOOXOIMUMBIX M JOCTATOUHBIX
YCIOBHIl CYLIECTBOBAaHHS pPa3iMYarOLIero TecToBoro mpumepa. B [9] aBrops
Ope[ylaraloT  ajdbTepPHATUBHBIA  IMOAXOA, OCHOBAaHHBII Ha  MOCTPOCHHUU
pa3iuyalomero aBTOMAaTa, W YCTAHABIMBAIOT HEOOXOJMMBIE M JOCTATOYHBIC
YCIOBHS CYLIECTBOBaHMS AaJalTUBHON pa3IHuarolledl MOCIeJ0BaTeNIbHOCTH AN
TAKOTO MPEJCTAaBICHHUS.

140



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

B Hactosmielt pabote MBI paccMarpuBaeM INpoOJieMy IIOCTPOCHHS aJalTHBHBIX
Pa3IMYAIONINX MOCJIEOBATEIFHOCTEH MM MOJTHOCTHIO ONPENelIEHHBIX, BO3MOXKHO,
HEIeTePMUHUPOBAHHBIX aBTOMATOB W IpeAjiaracM ONTHMU3MPOBAHHBIA MOIXOX K
HOCTPOCHHIO TAaKHX ITOCIEIOBATENFHOCTEH Ha OCHOBE Pa3iIMYaIOIIEr0 aBTOMATa.
OKCHEepUMEHTHI, MIPOBEAEHHbIE co CITy4aiHO CreHEepPHPOBAHHBIMH
HEJICTEPMUHUPOBAHHBIMM ~ aBTOMAaTaMH, IIO3BOJWIM OLEHUTh 3(PQPEKTUBHOCTD
NPE/UIOKEHHOTO MOJX0Ja W CJIOKHOCTh (JUIMHY) aJanTHBHBIX pa3InYaloIinX
9KCIIEPUMEHTOB.

Crpykrypa cTaThy cieaytomas. Paszaen 2 conepkut HeoOX0AUMBIE ONPEENICHUS 13
Teopud aBroMaToB. ONTHMHU3UpPOBaHHAs MpOLEAypa IOCTPOCHUS aJalTHBHOM
pa3nuyarolleil 1ocue10BaTeIbHOCTH € UCIIOIb30BaHUEM DPa3JIMYaroliero aBToMara
npecTaBieHa B pasznene 3. Pasmen 4 comep)KHUT pe3ysbTaThl MPOBEACHHBIX
KOMIIBIOTEPHBIX SKCIIEPUMEHTOB.

2. OcHoeHbIe onpedesneHus

B JaHHOM pas3Jcji€¢ Mbl BBOAHMM OCHOBHBLIC OIPCACIICHUA U O603Ha‘leHI/I§I, B3STHIC
NpEeNMYIIECTBEHHO U3 pabor [6, 9].

2.1 KoHe4yHbIN aBTOMAT

[on xoneunvim asmomamom S mornmaercs matépka (S, 1, O, As, Sg), tme S, I, w O —
KOHCYHBIC HeHyCTbIe MHOXECTBA COCTOAHHH, BXOAHBIX M BBIXOJHBIX CHMBOJIOB
COOTBETCTBEHHO, Sp — HadalbHOE COCTOsHME, As < S X | x O x S — oTHOLIEHUE
MePEX00B. ABTOMAT S HA3bIBAETCS HEOCMepMUHUPOSAHHBIM, €CITU JIJISI HEKOTOPOM
napsl (S, i) € S x |, cymecTByer Heckoybko pasznuunbix map (0, §') € O x S, Takux
qro (S, i, 0, §') € As, HHaYe, ABTOMAT HA3BIBACTCA OCMEPMUHUPOBAHHbIM. ABTOMAT
S Ha3BIBAETCS NOIHOCMbIO ONPEOeNéHHbIM, ECTH IS Kaxao# mapsl (S, 1) € S x |
cymecTByer nepexoxn (S, i, 0, S') € As; MHaue, aBTOMAT HA3BIBAETCSA YACHUYHBLM.
ABTOMAT S Ha3bIBAETCS HAOIIOOAeMbIM, €CITU JUISL KX I0# mapsl (S, i, 0, Sy, (S, i, 0,
S») € As CIIPaBEIIMBO S; = S).
B nacrosmieir paboTe MBI paccMaTpHBaeM IOJHOCTHIO ONpEAEIEHHBIE, BO3MOXKHO,
He}IeTepMI/IHI/IpOBaHHBIe Ha6H}O}IaeMBIe KOHCYHBIC ABTOMATEHI. I/ICKH}O‘ICHI/ICM
SABJIAKOTCA TECTOBBIC HpI/IMepBI, KOTOpBIe 110 orlpezleneHmo, SIBJIITKOTCA YaCTUYHBIMHA
KOHEYHBIMH aBTOMaTaMM H OyIyT paccMOTpeHBl ngainee. lIpumep IOIHOCTBIO
OIPEEIEHHOT0 HEIETEPMUHUPOBAHHOIO KOHEYHOTO aBTOMAara IPEACTaBIeH Ha
pucynke 1. JlaHHBIH aBTOMAaT MMeeT 4 COCTOSIHWSA, 3 BXOJHBIX CHMBOJA H 2
BBIXOJHBIX CUMBOJIA.
JIJis BXOZHOIO CHMMBOJIA | M BBIXOZHOIO CHMBOJA O aBroMara S, T.e. IJis BXOZIO-
BBIXOJIHOU Hapsl i/0, COCTOsIHKE S’ HA3BIBAETCS 10-npeemMHuKom COCTOSHHSA S, ECIIH B
aBTOMare cymiectByer mepexon (S, i, 0, §'). B HaGmomaemom aBTomare, iO-
NPEEMHUK BCEr/a ONPENENsSeTcs €IMHCTBEHHBIM oOpasoM. OTMeTHM, d9TO I0-
NPEEMHUK JJIsl HEKOTOPOTO COCTOSTHHSL S MOXKET OBbITh MYCTHIM, €CJIM B aBTOMATE HE
CYIIECTBYET HU OXHOro mnepexoxa Buma (S, i, 0, §'), rae S’ — NPOHM3BOJBLHOE
141



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

COCTOSIHAE aBTOMaTa. BX000-6bIXOOHOU NOCIe008aMeNIbHOCHbIO aBTOMara S B
COCTOSIHMH S Ha3bIBACTCS IIOCIIEAOBATEILHOCTh BXOHO-BBIXOMHBIX map i1/0g, ...,
in/On, TIIE 8bIX00HAs nOCICO08AMENLHOCMD O1, ..., Oy TIPEACTABIACT COOOM PEaKIIHIo
aBTOMAra Ha 8XOOHYI0 NOCICO08AMENbHOCb 11, ..., Iy B cocTosHuA S. Hampumep,
Juist aBTomMata S (pucyHoK 1) B cocTosiHuE 3, BXOAHO#M mocnenoBarensHocta 1, 0, 2
cootBeTcTByeT BhixoaHas peakius 0, 0, 0. Takum o6pazom, 1/0, 0/0, 2/0 — Bxom0-
BBIXOJIHASI TIOCIICIOBATEILHOCTD B COCTOSIHUM S aBTOMATa S.

KoHeuHslil aBTOMAT S Ha3bIBaeTCsA agmomamom be3 causnuil [1], ecau st Kaxaoit
mapel mepexomoB (S, 1, 0, 51'), (S, 1,0,8)’) € As, i € |,0 € O, umeer mecto Sy’ #
S;'; ApYrMMH CIIOBaMH, B aBTOMaTe 0e3 CIMSHHUN Mepexolbl U3 JBYX Pa3IMuHBIX
COCTOSIHUY 110 OHOM BXOJI0-BBIXOJHOM Nape HE MOT'YT NIEPEBOAUTL aBTOMAT B OJIHO
U 10 ke coctosHue. CHTyanusi, KOTJa He MyCThie i0-PEEMHUKH IJIsi HEKOTOPOM
napbl Pa3IMYHBIX COCTOSHUN COBMAAIOT, HA3BIBACTCS CUAHUEM TAKUX MEPEXOIOB.
Hanpumep, s aBTomara S (puc. 1) ciusiHue cymiecTByeT s mepexomnos (2, 2, 1,
3)u(3,21,3).

0/1 2/1 2/0

Puc. 1. Ilonnocmuto onpedenénmulii HeOemepMUuHUpoB8anHwlll agmomam S
Fig. 1. Complete nondeterministic FSM S

2.2 TecToBbIN Npumep

BxomHasi MOCIEIOBATEIBHOCTD 0 HA3bIBACTCS dOQNMUGHOU, €CITH CIEyIOMINi
BXOJIHOH CHUMBOJI B IMOCJIEJAOBATEILHOCTA 3aBHCUT OT pEaKIUM aBTOMaTa Ha
OpebIAYIINI BXOAHOW CUMBOJI. AalITHBHBIE BXO/IHbIE MOCIIEI0BATEILHOCTH YaCcTO
NpeaCTaBIsAoTes B (OpMe CHEHUaIbHOr0 KOHEYHOr0 aBTOMAaTa, Ha3bIBaeMOrO
TECTOBBIM IIpuMepoM [8].

Tecmosvim npumepom TC(l, O) ¢ BxoxHbIM anpaBuToM | U BEIXOAHBIM an(aBUTOM
O Ha3piBaeTCs HMHUIMAIBHBIA CBS3HBIH HAOJIOMAEMbI KOHEYHBIA aBTOMAT
T=(T, 1,0, Ar to) ¢ anukaMyeckuM rpadoM IMEPEXOJ0B. B KaKIOM COCTOSHHUU
TECTOBOIO MPHUMEpa OMpPEACIICHBI MePexXo/bl He 0oJee YeM M0 OAHOMY BXOJHOMY
CHMBOJIy, @ COCTOSIHHs, B KOTOPBIX HE OIpEIeCHO HU OJHOrO Iepexona,
HaszbiBatorcst mynukosvimu (deadlock). Tecroseiii mpumep TC(l, O) sBstercs
YaCTHYHBIM aBTOMAToM, eciH |l| > 1, u npeacTaBiser co0o0i aJanTUBHYIO BXOIHYIO

142



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

nocneoBarenbHOCTh  iist  aBtomara S = (S, 1, O, As, Sg). Bwvicoma TeCTOBOTO
npuMepa  ompefessieTcss  Kak - JUIMHa  MaKCHMAallbHOM  BXO/0-BBIXOJHO
MOCJIEIOBATENIbHOCTH M3 HAYAbHOTO B TYMHKOBOE COCTOSIHUE U COOTBETCTBYET
MaKCUMAaJbHOM JUIMHE BXOJHOM IIOCIEOBATEIbHOCTH, KOTOpas MOXET ObITh
MOJIaHa HA CUCTEMY B XOJI€ aJalITUBHOTO YKCIIEPUMEHTA.

TectoBelit  mpumMep TC NPE/ICTABISIET  AOANMUBHYIO  DA3IUNAIOUYIO
nocne0osamenbHocms NI COCTOSHUN S; M S, aBTOMaTa S, €CIIM KaK[Ias BXOJO-
BBIXO/IHAsl TIOCJIEIOBATEIbHOCTh W3 HAYAIbHOTO B TEPMHUHAJIBHOE COCTOSHHE
TECTOBOTO MpUMEpa BO3MOXHA TOJBKO B OJTHOM W3 COCTOSIHUHU S; WiH S;. B Takom
ciyuae, TC Ha3BIBACTCS pAsIUUAOWUM MECMOBbIM NPUMEPOM, & COCTOSHHUS S; U Sp
aoanmuero pasiuyumMviMu. AJANTHBHAS TIOCICAOBATCIBLHOCTh, Pa3IHYaIOIIast
KXyl Mapy COCTOSHUN aBTOMAaTa S, Ha3bIBACTCS aOANMUEHOU pasiuyaioujeli
[IOCJIE0BATENbHOCTRIO I aBTOMaTa S. Paznuuaromuil TECTOBBIM IpUMeEp Ui
aBTOMAaTa Ha pUCYHKe | mpejcTaBiieH Ha puc. 2.

Puc. 2. Pasnuyarowuii mecmoguwiii npumep 01a asmomama S
Fig. 2. Distinguishing test case for FSM S

Juss Toro 4roObl HICHTH(QUIUPOBATH HAYALHOE COCTOSHHE aBromara S,
paziuyaromiuid  TecToBeli mpumep TC mopa€Tcss Ha aBTOMAr S CIEIYIOLIUM
obpazoM. DKCIEPUMEHT HAYMHAETCS C TOJa4d Ha aBTOMAT EIUHCTBEHHOTO
BXOJIHOIO CHUMBOJIA i1, ONMPEAEIEHHOr0 B HA4aJbHOM COCTOSHMHM Sy aBTomara TC.
Janee pasznuyarmuii MpUMep BBITIOJHSAET MEPEXOJl B COCTOSIHHE S; MO BXOO-
BBIXOJHOU Tape i1/01, Toe 0; — HabmroJaemMas peakius aBTOMara S Ha BXOJHOM
cuMBoa iy, Jlasee Ha aBToMaT S MOMAETCS BXOIHOW CHUMBOJI, ONPEAEIEHHbIN B
COCTOSIHUU S;. DKCIEPUMEHT MIPOAOJKAETCS HTEPATHUBHO, TOKAa B pa3iMyarolieM
TECTOBOM TMpHMepe He OyJeT HOCTHTHYTO TYNUKOBOE COCTOSIHHUE, IO
COOTBETCTBYIOIIEH BXOJI0-BBIXOJHOM MOCIEAOBATEILHOCTH MOKHO OIHO3HAYHO
OTpEICNIUTh COCTOSIHME, B KOTOPOM HaxoJWicCs aBToMar S 10 Hayala
9KCIIEPUMEHTA.
Hanpumep, s pa3muuaroiero TeCTOBOrO MpUMEpa Ha PUCYHKE 2 TEPBBIM OyJeT
nojan BXxonHo# cumBoia 1. danee, mo peakunu O wim 1 aBTomara S (pucyHok 1)
143



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

OTIPEJICIIICTCS CIESMYIONINA BXOHON cMBOJ 1 niu 2 cooTBeTCcTBeHHO. Ecim B Xome
SKCIIEpUMEHTa Oblila IMoJTydeHa BXOJ0-BBIXOTHAS TMocienoBareinpHocta 1/1, 2/1, To
JI0 Hayaya 3KCIIePIMEHTa aBTOMAT S HaXOIWICS B COCTOSHIH 1.

3. TocmpoeHue pa3snuyarou,e20 Mecmoeozo rnpumepa

MeTox mOCTpOCHHUS pa3IMYaroIIero TECTOBOTO MPHMepa Ha OCHOBE Pa3IMYaroIIero
aBromara ObuT mpemiokeH B [9]. Pasnmuarommii aBTOMAT Sgisy JUIA TTOJHOCTHIO
OTIpeIeNIEHHOTO HabII01aeMoro, BO3MOKHO, HEIeTepPMIHUPOBAHHOTO aBTOMaTa S =
(S, I, O, As) crpouTcs MO CIEAYIOMAM TMpaBHiaM. MHOXeCTBa BXOIHBIX H
BBIXOJIHBIX CHMBOJIOB Sgist COBIAJAae€T C TAaKOBBIMH JJII HMCXOJHOI'O KOHEYHOT'O
aBTomMara S, B TO BpeMs KaK COCTOSHUS Sgisgt COOTBETCTBYIOT HEIYCTBIM
MOJIMHOKECTBAM COCTOSIHUN S, collepskaliuM 0osiee 0JHOT0 3JIeMEeHTa; KpoMe TOro,
B pa3jHMyaronieM aBTOMaTe MPUCYTCTBYET crenuaibHoe coctosHue F. [loctpoenue
MIEPEXOJIOB Sgist HAUMHAETCSA B HAYaJIbHOM COCTOSTHUM Sgist, KOTOPOE COOTBETCTBYET
MOJIMHOXKECTBY, COJIEpIKaIleMy BCe COCTOSTHUS aBToMarta S. Pasnuuaromuii aBTomat
Sgist IPEACTaBIACT cO00W MHHUMAIFHBI aBTOMAT, MOCTPOCHHBIA 110 CJETyFOIINM
TIpaBUJIaM.

ITycte b cocrostnne pasnuyaromero aBromMata Sgjs.

1) Tlepexon (b, i, 0, b') cymecTByer B aBTOMaTe Sgig;, €CIIU M TOJBKO eciiu b’ He
SIBJIIETCS OJIHODJIEMEHTHBIM TIOJMHOMXKECTBOM, JUIst Kakaoro 0’ € O HemycTbie
i0"-npeemuuxy Mt Tr000M Mapbl Pa3IMYHBIX COCTOSHHUN U3 D HE COBMAmaroT, u
b' — Hemycroe MHOXECTBO i0-IPEEMHHMKOB COCTOSHHN W3 MHOXecTBa Db. B
TaKoOM CITy4ae, COCTOsTHUE b’ 106aBIseTCs] B MHOXKECTBO COCTOSTHHH Sgigt.

2) Tepexon (b, i, 0, F) cymecTtByeT B aBTOMaTe Sgig, €CJAM M TOJBKO ECIIH
CYIIECTBYET BBIXOJHOM cumBoa O’ € O, TakoW 4TO HemycThie I0'-IPeeMHUKU
JUTsI HEKOTOPOW Maphl pa3jinMyHBIX COCTOSIHUN m3 D coBmamarT (MMeeT MecTo
CNUsSHME TIepexozoB). B Takom ciy4ae, cocrosHue F moGaBisieTcst B
MHOECTBO COCTOSIHUU Sjgt.

3) TIlepexon aBTOMara Sgisy U3 COCTOSHUSL D 1O BXOAHOMY CHMBOJIY | He
ONpeNenéH, eclid W TOJNbKO ecinu Juis Kaxgoro 0 € O, He mycthie i0'-
MPEEeMHUKH JF000M Mapbl Pa3iMYHBIX COCTOSHHMNA W3 D He coBmamarT, U
KaX bl 10-IPEEMHUK COCTOSIHHIA U3 D SIBISIETCS] 0THO3IIEMEHTHBIM.

B cocrosiunu F cymectByer mepexon (F, i, 0 F) mist kaxmoil BX010-BBIXOIHON
napsl i/0 aBTomara Sgig.

BX0HOM CHMMBOJI | pa3jIMYaroIIero aBToMara Syisy HA3bIBAETCS HEOnpeoeiéHHbiM B
cocTossHMU b, ecim B aBTOMare He CYIIECTBYET IMEPEXOJOB M3 COCTOSHHS D 1m0
BXOJIHOMY CUMBOINY i, T.e. Juts kKaxzoro 0’ € O, He mycThie i0'-npeeMHUKH JTF000#
mapel pasjiMuHBIX COCTOSHMA w3 b He coBmajgaroT, W KaKAblid 10-TIpEeMHMK
COCTOSIHUM M3 D sSBJISETCS OJHODIEMEHTHBIM IIOJAMHOMXECTBOM. J[i KOHEYHOro
aBToMaTa S Ha puc. 1 COOTBETCTBYIONIMIA pa3IHYAIOIIANA aBTOMAT  Sgig,
HpescTaBiIeHHbI Ha puc. 3, umeeT 10 cocTosHUA.

144



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

1t TOro 9ToOBI ONPEAETUTh, 00IaTaCT JIM KOHEYHBIH aBTOMAT S pasiMYarOiiM
TECTOBBIM [PHMEPOM, COCTOSIHHS PAa3IMUYAOIIEr0 aBTOMATa Syist C HEONPEICIEHHBIM
BXOAHBIM CHMBOJOM YyIASIIOTCS W3 PpasiMYaoliero aBTOMaTa CoO BCEMH
HepexoaMu B Takue cocTostHmsl. COCTOSIHUS yIasIOTCS HTEPATHBHO, MOKa MO0 B
HAaYalbHOM COCTOSHHH HE TIOSIBISICTCS HEOMPEICTIEHHBINH BXOMHOM CHUMBOII, THOO B
pa3IMYAoIeM aBTOMATEe HE 3aKAHYHMBAFOTCS HEOMPEACIEHHBIC BXOJHBIC CHMBOJIBIL.
[pu ynaneHuu cocTosHUS D U3 Syt MBI COXpaHsSeM OIUH U3 BXOTHBIX CHMBOJIOB |,
HeompeaenéHHbIX B cocTosiHuu b, B cnenpansHom Maccuse UN, UN(b) = i.

Ecnm Ha HEKOTOPOM JTale YAalICHHsS COCTOSHHN, B Ha4aJlbHOM COCTOSHUHU
pa3IMYAOIIEr0 aBTOMAara CYLIECTBYET HEOMNPECTIEHHBIH BXOAHOW CHMBOI, TO
pasiMYaronMii  TECTOBBIH mpuMep D MokeT OBITH MOCTPOCH MOPH ITOMOIIH
coxpaHéHHbIX B MaccuBe UN BXOIHBIX CHMBOJIOB. B 3TOM ciiyuae HauanbHOe
cocrosiaue 0y aBToMara D COOTBETCTBYET Ha4albHOMY COCTOSIHHIO Dy aBTOMAaTa Sgig.
Bxoanoii cumBon UN(by) mpencrapisier co6oii eMHCTBEHHbIH BXOJIHOH CHMBO,
ompezenéuupiii B cocrosuun Oy aBromara D, u mepexom (dg, UN(bg), o, d)
CyIlIecTByeT B D, €CJIM U TOJIBKO €CNU B Sgist (10 yIAJICHUSI COCTOSIHUIT) CYIIECTBYET
nepexon (Do, UN(bp), 0, b), rme mms cocrosumii b u d, coorBercTBYyIOIINE
MOJIMHOXECTBA COCTOSIHUIN aBTOMaTa S COBMAIAIOT.

Ecmu s Hekotoporo 0 € O He cymectByer mepexoaa (by, UN(bp), o, b) B
aBTOMAaTe Sgis, TO B D moGasisiercst mepexon (dg, UN(by), 0, F), tne F — TynukoBoe
cocrosiaue. Tlepexoabl IS APYTHX COCTOSHUN Pas3Myaroiero TECTOBOro mpuMepa
D ¢GopMupyroTcst aHaoruuHo. OTMETHM, 4TO AJIst OoJiee yIOOHOTO MPeCTaBICHUS
Pa3IMYAIONIEr0 TECTOBOTO MPUMEPA, BMECTO €IMHCTBEHHOTO COCTOSHHUs F, MOXHO
HCIIOJIB30BaTh MHOXKECTBO TYIIHKOBBIX COCTOSHHHN, KAKI0€ M3 KOTOPHIX MOMEYaeTcs
COCTOSHHEM, B KOTOPOM HaxXOJWJICSA aBTOMAT J0 Hayaja SKCIIEPHMEHTA IIpH
HaOJIFOJICHNH COOTBETCTBYIOIEH BXOJ0-BBIXOMHOM IMOCIIENOBATENHLHOCTH (€Cin
TakoBoe cymiecTByeT). sl KOHEYHOTO aBToMara S Ha puc. | COOTBETCTBYIOMIMIA
pasIMYArONIMi TECTOBBIM TPUMEP MPEICTABIEH HAa PUCYHKE 2, MMEeT IUTHHY 2 W
MOYE€T OBITh IOCTPOEH IO PA3IMYAOIIEMY aBTOMATY Sgigt (pHC. 3).

B [9] ycranaBmuBaercs ciedyrollee HEOOXOAUMOE U JOCTATOYHOE YCIOBHE
CYyLIECTBOBAHHUS Pa3IHUaIOIIEro IpuMepa.

YrBepkaenue 1. [l MOTHOCTHIO OMPEeAENEHHOTO0 HAOII0AEMOTO, BO3MOXKHO,
HEJACTEPMUHUPOBAHHOIO aBTOMAaTa S CYIIECTBYET pa3iUyYarOllUi TECTOBBIN
MIPUMEp, €CJIM U TOJIBKO €CIIM B COOTBETCTBYIOIIEM PA3INYAIOIIEM aBTOMATE Sgyist HE
CYILLECTBYET MOJHOCTBIO ONPENEIEHHOIO OJaBTOMATA.

B [9] rtakke mokasaHO, YTO JJMHA Pa3HYAIONIET0 TECTOBOTO IPHMEPA MOMXKET
JIOCTUTAaTh  3HAYCHHUS PR | I TIOJIHOCTBIO  OMpENeiEHHOro
HEACTCPMUHUPOBAHHOTO HAOJIIOJIaeMOT0 aBTOMaTa S C N COCTOSHUSAMH. B 3TOM
ciIydae, BCE BO3MOXKHBIE MTOJMHOYKECTBA COCTOSIHMM aBTOMAara S, HE SBIISIONIHECS
OJTHORJIEMEHTHBIMH, MOTYT OBITh COCTOSIHHSIMHM DPa3JIMYaIONIer0 aBTOMaTa Sgig, U
COOTBETCTBEHHO, TMpoLEaypa IMOCTPOCHHUsS pPAa3IMYalOUIMX TECTOBBIX IMPUMEPOB
CTaHOBUTCS JOCTATOYHO CIIOXKHOM.

145



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

20 271

Puc. 3. Paznuuarowuti asmomam Sgigt
Fig. 3. Distinguishing FSM Syt

s Toro 4YTOOBl  ONTHMHU3UPOBATh CHHTE3 AMANTHUBHOM  pa3iHyaronien
MOCJIEIOBATEIEHOCTH, MBI IIpeJIaraéM OTPaHUYMBATH ITOCTPOSHHE Pa3IMYArOIIETO
aBTOMATa JIOITyCTHMOW JUTMHOM aJanTHBHOW pasiInyaroniell Mociie0BaTeIbHOCTH, a
MMEHHO, CTPOMTh DA3IHYAIONINHA aBTOMAT S g, COMEPIKAIIMH JIMIIL COCTOSHS,
JOCTHXHAMBIE u3 HavaIbHOTO COCTOSTHHS o BX0/10-BBIXOHBIM
MIOCJIE/I0BATENILHOCTSIM JJIMHBI He Ooibie HekoToporo L > 1. Takoi cokpamiéHHbIH
pasnuyaonMid aBTOMaT II03BOJISICT HAWTH pas3lIMYarollfe TECTOBBIE IPHMEpPHI
BBICOTHI He OoJblie L. [IpemnoxeHHbli moaxo/ cornacyercs ¢ pesynbratamu u3 [9],
rZie yTBEep)KIaeTcs, YTo JUIMHA aJalTHBHOI pa3iuyaromiel mocie10BaTeIbHOCTH He
npesblmiaeT 15 il ciayyallHO CrE€HEpUPOBAHHBIX KOHEYHBIX aBTOMATOB JIAaXe C
6onpmmM (6onee 100) uncinom cocrosHUi. BBUAY TOTO, YTO UIMHA Pa3IHNYAIONIEro
TECTOBOTO MpHMepa sl OONBIIMHCTBA aBTOMATOB HE CIHUINKOM OOJbINasi, MMEeT
CMBICII OTPAaHWYUTH JJIMHY, Ha KOTOPOW OCYIIECTBISETCA IOWCK TECTOBOTO
npumepa.

TakuM 00pa3soM, IOJ aBTOMATOM S'g MOHMMAETCS PA3TMYAIONIMI ABTOMAT,
COJICPIKAIIIH JIUIIb COCTOSIHNSA, JOCTIKUMBIE U3 HA49aIbHOTO COCTOSIHUS 0 BXOJ0-
BBIXOJHBIM IIOCJIEI0OBATEILHOCTAM JUIMHBEI He Oospine L, rome L — 1memmoe
HEOTPHUIATEILHOE YNCIIO, U cocTosiHuE F. OTMEeTHM Takke, 4TO BCE TEPEXObl SLdist
U3 COCTOSIHUHM, NOCTHXKMMBIX TOJBKO IO BXOAHOW MOCIIEAOBATEILHOCTU MAJIHHBI
6ompme L Bemyr B cocrosume F. Hampumep, s aBromara Ha puc. 1,
pasnuuaromuii aBTomMaT St COAEPKHT TOIBKO HauanbHOe cocrosuue {0, 1, 2, 3},
B TO BpeMsi KaK Slgg CONEPHKHT eIie YeThIPe COCTOSHHS, JOCTHXHMBIX H3
HAaYaIbHOTO COCTOSIHHMS M0 BXOHOMU MOCIIeN0BaTeNbHOCTH AMuHbI 1 (puc. 3).

146



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

Awnanornano yreepxacuuio 1 u3 [9], cripaBeynBa cireyromas Teopema.

Teopema 2. [l TONHOCTBIO ONpPEACIEHHOTO HAOIIOAaEMOr0, BO3MOXKHO,
HEJIETEPMUHUPOBAHHOTO KOHEYHOTO aBTOMaTa S CyIIECTBYET pa3iudyaroliui
TECTOBBIA TpPUMEpP BBICOTHI HE OoibIne L, €ClUM M TONBKO €CIH pa3iHdaronuit
aBTOMAT S"dist HE HMEET ITOJHOCTHIO ONPEIEIEHHOTO TOAABTOMATA.

Joka3zareabcTBo. IlycTh B aBTOMare S CylIecTBYEeT pa3iMYarOlINil TECTOBBIN
npumep 1uHbI L. Toraa no yTBep:KAeHuUIO 1, pa3nuyaromuii aBToMat Sgjsy HC UIMEET
MOJIHOCTBIO ONPENENEHHOTO MojaBToMaTra. MTepaTUBHBIM YyJal€HUEM COCTOSHHUU,
JOCTHXKHMBIX II0 IIOCIIE0BATEILHOCTH JJIMHEI He 00Jbiie L MOXKHO MMOKa3aTh, 4TO
IS aBTOMaTa SLdist TaKXE€ HE CYIIECTBYET IOJHOCTBIO OIpPEnEIEHHOIO
nojaBromara. B To ke Bpems, ecid aBTOMaT SLdist HE HMEET MOJHOCTHIO
OTIpeIeIEHHOTO TI0aBTOMATa, TO TECTOBEIA MMPUMEP MOXKET OBITH HETIOCPEICTBEHHO
MOCTPOEH M0 MPUBEAEHHOM BBIIIE MPOLIEAYPE, aHATOTUYHOU mpoueaype u3 [9].

Takum 00pa3oM, MPOBEpPKa CYIIECCTBOBAHHS Pa3IMYAIONICTO TECTOBOIO MpUMeEpa
BBICOTBI HE Oojbiie L MOXKeT OBITh NpPOBEICHA MTEPATUBHBIM yJaJICHHEM
COCTOSIHUH COKpPAIIEHHOTO pa3JIMYaloero aBTOMaTa Sty Ecnu  HavampHOE
cocrostare S'gist B pe3ynpTaTe UMEeT HeOoNpeIeNEHHBI BXOMHOW CHMBOJ, TO Shgist
HE WMEET TIOJNHOCTBIO OIPENeNEHHOTO IIOJaBTOMaTa W COOTBETCTBYIOIIHH
Pa3MYAONINA TECTOBBIH MpPUMEpP MOXET OBITh ITOCTPOSH ONHMCAHHBIM BBIIIC
METOOM.

Hanpuwmep, paznuuaroniuii aBromar Ha puc. 3 umeer 10 cocTosiHMiA, OJHAKO,
PA3IIHHYAIONIHIA TECTOBBII PEMEpP MOYXET ObITh OCTPOCH HA OCHOBE aBTOMATa S g,
KOTOpBIi MMeeT 9 cocTosHMN (BBIAENEHBI cepbiM 1BeTOM). [lpu ynanenun
COCTOSIHUH C HEONpEAEIEHHBIM BXOJIHBIM CHMBOJIOM MOXHO YOEAWTBCS, HUTO
Pa3IUAONIHIA aBTOMAT S gigt HE MMEET HOTHOCTBIO OMPEIEIEHHOTO TOIaBTOMATA, 1
COOTBETCTBYIOIMI pa3IMYalOIINid TECTOBBIA NpUMEp (PHCYHOK 2) MOXKeET ObITh
MOCTPOEH MO ONMMCAaHHOW BBIIIE TPOLETypE.

Takum o0pazoMm, MBI MpemIaraeM CICIYIIYI0 TMPOLEAYPY IOCTPOCHUS
Ppa3MYaoIIero TECTOBOTO NMpUMEpPA IJIsi MOJTHOCTHIO ONPEAENEHHOr0, BO3ZMOXKHO
HEJIETCPMUHHPOBAHHOTO, HAOII0JAeMOT0 KOHEYHOTO aBTOMATA.
OnTUMU3MPOBAHHASI POIEYPA MTOCTPOSHUS Pa3TUIAIOIIEro TECTOBOTO IpUMepa
BX01: OJTHOCTEIO OTIpeIeIEHHBIN HA0II0JaeMblif aBTOMAT S, 1enoe uucio L > 1
Boixon: Pazmuuarommii TeCTOBBIN IpUMEp BBICOTHI He Ooubie L it aBTomara S,
cooOmeHns1 ‘ABTOMAT S HE UMEET Pa3IMYAIOIIEr0 TECTOBOTO MPHMEPa BBICOTHI HE
6ouspiie L mnm ‘ABTOMAT S He MMEET pa3IMYaroLIero TECTOBOIO IpuMepa’
I: = 1, MaccuB Heomnpenen€HHbIX BXOAHBIX cuMBOJOB UN = OJ, pasnuuaroniuii
aBromar S’y C CAMHCTBCHHBIM HAYajJbHBIM COCTOSHHEM, COBIALAIOLAM C
MHO’KECTBOM COCTOSTHHMI aBToMaTa S; Q = Sodist;
]J-I I'l o
ar 1. Jlo0aBuUTb B S it COCTOSHHS, TOCTHXKHMBIE II0 BXOJI0-BBIXOJHOM

nocjaea0BaTCIIbHOCTH JJIMHBI |, T.C., IOCTPOUTH aBTOMAT Sldist U KOIMPOBATb BCC
HOBBIC IIEPEXOIBI 1 COCTOAHUA B aBTOMAT Q

147



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

Ecian S'dist = S"ldist, TO BBIBECTH cooOmeHne ‘ABTOMAT S HE HMeEET
Pa3IUYAoIIero TECTOBOTrO MpuMepa’ U 3aBepIIMTh MPOLEAYPY

unaue IIlar 2.

Mlar 2. VitepaTuBHO yoaiuTh U3 Sliist Kaxk10€ cocrosiame b, B KOTOpPOM CYILIECTBYET
HEONpeeIEHHBIA BXOIHON CMMBOJI, BBIOPATh HEONPEICIEHHBINA BXOIHON CUMBOI |,
nonoxus UN(b) = i.

Ecau B HayaJbHOM COCTOSHHUH S'dist CYILIECTBYET HEONPEICIEHHBIN BXOIHOM
cumso, To Illar 3;

HHa4ve

Ecim | + 1 > L To BeBecTH cooOlIeHHe ‘ABTOMAaT S He HMeET
pa3IUYaloIero TECTOBOTO MpuUMepa BBICOTHI He Oosble L’ v 3aBepmiuTh

npoueaypy,
unave | =1+ 1 u Ilar 1.

Ilar 3. [IlocTpouTh pazaMYalOIMKA  TECTOBBI IpUMEp 10  MAacCHUBY
HeompeaenEéHHbIX BXOJHBIX cuMBOJIOB UN 1 pasnugaronieMy aBToMaTy Q, KOTOPBIi
HpeCTaBIsIeT cOO0H aBTOMaT Slyist 10 YAaJeHUs COCTOSTHHUM.

3aBepuIUTH NPOLEAYPY

Teopema 3. [l TONHOCTBIO ONpPEACNEHHOTO HAOIIOZAEMOro, BO3MOXKHO,
HEeIeTCpPMUHUPOBAHHOTO aBToMara S ¥ 1enoro uucima L > 0 mpemrosxkeHHAs
ONTUMU3MPOBAHHAS MPOIEypa BO3BpAIIacT pPa3HYAIOIINN TECTOBBIH MpUMeEp,
€CIIM U TOJBKO €CIM B aBTOMAaTe S CYIIECTBYET pa3iHYarOIIdi TECTOBBIH MpHUMEp
IUIMHBI He OoubIe L.

Hoxa3aTeascTBo. 13 Teopemsl 2 u pe3ynsTatoB [9] ciemyer, 9To eciIu aBTOMaT S
UMeeT aJalTHBHYI0 Pa3NMYaloNlyl0 JIHHEI L, TO 3TOT pa3NUYalOMIMiA TEeCTOBEIH
IpUMEp MOXKET OBITh TMOCTPOSH MO pa3IHJaroleMy aBTOMATY Stgist. TTokaskem
Jajee, YTo yHalleHHe COCTOSHUM Ha IIare 2 BBIMICONHCAHHOTO alropuTMa HE
BJIHSET HA MTOCTPOCHHE pa3Nuyaromiero npumepa. [lycts mis uncia L ObuT mocTpoeH
aBTOMAT S"dist M COCTOSHHE b pasimuyaromiero asroMaTa SLdist HMEEeT
HeonpeneNEHHbIN BXoaHOM cuMBoOJI. [locneaHee o3HayaeT, 4To AJid MOAMHOKECTBA
COCTOSIHMH ~aBTOMara S, COOTBETCTBYIOLIETO COCTOSHUIO b, CymiecTByeT
(amanTHBHAs) pa3MUYAIONIas TOCIEA0BATEILHOCTD AIUHEI He Ooee L - L', rtoe L' —
JUIMHA BXOZHOM I10CIIEI0BATEIBHOCTH U3 HAYAIBHOTO COCTOSHHS S it B b.

OTMETHM TakKe, YTO PasTHYAONMi aBTOMAT, COOTBETCTBYIONIMH aBTOMATy S'gist
JI0 YNaJIEHHs COCTOSIHHM, cOXpaHseTcss B aBTomMare Q, Ha OCHOBE KOTOPOTO
pa3n1/maromm‘/'1 TECTOBBINA IIpUMEP MOXKET OBITh BOCCTAaHOBIIEH IIO MHOXECTBY
HeomnpeneéHHbIX BXOAHBIX cuMBOoB UN. Takum obpasom, cocrosiaue b Oymer
yAaleHo, Kak TOJbKO I Hero OyneT HalaeHa Kpardamas (aganTHBHAs)
pasnuyarnoiias MociIe0BaTeIbHOCTh, KOTOPAsl MO3KE MOXKET ObITh BOCCTAHOBIICHA
no aBroMaty Q u MuoxxectBy UN, 1 BKIIIOYEHA B pa3IMYalOUINI TECTOBBII pUMeED.

148



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

OnTuMH3KMpoOBaHHAs MPOLEAYpPa MOCTPOSHHS PA3IMUAIOLIET0 TECTOBOTO MpUMEpa
OblTa peann3oBaHa MPOTPAMMHBIM 00pa3oM, W Jajiceé MBI IPHUBOANM PE3YIbTAThI
HPOBEAEHHBIX KOMIBIOTEPHBIX IKCIIEPUMEHTOB.

4. 3KcnepumeHmaanble pe3ysribmamabli

B HacTosimeM pa3szaene Mbl IPUBOJUM PE3YIbTaThl KOMIIBIOTEPHBIX SKCIIEPHIMEHTOB
1o oreHke 3(QEKTUBHOCTH INPEIOKEHHOTO ONTHMH3MPOBAHHOTO MOAXO0Ja K
MOCTPOCHHIO PA3IMYAIOIMINX TECTOBBIX IPHMEPOB, a TAKKE MCCICIYyEeM IHHY
aJaNTUBHBIX PA3IUYAIONIMX IIOCIEAOBAaTEIbHOCTEH AN Ppa3IM4YHBIX KIIACCOB
KOHEYHBIX aBTOMATOB.

4.1 Cny4yanHO creHepupoBaHHble KOHeYHble aBTOMaTbI

[lepBast cepus B3KCHEPUMEHTOB IPOBOJAMUIIACH CO CIY4alHO CTreHEpHUPOBAHHBIMU
KOHEUHBIMU aBTOMAaTaMH [Ji OLICHKH BEPOSITHOCTH CYIIECTBOBAaHUS aJdalTHUBHOMN
pasnuyaromein [IOCJIEZI0BATEIbHOCTH B 3aBUCUMOCTH oT yucia
HeJICTEPMUHUPOBAHHBIX  MepexogoB aBroMarta. KommuectBo Nd  mepexomos
aBTOMaTa Uil KaKIOH MHaphl ‘COCTOSHHE, BXOJHON CHMBOJ  3aJaeTcsl 3apaHee.
[MpoBenénupie dKcrepuMeHTHl (pHc. 4) MOKa3aid, YTO Pa3IMYalONIMi TECTOBBIM
NpUMEp CYIIECTBYET KpaiiHe penko, npu Nd > 3, 1 COOTBETCTBEHHO, MOCIICAYIOIINE
CepHH IKCIIEPUMEHTOB MPOBOIMIINCH C aBTOMATAMHU, JIst KOTOphix Nd < 3.

100

80

60

40

20

MpoueHT aaanTUBHO
pas/IMuMMBbIX aBTOMAaTOB
Perecent of FSM with TC

0
0 1 2 3 4 5 6

nd

Puc. 4. [Ipoyenm agmomamos, 0Jisi KOMOPbIX CYuWecmayem pasiudaiowull mecmogolii
npumep
Fig. 4. Percentage of FSMs when a distinguishing test case exists

Ha puc. 5 npexacrapieHa cpemHsisi BBICOTA Pa3HYAONIEI0 TECTOBOLO IpHMepa B
3aBHCHMOCTH OT YHCJIa COCTOSHMH aBTOMaTa. JKCIEPUMEHTHI TPOBOIMINCH C
aBromaramu, s kKotopsix |l| = |O| = 10, u KOTOpble UMENH Pa3THIHOE UHUCIO
HEJCTePMHUHUPOBAHHBIX  MepexomoB.  HibKHAS ~ KpuBas — MOCTpOCHA IS
JIETePMHUHUPOBAHHBIX aBTOMATOB, CPEHSS U BEPXHsS KpUBas Uil 3HaueHu# nd = 2
U 3 COOTBETCTBEHHO.

149



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

45
4,0
35

3,0
25 /_'_—'
2,0
- //_r——v——f_‘
10
0,5
0,0
0 5 10 15 20 25 30 35

Yrcno coctoaHun
Number of states

BbicoTa pasnuyaiowero
TecToBOro nprmepa
Length of DTC

Puc. 5. Bvicoma paznuuaioweco mecmogozo npumepa oas 0emepMuHUpOSaAHHbIX U
HedemepMuHuposaHHblx asmomamoe
Fig. 5. Length of a distinguishing test case for deterministic and nondeterministic FSMs

W3 npoBenEHHBIX 3KCIIEPUMEHTOB CIELYET, YTO JJI CIy4alHO CrE€HEPUPOBAHHBIX
ABTOMATOB Da3IMYaIOIINN TECTOBBIA NpuUMep JHOO0 MMeeT HEeOOJBLIYIO BBICOTY,
aub0 He cymectByeT. Ilociennee OOYCIOBICHO TEM, YTO TPU  CIAyYalHOM
reHepaluy BbICOKAa BEPOATHOCTb CYILECTBOBAHUS CIUSHUM U1 KaKIOrO0 BXOIHOTO
cuMBoia. bonee Toro, BBHAY OONBIIOrO KOJMYECTBA CIMSHHH, MHOTHE COCTOSHHS
pa3nMyaoniero aBToMara HMEIOT Iepexojsl JHMmb B cocTosiHMe F, m
COOTBETCTBEHHO, YHUCIO COCTOSHMH pPa3IHYaloIlero aBTOMaTa HEBENHMKO. Takum
00pa3oM, TIpeUIoKeHHast B MPEbIAYIIEM pasjelie ONTUMH3aNUs ONpaBAaHa JIHIIb
npu  OOJIBIIOM KOJHMYECTBE HEAETEPMHHUPOBAHHBIX IEPEXOJ0B, INMPHU KOTOPOM
YUCJIO COCTOSHMU pa3jIM4arollero aBToMaTa W JUIMHA Pa3M4yaroulero I[pumepa
BO3pacCTaloT.

Ha puc. 6 oroOpakeHa 3aBHCHMOCTb BPEMEHH IIOCTPOCHHS Pa3IMYaIOIIETo
TECTOBOTO MPHUMEpa OT YHCIIa COCTOSHUH I ONTUMHU3UPOBAHHON (HMKHSISI KpUBas)

U HEONTHUMHU3UPOBAHHOW (BepXHsis kKpuBas) mpoueayp mpu || = |O] = 10 u nd = 3.
D DPEeKTUBHOCTH ONTUMU3MPOBAHHONW IIPOLELYPHl BO3PACTAET C YBEJIUUECHHUEM
YKciIa COCTOSIHUM aBToMara. OTMETHM TakKe, uTo st aBTomaros ¢ |S| = 30, |I| = |O|

= 10 u nd = 2, onTUMHU3MPOBAHHAS MPOIEAYpa paboTacT MPUMEPHO B JBa pasa
ObICTpEE OPUTHHAIBLHOM, B TO BpeMs Kak s Nd = 3 mpeaioxKeHHas ONTHMU3AIUs
3HAYUTEIBHO YCKOPSET BBIMOJHEHHUE MPOIEAYPHI MPH MPOYUX PABHBIX YCIOBUIX
(pucyHoxk 6).

3aMeTHM, YTO TO pe3yiapTaTaM IPOBEAEHHBIX AKCIEPHUMEHTOB CIydailHO
CreHEPUPOBAHHBIC aBTOMATHI IMEIOT MHOTO CJIMSIHUH, YTO HE BCET/Ia COOTBETCTBYET
aBTOMAaTaM, OIUCHIBAIOIINM IOBEJICHUE PEalbHBIX CHCTeM. B ciemyronieM pasnerne
MBI paccMaTPHBAEM CIICHUANBHBIA KJIacC KOHEYHBIX aBTOMATOB 0€3 CIUSHUM,
00TaJaroIUX PSAIOM MOJIC3HBIX CBOMCTB MPHU MOCTPOCHHUU PAa3INYAIONINX TECTOBBIX
TPUMEPOB.

150



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

40
35
30
25
20
15
10
5
0
0 10 20 30 40
Yucno cocToaHuin
Number of states

Bpems BbINOAHEHUA, CeK
Runtime, sec

Puc. 6. Bpemst 6binonnenus OpucunaibHOU U ONMUMUIUPOSAHHOU NPOYeO0ypbl NOCMPOEHUs!
pasiuvaroneco mecnosoco npumepa
Fig. 6. The runtime of original and optimized procedures for the distinguishing test case
derivation

4.2 KoHeYyHble aBTOMaThbl 6€e3 CnuaHun

ABTOMaT 0e3 CIUSHUN obnanaer aJlaliTUBHOU paznuyaroniei
MOCJIEIOBATEILHOCTRIO, €CIM U TOJNBKO €CIM KakIas Iapa COCTOSHUI B HEM
aZlallTUBHO pa3iuuuMma, T.C. o0namaer aJanNTUBHOW  pas3jnyarolieH

MOCJIEIOBATENbHOCTRIO [7]. Takum 00pa3om, MOKHO MPEIIIONaraTh, 4To sl TAKOTO
KJlacca aBTOMATOB TECT NOJMHOMHANBHON [UIMHBI CYIIECTBYyeT damle. Baumy
MMOCJIEHETO, a TAKyKe TOr0, YTO aBTOMATHI 0€3 CIMSHUN OMHCBHIBAIOT JOCTATOYHO
MIMPOKHHN KIJIACC PEANBHBIX YIIPABIAIONINX CHCTEM, TaKHE aBTOMATHI IIPEICTABIIIIOT
0COOBII HHTEpEC IS UCCIICIOBAHUI.

3aBHCUMOCTD BBICOTHI Pa3IHYAONIMX TECTOBBIX MPUMEPOB OT YKCIA COCTOSHHUN LIS
CIy4ailHO CTCHEPHUPOBAHHBIX ABTOMATOB 0€3 CIMSHHN COBIANAET C TAKOBOU LIS
NpPOU3BOJILHBIX aBTOMATOB. B yactHocTy, 1u1st aBromatos ¢ |S| = 100, |I|=|O] =10 u
nd <2, BRICOTA pa3IMYaOIINX TECTOBBIX IPUMEPOB HE MPEBBIIIACT 3HAYCHUS 5.

B TO Xe BpeMs BEpPOATHOCTb CYIIECTBOBAaHUS AaJalTHUBHOM pa3jidyarollei
MOCJIEIOBATEIFHOCTH I aBTOMAaTOB 0€3 CIMSHWH CYIIECTBEHHO BBIIE U
crpemutcs k 100 mpouenTtam s apromaros ¢ |S| = 100, [I| = |0 = 10 u nd < 2.
OTMeTHM TaKXke, 4TO JJIs1 Npou3BoNbHBIX apromMartos ¢ |S| = 100, |I| = |O] = 10 u nd
= 2 BpeMs BBHINOJHEHHsS HEONTHMHU3MPOBAHHOW M ONTHMH3UPOBAHHOM IMpOLEIyp
MOCTPOCHHMSI PA3IMYAIOIIEro TECTOBOTO IpuMepa He mpeBbimaer 60 cexyH., Mmpu
3TOM ONTHMHU3UPOBaHHAs MPOIEAypa padoTaeT MpUMEPHO B JIBa pa3a ObIcTpee s
aBToMaroB co 100 cocrostHusIMH. DPPEKTHBHOCTH ONTUMH3UPOBAHHON MPOLEAYPHI
YBEJIMYUBACTCS C POCTOM COCTOSIHUHN M CTETIEHBIO HEJIETEPMUHHU3MA.

5. 3aknroyeHue

B HaCTOSIHIeﬁ pa60Te ObL1a uccjiegoBana 3ajaada IMOCTPOCHHSA adallTUBHBIX
pasn4yaronrmnx TOCJIeIOBATEILHOCTEH JIIsL ITOJIHOCTBIO OHpC,Z[e.HéHHLIX
Ha6J'I}O,Z[aCMLIX, BO3MOXHO, HCACTCPMHMHHPOBAHHBIX KOHCYHBIX aBTOMATOB Ha

151



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

OCHOBE COOTBETCTBYIOIIETO pa3Myaroniero aBromara. [Ipeiokena onTuMU3aIus
MOCTPOCHUST PA3NUYAONIETO aBTOMAara, IO KOTOPOMY CTPOUTCS aJalTHBHAS
pa3nuyaromas TOCIeIOBATeIFHOCTh. DBBUIO 3IKCIEepPHMMEHTANFHO ITOKa3aHo, |TO
JUIMHa  aJalTUBHOM  pa3iuyalolledl  IMOCIENOBaTeIbHOCTH i1 CIIy4alHO
CTeHEpPUPOBAHHBIX KOHEYHBIX aBTOMAaTOB HE JIIOCTUTAET «xynuei
3KCIOHEHIIHATLHON OIEHKH.

OnHaKo BEPOSTHOCTh CYIIECTBOBAHMS TAKMX MOCIEIOBATEILHOCTEH YMEHBIIASTCS C
YBEJIMYCHUEM HEACTEPMHUHU3MA M ONM3Ka K HYJIO, KOTJa YHCIO IEPeXOIOB UL
KaXIOM Taphl «COCTOSIHHE, BXOJHOW CHMBOI» IPEBHIIMIACT TPH. DPPEKTHBHOCTD
NPE/IOKEHHOTO MOJX0/la K ONTHUMHU3AIMK ObUla MCCiieoBaHa IyTEM NPOBEACHUS
KOMIIBIOTCPHBIX 3KCIICPUMEHTOB CO CﬂyqaﬁHO CICHCPUPOBAHHBIMU aBTOMaTaMU.
beino Takxke IMOKa3aHO, YTO A CIENUATIBbHOTO KJacca aBTOMATOB 0e3 CIUSIHUI,
aJlaiTHBHAs pa3Iuyarollas NoCIeJ0BaTeIbHOCTD IIOYTH BCET/AA CYIECTBYET.

BnarogapHocTu
Pa6ota BeImonHeHa mpu nojepkke rpanta PH® No. 16-49-03012.

Cnucok nutepartypbl

[1]. Tunn A. BBezieHue B TEOPHIO KOHEYHBIX aBTOMaToB. M., Hayka, 1966, 272 crp.

[2]. Chow, T.S. Test design modeled by finite-state machines. IEEE Transactions on
Software Engineering, vol. 4, No 3, 1978, pp. 178-187

[3]. Petrenko A. and Yevtushenko N. Conformance Tests as Checking Experiments for
Partial Nondeterministic FSM. In Proceedings of the 5th International Workshop on
Formal Approaches to Testing of Software (FATES 2005), LNCS 3997, 2005, pp. 118-
133

[4]. Dorofeeva R., El-Fakih K., Maag S., Cavalli A.R., Yevtushenko N. FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Information and Software Technology, 52, 2010, pp. 1286-1297

[5]. Alur R., Courcoubetis C., Yannakakis M. Distinguishing tests for nondeterministic and
probabilistic machines, In Proc. of the 27th ACM Symposium on Theory of Computing,
1995, pp. 363-372.

[6]. Petrenko A., Yevtushenko N. Adaptive testing of deterministic implementations
specified by nondeterministic FSMs, In Proc. of the International Conference on Testing
Software and Systems, LNCS, vol. 7019, 2011, pp. 162-178

[7]. Yevtushenko N., Kushik N. Decreasing the length of adaptive distinguishing
experiments for nondeterministic merging-free finite state machines. In Proceedings of
IEEE East-West Design & Test Symposium (EWDTS). 2015. P. 338-341

[8]. Yevtushenko N., El-Fakih K., and Ermakov, A. On-the-fly construction of adaptive
checking sequences for testing deterministic implementations of nondeterministic
specifications, LNCS, vol. 9976, 2016, pp. 139-152

[9]. EI-Fakih K., Yevtushenko N., Kushik N. Adaptive distinguishing test cases of
nondeterministic finite state machines: test case derivation and length estimation. Formal
Aspects of Computing vol. 30, issue 2, 2018, pp. 319-332

[10]. Tvardovskii A. Refining the Specification FSM When Deriving Test Suites w.r.t. the
Reduction Relation. LNCS, vol 10533, 2017, pp. 333-339

152



Trapnosckuii A.C., Eprymenko H.B. K cuHTe3y ajanTHBHBIX pa3InyarouX MOCIEI0BATEIBHOCTEH ULl KOHEYHBIX
aBromaros. Tpyast ICII PAH, tom 30, Beim. 4, 2018 r., ctp. 139-154

[11]. Shabaldina N. Gromov M. FSMTest-1.0: a manual for researches. In Proceedings of the
13th International symposium on IEEE EAST-WEST DESIGN & TEST SYMPOSIUM
(EWDTS’15), 2015, pp. 216-219

Deriving adaptive distinguishing sequences for Finite State
Machines

' A.S. Tvardovskii <tvardal@mail.ru>

L23\.V. Yevtushenko < nyevtush@gmail.com>

! National Research Tomsk State University,
36 Lenin Ave., Tomsk, 634050, Russia
? lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
¥ National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. FSM (Finite State Machines) are widely used for deriving tests with guaranteed
fault coverage for control systems. Distinguishing sequences (DS) are used in FSM based
testing for state identification and can significantly reduce the size of a returned complete test
suite. In some cases, length of distinguishing sequence can be exponential with respect to the
size of the FSM specification. Moreover, DS can be even longer for non-deterministic FSMs,
which are used for the specification optionality description when deriving tests for real
systems. Unfortunately, DS not always exist for deterministic and non-deterministic FSMs.
Adaptive DS (or corresponding distinguishing test cases (DTC)) are known to exist more
often and be much shorter than the preset ones that makes adaptive DS attractive for test
derivation. In this paper, we investigate the properties of adaptive DS and propose an
approach for optimizing the procedure for the adaptive DS derivation. For this purpose, we
propose to limit the height of a DTC and correspondingly to reduce the size of a
distinguishing FSM that is used for the DTC derivation in the original procedure. The
efficiency of a proposed optimized procedure is evaluated by computer experiments for
randomly generated FSMs up to 100 states. We also present the experimental results on
checking the percentage of randomly generated FSMs when a DTC exists.

Keywords: Finite State Machine (FSM), test case, adaptive distinguishing sequence.

DOI: 10.15514/ISPRAS-2018-30(4)-9

For citation: Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing
sequences for Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018.
pp. 139-154 (in Russian). DOI: 10.15514/ISPRAS-2018-30(4)-9

References

[1]. Gill A. Introduction to the Theory of Finite-State Machines. McGraw-Hill, 1964, 207 p.
[2]. Chow, T.S. Test design modeled by finite-state machines. IEEE Transactions on
Software Engineering, vol. 4, No 3, 1978, pp. 178-187

153



Tvardovskii A.S., Yevtushenko N.V. Deriving adaptive distinguishing sequences for Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 139-154

[3].

[4].

[5].

[6].

[71.

[8l.

[9].

[10].

[11].

154

Petrenko A. and Yevtushenko N. Conformance Tests as Checking Experiments for
Partial Nondeterministic FSM. In Proceedings of the 5th International Workshop on
Formal Approaches to Testing of Software (FATES 2005), LNCS 3997, 2005, pp. 118-
133

Dorofeeva R., El-Fakih K., Maag S., Cavalli AR., Yevtushenko N. FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Information and Software Technology, 52, 2010, pp. 1286-1297

Alur R., Courcoubetis C., Yannakakis M. Distinguishing tests for nondeterministic and
probabilistic machines, In Proc. of the 27th ACM Symposium on Theory of Computing,
1995, pp. 363-372.

Petrenko A., Yevtushenko N. Adaptive testing of deterministic implementations
specified by nondeterministic FSMs, In Proc. of the International Conference on Testing
Software and Systems, LNCS, vol. 7019, 2011, pp. 162-178

Yevtushenko N., Kushik N. Decreasing the length of adaptive distinguishing
experiments for nondeterministic merging-free finite state machines. In Proceedings of
IEEE East-West Design & Test Symposium (EWDTS). 2015. P. 338-341

Yevtushenko N., El-Fakih K., and Ermakov, A. On-the-fly construction of adaptive
checking sequences for testing deterministic implementations of nondeterministic
specifications, LNCS, vol. 9976, 2016, pp. 139-152

El-Fakih K., Yevtushenko N., Kushik N. Adaptive distinguishing test cases of
nondeterministic finite state machines: test case derivation and length estimation. Formal
Aspects of Computing vol. 30, issue 2, 2018, pp. 319-332

Tvardovskii A. Refining the Specification FSM When Deriving Test Suites w.r.t. the
Reduction Relation. LNCS, vol 10533, 2017, pp. 333-339

Shabaldina N. Gromov M. FSMTest-1.0: a manual for researches. In Proceedings of the
13th International symposium on IEEE EAST-WEST DESIGN & TEST SYMPOSIUM
(EWDTS’15), 2015, pp. 216-219



Registration protocol security analysis of
the electronic voting system based on
blinded intermediaries using the Avispa tool

I.A. Pisarev <ilua.pisar@gmail.com>
L.K. Babenko <lkbabenko@sfedu.ru>
Department of Information Security, Southern Federal University,
Taganrog, Rostov region, 347928, Russia

Abstract. Electronic voting systems are a future alternative to traditional methods of voting.
It is important to verify the main algorithms on which system security is based. This paper
analyzes the security of the cryptographic protocol at the registration stage, which is used in
the electronic voting system based on blind intermediaries created by the authors. The
registration protocol is described, the messages transmitted between the parties are shown and
their content is explained. The Dolev-Yao threat model is used during protocols modeling.
The Avispa tool is used for analyzing the security of the selected protocol. The protocol is
described in CAS+ and subsequently translated into the HLPSL (High-Level Protocol
Specification Language) special language with which Avispa work. The description of the
protocol includes roles, data, encryption keys, the order of transmitted messages between
parties, parties’ knowledge include attacker, the purpose of verification. The verification
goals of the cryptographic protocol for resistance to attacks on authentication, secrecy and
replay attacks are set. The data that a potential attacker may possess is detected. The security
analysis of the registration protocol was made. The analysis showed that the objectives of the
audit were put forward. A detailed diagram of the messages transmission and their contents is
displayed in the presence of an attacker who performs a MITM-attack (Man in the middle).
The effectiveness of protocol protection from the attacker actions is shown.

Keywords: e-voting; cryptographic protocols; cryptographic security; cryptographic
protocols security verification

DOI: 10.15514/ISPRAS-2018-30(4)-10

For citation: Pisarev |.A., Babenko L.K. Registration protocol security analysis of the
electronic voting system based on blinded intermediaries using the Avispa tool. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168. DOI: 10.15514/ISPRAS-2018-30(4)-10

1. Introduction

The creation of e-voting systems is a serious problem. There are a number of ready-
made systems [1,2] that are used in practice, but they are far from a sufficient level
of reliability and the presence of necessary mechanisms, such as complete
anonymity of the voter or vote checking opportunity after counting stage. There are

155



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

also a lot of works, in which perspective methods of conducting electronic voting
are considered, based on such principles as homomorphic encryption, including
threshold schemes, mix-net, secret sharing schemes and others [3-16]. However, in
most cases, the authors of such works show theoretical calculations, from which the
basic structural unit of interaction between parties does not follow, namely,
cryptographic protocol. Any method on which electronic voting is based, no matter
how good it is, loses its security if there are any flaws in the structure of
cryptographic protocol that lead to various attacks by the intruder. Thus, the goal of
this paper is to test the cryptographic protocol in the important registration stage
from various attacks, such as attack on parties’ authentication, data privacy and
replay-attacks using the Avispa tool [17].

2. Avispatool

Avispa is a tool for automated security analysis of cryptographic protocols [17].
With the help of Avispa, in the context of the developed protocols, it is possible to
verify the parties’ authentication, the secrecy of data and protection against replay-
attacks. It is impossible to perform integrity checks, in particular, used in protocol
CMAC mode (Cipher-based message authentication code) using the Avispa tool.
The protocol does not imply the use of timestamps in their classic implementation
as a part of message. Instead, the developed system uses a temporary session control
by server, in which long live sessions are broke down.

In the paper registration stage is analyzed. Three sides are modeled: user, server-
intermediary and main server. The protocol will be analyzed after the phase of
common session key distribution between the parties. The protocol will be
described in CAS+ [18] language, then translated using the Avispa translator into
HLPSL [19]. The check will be carried out using the On-the-Fly Model Checking
(OFMC) module, where the verification goals are the transmitted data
confidentiality and parties’ authentication.

For verification, it is necessary to describe the protocol in one of the formal
languages: CAS+ or HLPSL. The first language is simpler in syntax and allows you
to quickly describe the protocol. An example of syntax is shown below:

protocol NeedhamSchroederPublicKey;

identifiers
A,B : user;
Na,Nb : number;

KPa,KPb : public key;

messages
1. A ->B : {Na, A}KPb
2. B -> A : {Na, Nb}KPa
3. A ->B : {Nb}KPb
knowledge

A : A,B,KPa,KPb;

B : A,B,KPa,KPb;

156



TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.
155-168

session_instances
[A:alice,B:bob,KPa:ka,KPb:kb];
The second language HLPSL is the language with which Avispa works directly. An
example of syntax is shown below:
role Alice (A, B: agent,
KPa, KPb: public key,
SND, RCV: channel (dy))
played by A def=

transition
0. State = 0 /\ RCV(start) =|>
State':= 2 /\ Na' := new() /\ SND({Na'.A} KPb)

role Bob (A, B: agent,
KPa, KPb: public key,
SND, RCV: channel (dy))

The syntax of this language is more difficult and the best way to describe the
protocol is to describe it in CAS+, and then use Avispa to convert it to HLPSL. It is
worth to say that if the more complex and larger your protocol, then there is greater
chance of errors occurring during translation, so after that you need manually to fix
some fragments in HLPSL. It is also worth to say that you should not describe the
goals of checking in CAS +, but rather add them directly in HLPSL.

During protocols describing, the following entities are used: roles, data, message
order, sessions and verification purposes. After the description of the protocol,
including the indication of verification objectives, it is possible to analyze protocol
security against attacks. For analyzing, you can use different modes, but the most
effective is the OFMC mode (see Fig. 1).

It requires an additional specification for all data involved in the verification, as
well as the message area where verification is required for party authentication. As a
result of verification, the corresponding result will be issued. In case of attacks
detection, the type of attack and its progress will appear in the form of
corresponding changes in messages by the intruder, as in Fig. 2.

If there are no attacks, then the program output will contain a corresponding
message that protocol is safe (see Fig. 3). Using the «Protocol simulationy» button,
you can see the interaction scheme of the parties in your protocol. With the help of
the button «Intruder simulation» such a scheme will appear, only with the
participation of the intruders’ side, in which the data intercepted by him will appear.
With the help of the button «Attack simulation» you can see the scheme of the
attack with intruder, provided that there is an attack in your protocol.

157



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

[ SPAN-UBURtu10.10-light [PaGoraeT] - Oracle VM VirtualBox, =8| X

STAGE hipsl

File

role role v (v.45,p5: agent,
Kvas, Kups: symmelric_key,
S, RCV: channel (dy))
played_by v def=
local State: nat,
Nv.MNas, Nps, PasspartData, Userid; text

init state:= 0
transition
1 State = 0 ARCV({Nps'}_Kvps] =|>
2 ARCV({Nas'}_Kvas) =|>
State' =2
A\ PassportData’ := newl(}
W = new()

\SND{Nas' PassportData"{Nps.Nv'}_Kups}_Kvas)
TAWITeSs (W, AS,v 35 135 Nas')
A Witness(V.P5.v_ps_nps Nps)
I AsecretiNas', nas, (VAS}
T\ secretiPassportData’ passportdata, {1.ASH
A secretibps nps, {V.PS}}
A secret(hv v, {V,
\RCV({Nps v Userid'}_kvps) =|>

3
I TEqUESK(V.PS,V_pS_ V.V
Jend role: I

Protocol Intruder Attack
e ‘ simeation MM

I Session Compilation

smetie | vewciss

[=]
EEL T IO

Fig. 1. Ul

1 SPAN-Ubuntul0.10-light [Pagoraer] - Oracle VM VirtualBox

ationSTAGE hipsl

File:

% OFMC

9% wersion of 2006/02/13

SUMMARY

UNSAFE

DETAILS
ATTACK_FOUND

PROTOCOL

GoaL
secrecy_of nas
=

OFMC
coMMENTS
sTaTsTIcS
parseTime: 0.005
searchTime: 0.015
wisitedNodes: 1 nodes

i - (ps, 3): start
Wip=.3) > i: {Mpst11)_cups, (Npsasi1])_kpsas
{Mpsasi1]} kpsas

(a5.3) -> i {Nasl2))_kvas

i -> (1.17): Nas(2]

(- (127 Nas(2)

5% Reached State:

‘ View CAS+ | View HLPSL

Protocol Intruder Attack
simulation | simulation | simulation

HLPSL Session Compilation

- [Choose Tool option and| Defth:
" path :
o I

press execute

] & 0@ 8 rgean |

Fig. 2 — Founded attack trace

158



TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.

155-168

%7 SPAN-Ubuntu10.10-light [Pagoraer] - Oracle VM VirtualBox
]

File

1.6 - Protocol Verification : ReglstrationSTAGE hipsl

% OFMC
% Version of 2006/02/13
SUMMARY

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL

Wooa.
as_specified
BAGKEND
oFmC
CoMMENTS
STATISTICS

l searchTime: 2,705

W-

Intruder Attack
ViewCASt | VIwHLPSL | gimuation | simuation | simulaton
Tools. Options.
HLPSL Session Compilation
HLPSL2IF [Choose Tool option and| Defth
press execute
[ B path :
OFMC  ATSE  SATMC | TA4SP

o8y
—

-0 s ronar |

Fig. 3 — Result after verification of safe protocol

2. E-voting system description

2.1 System architecture

The system architecture is based on the use of the following components: client
application for voter - V, 3 server applications that will be located on different
physical machines: AS (authentication server), PS (processing server), VS (voting
server), encryption application for the passport database and ballots DBE (database
encryptor). The general scheme of the interaction of components is shown in Fig. 4.
The basic principle on which the system protocols are based - blinded

intermediaries (see Fig. 5).

DBE
database encryptor

., _

Fig. 4 — System architecture

159



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

Bl Exs(id Epc(info)) [ Epc(Eac(info)) [

A B C
A

Ejc(answer) :

Fig. 5 — Blinded intermediaries principle

There are 3 interacting sides A, B, C. Using the protocol for generating a common
secret key, the session key AB, BC, AC are generated. A encrypts some information
info on the AC key, appends an id to it, encrypts it on the AB key and sends this
message to B. B in this case is a blinded intermediary, because it can decrypt only
the first part of the message with id, and the remainder with info can not. It accepts
the message, decrypts and checks if id is in the database and, then redirects the
remainder of the message encrypted again on the BC key to the C side. C receives
the message, decrypts info, encrypts the answer response on the AC key and sends it
to A. This principle ensures that: info will be accepted only if id is in the database
and that it is impossible to correlate id with info.

2.2 Stages description

Stages of electronic voting in the context of the system:

e Preparation. At this stage, a database of voters and a ballot are created.
This data is encrypted, and officials deliver this data to the appropriate
server components of the system.

e Registration. At this stage, users log in to the system using their
identification data, at the moment - using passport data, and they get their
anonymous identifier. It should be noted that by using the previously
described principle of blind intermediaries, it is impossible to correlate
open passport data with an anonymous identifier, which ensures the
requirement of anonymity.

e Voting. Users receive a ballot, make their choice and send filled ballot
with their anonymous identifier to the server. If such an identifier is
present, the vote is accepted, and the verification identifier is sent to user,
with which he or she can check vote after counting stage. It is worth noting
that it is very important that the user can check his vote after the counting.

e Counting results and votes checking. At the last stage, the votes are
counted, the results are published in the public domain, and any voted user
can check his or her vote with a verification identifier.

160



TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.
155-168

4. Registration stage

The electronic voting system based on blind intermediaries, includes a registration
stage in which the voter is given anonymous identifier after presenting his passport
data. A simplified scheme of the registration stage is shown in Fig. 6.

userid 1
userid 2
1 PassportDataBase 5 userid n
PassportData request
Vv > AS PS
3
userid

Fig. 6 — Simplified scheme of registration stage.

Secret keys V, VAS, VPS are generated using the protocol for generating a common
session key. The server parties generate random numbers and send messages (1),
(2), (3) to their recipients. They will be used for parties’ authentication. V generates
Nv. Next, it generates a message (4) with the passport data, which is a hash from a
set of document fields, encrypted random numbers on the shared secret key VPS,
calculates the CMAC, encrypts all this data on VAS key, calculates the CMAC and
sends to AS. AS in this case is a blinded intermediary. It checks the message
integrity by CMAC checking, searches PassportData in the database and, if
successful, redirects another part of the message (5) to side PS. PS checks integrity,
if successful, generates userid, adds it to database and sends to V as a message (6).
The voter decrypts the message, checks integrity and values of random numbers,
and remembers his anonymous unique identifier userid, with which the user can
vote.

ECDHE (V, AS) - vas
ECDHE (V, PS) — vps
ECDHE (PS, AS) — psas
V: eenepupyem N

(l) AS->V: Evas(Nas)
PS: generates N,g

(2) PS ->V: Eyps(Nps)

PS: generates Npgqs

(3) PS -> AS: Epsas(Npsas)
V: generates N,,.

161



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

(4) V -> AS: Eyq5 (Ngs, PassportData, Eyps (Nps, Nyy,), CMACL), CMAC2
AS -> V: “Success”

(5) AS -> PS: Epsas (Npsas: Evps(Nps, Ny), CMAC1), CMAC3

PS: generates userid

(6) PS ->V: Eyp5 (Nps, Ny, userid), CMAC4

ECDHE is a Diffie-Hellman protocol on elliptical curves using ephemeral keys. In
our case, we use a modified version of ECDHE-RSA, where authentication is done
using a signature RSA and a server certificate which help to prevent MIMT (man in
the middle) attacks. The protocol description is as follows.

ECDHE:

(1) V->S: “Hello”

(2) S -> V: DHs,Signgks(DHs),Certificate

(3) S: IIposepsiem Certificate u noonucs Signggs(DHS)

(4)V ->S: DHv

(5) Both sides generate a common session key K for further interaction with a symmetric
cipher.

Here V is the client, S is the trusted server that has the certificate, DHSs is the server
secret part, DHv is the client secret part Signgk,(DHS) is the signature with the
server's private key SKs, Certificate is the server certificate.

When servers generate common secret key, the same protocol is used, except that
both parties exchange certificates and if they are valid, a common session key is
generated. The security verification of the registration protocol will be carried out
after this stage.

5. Security analysis of registration protocol using Avispa tool
Consider the description of the protocol in CAS + at the registration stage.

1 protocol EVotingRegistration;

2 identifiers

3 V,AS,PS : user;

4 Nas,Nps, Npsas, Nv, PassportData,Userid : number;
5 Kvas,Kvps, Kpsas : symmetric key;
6

7 messages

8 1. PS >V : {Nps}Kvps

9 2. PS -> AS : {Npsas}Kpsas

10 3. AS -=> V : {Nas}Kvas

11 4. vV -> AS : {Nas, PassportData, {Nps,Nv}Kvps}Kvas
12 5. AS -> PS : {Npsas, {Nps,Nv}Kvps}Kpsas

13 6. PS -—> V : {Nps,Nv,Userid}Kvps

14

15 knowledge

162



TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.
155-168

16 v : V,AS,PS,Nas, Nps,Nv, PassportData,Userid, Kvas, Kvps
17 PS : V,AS,PS,Nps,Npsas, PassportData, Kvas,Kpsas
18 VS : V,AS,PS,Npsas,Nps,Nv,Userid, Kvps, Kpsas

19

20 session instances

21 [V:v,AS:as,VS:ps,Kvas:kvas,Kvps:kvps, Kpsas:kpsas]
22 [V:v,AS:as,VS:ps,Kvas:kvas,Kvps:kvps,Kpsas:kpsas];
23

24 intruder knowledge

25 v,as,ps;

26

27 goal

28 secrecy of Nps [V,PS];

29 secrecy of Npsas [AS,PS];

30 secrecy of Nas [V,AS];

31 secrecy of Nv [V,PS];

32 secrecy of PassportData [V,AS];

33 secrecy of Userid [V,PS];

34 AS authenticates V on Nas;

35 PS authenticates AS on Npsas;

36 PS authenticates V on Nps;

37 V authenticates PS on Nv;

Three interacting parties are described as roles: V, AS, PS (lines 2-3). The
identifiers section describes the objects participating in the protocol: interacting
parties (line 3), random numbers for authentication, identifiers (line 4). Symmetric
keys are specified that will be used for message encryption (line 5). The messages
section (lines 7-13) describes the transfer of messages between roles, which data is
transmitted, and on which key it encrypted. The knowledge section (lines 15-18)
describes roles’ data knowledge during the execution of the protocol. In the
session_instances section (lines 20-22), sessions are described. Among the
simulated sessions, 2 are allocated, which allow simulating interaction of two clients
with the system. This will detect possible attacks on the parties’ authentication and
replay-attacks. The intruder_knowledge section (lines 24-25) specifies the original
knowledge of the intruder. In the goal section (lines 27-37) the secrecy of important
values is indicated and the authentication according to the request-response scheme
with the transfer of random numbers between the participants. For secrecy of the
value, it is necessary that this variable is encrypted and that the encryption key does
not come to intruder. In order for one party to authenticate another using the
request-response mechanism, it is required that the party wanting to authenticate
send a random number to the other party, and that other party in the response
message returns this random number. In this protocol there are 4 such actions:

e AS authenticates V by Nas;

e PSauthenticates AS by Npsas;

e PSauthenticates V by Nps;

163



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

e V authenticates the PS to Nv.

As for replay-attacks, protection against them is possible due to the presence of a
random number at the beginning of each message, which each side checks when
message is received. The results of the check using the OFMC module are shown in
Fig. 7. Fig. 8 shows the scheme of interaction between the parties at the stage of
registration by steps. Fig. 9 shows the interaction scheme in the presence of an
intruder (Intruder_ side, highlighted in red). This scheme is a visual implementation
of the attack man in the middle. When transmitting messages during execution, a
transition is made from the «Incoming eventsy area to «Past eventsy», and the format
is the direction of message transfer (from whom and to whom) and the message
itself. We can see from the simulation results in the field of intercepted data
«Intruder knowledge», all transmitted messages are encrypted on keys which
intruder doesn’t know, and it excludes the possibility in any way to get important
information, such as the user's passport data or unique identifier. The record
«nonce-N» means some data that is not readable. Because of the analysis, it was
revealed that the registration protocol is safe, ensures the fulfillment of the security
objectives (properties) set in the protocol analysis: securing data, authentication of
the parties, protection against replay-attacks.

€3 Applications Place:

£30,12:10PM @ span O [

SPAN 1.6 - Protocol Verification : RegistrationSTAGE.hlps|

File

5% OFMC
o version f 2006/02/13
suMMARY
SAFE
DETAILS.
BOUNDED_NUMBER_OF_SESSIONS
[PROTOCOL
/homeispan/spantestsuite/results/RegistrationSTAGE.if
GOAL
as_specified
BACKEND

(COMMENTS
sTaTISTICS
parseTime: 0.005
searchTime: 2.705
visitedNodes: 1005 nodes
depth: 14 plied

Intruder Attack

Protac
ViewCASH | VIEWHLPSL | gimulstion | simulation | simulation

Tools Options

session Compilation

Fig. 7 — Registration protocol verification using OFMC mode.

6. Conclusion

The automated security verification tool Avispa was used for security verification of
the registration protocol in electronic voting system based on blind intermediaries,
in this paper. The protocol was described in the formal languages CAS+ and
HLPSL. The secrecy properties of the transmitted data between the interacting
parties were analyzed. It was shown that set security objectives: parties’
authentication, verification of data privacy and protection from replay attacks were
achieved. The scheme of parties’ interaction with the help of tools’ graphical

164



TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.

155-168
functional was considered. An analysis of messages that an intruder can intercept
was carried out. Based on the graphical representation it was revealed that all transmitted
data is secure, because all messages are encrypted on unknown for intruder keys.

O =y

MonOct 30, 12:112PM @ span

-3 Applications Place

SPAN 1.6 — Protacol Simulation : RegistrationSTAGE.hipsl

Trace Files Modes Variables monitoring MsC ]
< Previous step| | Untype role v role AS role_ps
. Incoming events : Tnonce-1} kpsas Trepl.
{noncep} kvps Stepa.
{nonce-3} kvas Step3.
Stepd.

{nonce-3.nbnce-5. {nonce-2 nance- 4} fvps}._kvas
{noncef1. {nonce-2.nance 4} kvps) kpsas

Steps

{nonce-2.noncep.nonce-6}_kvps stepe.
I
(
', 3) - Il : {Nas.| Pﬂ!!DDﬂl
(Tolechs, 41 = (role. 5 51 {Npsas Seerel
(role_PS, 5) -= (role_V, 3) : {Nps.Nv.Useric ]
i r—— ; ' ! 3 i
Tools. Options.
HLPSL [~ Session Compilation

HLPSL2IF Chaose Toal option and| Defth :

press execute

Execute path : |

30,12:17PM @k span

SPAN 1.6 — Protocol Simulation : RegistrationSTAGE.hlpsl

.
Trace Files Modes Variables monitoring MSC B
r Intruder role V role AS role PS. Ci
< Previous step : Untype ude e} e A | -
L Incoming events : tnonce-1} kpsns —& tepl
{nonce |} kpsas Step2
{ronce B} kvas Step3
e — 5
- ~—= e {nonce-2} kups tepd
(Zlirole_PS, 5) -> (intruder_, 0} : {Npsas}_Kpsa Steps
(Intruder_, 0) -> (role_AS, 4) : {nonce-1}_kp: |_{nonce 2} evps _}
(role_AS, 4) -> (Intruder_, 0) : {Nas} _Kvas Steph,
(role_PS, 5) -> (Intruder_, 0) : {Nps} _Kvps {nance-3} kvas
(intruder_, 0} > Emle V ]l {nonc: 2) _kvpt step
gt sttt taiice-3nondes {nonce-2.nonce-§}_kvps)_kvas P7
e AL
Intruder knowledge :  Compose knowledge ¥
" naw pose knowledge | {nofjce-3.nonce-5.{nonc§-2.nonce-4) kvps}, fvas Steps
{nence-2.nonce-4.nance-6}_kvps
{nonce-1.{nonce-2.nonce-4} _kvps}_kpsas nonce-1.{nonce-2.nince-4} kv ki Stepd.
{nonce-3.nonce-5. {nonce-2.nonce-4}_kvps} L { } kvps) kpsa
e {nonce-L fhonce 2.nonce-4)_kfps)_kpsas Steplo
{nonce-1}_kpsas Stepll
v {noncp-2.nonce-4.nonce-6| 1
as ]
ps {nonck-2.nonce-4.nance-6 | kvps Sepla.
i
|
< riv|

1

Fig. 9 — Registration protocol verification using OFMC mode.

Acknowledgment

The work was supported by the Ministry of Education and Science of the Russian
Federation grant Ne 2.6264.2017/8.9.

165



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

References

[1].
[2].
[3].
[4].

(5]

[6].

[7].

(8].

[9].
[10].
[11].

[12].
[13].
[14].

[15].

[16].

[17].
[18].
[19].

[20].

166

Overview of e-voting systems, NICK Estonia. Estonian National Electoral Commission.
Tallinn 2005.

Dossogne J., Lafitte F. Blinded additively homomorphic encryption schemes for self-
tallying voting. Journal of Information Security and Applications, vol. 22, 2015, pp. 40-53.
Izabachene M. A Homomorphic LWE Based E-voting Scheme. In Proc. of the 7"
International Workshop on Post Quantum Cryptography, 2016, pp 245-265.

Hirt M., Sako K. Efficient receipt-free voting based on homomorphic encryption. In
Proc. of the International Conference on the Theory and Applications of Cryptographic
Techniques, 2000, pp. 539-556.

Rivest L. R. et al. Lecture notes 15: Voting, homomorphic encryption. MIT, 2002.
Available at http://web.mit.edu/6.857/0ldStuff/Fall02/handouts/L15-voting.pdf,
accessed 10.06.2018.

Ben Adida, Mixnets in Electronic Voting, Cambridge University, 2005. Available at
http://assets.adida.net/presentations/cambridge-university-voting-2005-01-18.pdf,
accessed 10.06.2018.

Electronic elections: fear of falsification of the results. Kazakhstan today, 2004.
Auvailable at http://profit.kz/news/91/Elektronnie-vibori-opasenie-falsifikacii-rezultatov/,
accessed 10.06.2018 (in Russian).

Lipen V.Y., Voronetsky M.A., Lipen D.V., Polevikov E.L. Technology and results of
testing electronic voting systems. Ob’edinennyj institut problem informatiki NAN
Belarusi [United Institute of Informatics Problems NASB], 2002. Available at
http://uiip.bas-net.by/structure/l_kg/results_testing_technology.php/, accessed
10.06.2018 (in Russian).

David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, vol. 24, no. 2, 1981, pp. 84-90.

Ali S. T., Murray J. An Overview of End-to-End Verifiable Voting Systems. arXiv
preprint arXiv: 1605.08554, 2016.

Smart M., Ritter E. True trustworthy elections: remote electronic voting using trusted
computing. In Proc. of the International Conference on Autonomic and Trusted
Computing, 2011, pp.187-202.

Bruck S., Jefferson D., Rivest R.L. A modular voting architecture («frog voting»).
Towards trustworthy elections. LNCS, volume 6000, 2010, pp. 97-106.

Jonker H., Mauw S., Pang J. Privacy and verifiability in voting systems: Methods,
developments and trends. Computer Science Review, vol. 10, 2013, pp. 1-30.

Shubhangi S. Shinde, Sonali Shukla, Prof. D. K. Chitre. Secure E-voting Using
Homomorphic Technology, International Journal of Emerging Technology and
Advanced Engineering, vol. 3, no. 8, 2013, pp. 203-206.

Neumann S., Volkamer M. Civitas and the real world: problems and solutions from a
practical point of view. In Proc. of the Seventh International Conference on Availability,
Reliability and Security (ARES), 2012, pp. 180-185.

Yi X., Okamoto E. Practical remote end-to-end voting scheme. In Proc. of the
International Conference on Electronic Government and the Information Systems
Perspective, 2011, pp. 386-400.

The AVISPA team, The High Level Protocol Specification Language. Available at
http://www.avispa-project.org/, accessed 10.06.2018

Ronan Saillard, Thomas Genet, CAS+, March 21, 2011. Available at
http://people.irisa.fr/Thomas.Genet/span/CAS_manual.pdf, accessed 10.06.2018

D. Basin, S. M odersheim, and L. Vigan'o. OFMC: A Symbolic Model- Checker for
Security Protocols. International Journal of Information Security, vol. 4, issue 3, 2004,
pp 181-208.

L.K. Babenko, I.A. Pisarev, O.B. Makarevich. Secure electronic voting using blinded
intermediaries. Isvestiya SFedU. Engineering sciences, no. 5, 2017, pp. 6-15 (in
Russian).


https://link.springer.com/journal/10207/4/3/page/1

TTucapes U.A., babenko JI.LK Ananu3z 6e301macHOCTH NIPOTOKOJIA PETUCTPALUK B CUCTEME JIEKTPOHHOTO FOJIOCOBAHHS
HA OCHOBE CIIETIBIX TOCPEIHUKOB C MIOMOIIBIO0 HHCTpyMeHTa AVispa. Tpyost UCIT PAH, tom 30, Beim. 4, 2018 1., ctp.
155-168

AHanns 6e3onacHoOCTY NPOTOKOMNa perucTpaumm B cucteme
3MEeKTPOHHOIro royIoCOBaHUA Ha OCHOBE crienbIX
NocpeAHUKOB C NOMOLLLIO MUHCTPYMeHTa Avispa

U A. Mucapes <ilua.pisar@gmail.com>
JI.K. Ba6enxo <lkbabenko@sfedu.ru>
Kageopa ungpopmayuonnoii 6esonacnocmu,
FOoicnviit @edepanvrviii Yuusepcumem,
Taeanpoe, Pocmosckas obnacmo, 347928, Poccus

AnHoTtaumsi. CHCTEMBI 3JICKTPOHHOTO TOJIOCOBAHMS SIBISIOTCS Oyaylueil aibTepHATUBON
TPaJHUIMOHHBIM CIIOCOOaM MpOoBeeHHs ronocoBanus. Kak u st 060i CHCTEeMBI, BaYKHBIM
SIBISICTCS BepH(UKAINS KIIFOUCBBIX allTOPUTMOB, Ha KOTOPBIX OCHOBaHa e¢ Ge3omacHocTh. B
paboTe paccMarpuBaeTcsi aHaJIU3 OE30MAaCHOCTH KPUITOrpaMu4ecKkoro MpOTOKOJIA Ha HTare
pErMCTpaliK, KOTOPBIH HCIOJB3yeTCss B CO3JAQHHOH aBTOpAaMH CHUCTEME BJICKTPOHHOTO
TOJIOCOBAHMSI HAa OCHOBE CIICTIBIX IOCPEIHUKOB. IIpOBENEHO ONHCAaHHWE MPOTOKOJA
perucTpanuy, MOKa3aHbl IepeaBacMble MEXIY CTOPOHAMH COOOIICHHS M OOBSCHEHO HX
cozepskuMoe. IIpu MOJICITHPOBAHUH MPOTOKOJIOB MPEAIIONAracTcs HCIOIb30BaHHE MOJEIIN
yrpo3 J[oneBa-Slo. B kadectBe HHCTpyMeHTa Mmjis aHajn3a OE30MAaCHOCTH BBIOPAHHOTO
NpOTOKOJa HcHonb3yercs cucrema Avispa. Ilpotokon omwcan Ha si3eike CAS+ u
BIIOCJIC/ICTBHH TpaHCIHpOBaH B coenuanbHbiii  si3sik HLPSL  (High—Level Protocol
Specification Language), ¢ KOTopeiM paboTaeT HCHONIB3yeMblii MHCTpyMeHT. Omucanne
MPOTOKOJIA BKIIFOYAET B ce0sl POJIM, AaHHBIC, KIIOYM MH(POBAHUS, TOPSIOK MEeperaBacMbIX
COOOIICHUH MEXIy CTOPOHAMH, 3HAHHE CTOPOH M 3JIOYMBIIIJIEHHHKA, IIEIH IPOBEPKH.
TocraBieHbl LedM BepHOHUKALMK KPUNTOrpadUIecKOro MPOTOKOJA Ha YCTOHYMBOCTH K
arakaM Ha ayTCHTH(HKAIMIO, CEKPETHOCTh W replay-arakam. YCTaHOBJCHBI [aHHBIC,
KOTOPBIMH MOXXET BJIaJeTh MNOTCHUHAIBHBIN 3/I0yMbIIUICHHUK. [Ipon3BeneH aHain3
6€30MaCHOCTH TPOTOKOJIA PErUCTPAIH. AHAIN3 MTOKa3all, YTO BBIABHHYTHIC LEIU POBEPKU
O6butd  ocTHrHyThl. OToOpakeHa moOApoOHas cxema mepefadd COOOIICHHH M HX
COAIEPXKUMOTO TIPY HAIMYUH 3I0yMBIIUIEHHUKA, ocymiecTisitoniero MITM-araky (Man in
the middle). TToka3zana 3¢ GeKTHBHOCTH 3alUTHI IPOTOKOJIA OT ICHCTBHIT 37I0YMBIIICHHHKA.

KiodeBble cJIOBa:  3JIGKTPOHHOE  TOJIOCOBAHME;  KPUNTOTrpaduueckue IMpOTOKOJIBI;
Kpunrorpaduyeckas 3amunTa; BepuuKaips 6e30macHOCTH KPUNTOrpadhUIECKHX MPOTOKOJIOB

DOI: 10.15514/ISPRAS-2018-30(4)-10

Jns nurupoBanusi: [Tucapes U.A., BaGenko JL.K. Anann3 06e30macHOCTH MPOTOKONIA
perucTpanyi B CHCTEME SJIEKTPOHHOTO T'OJOCOBAHHS HA OCHOBE CIEMBIX MOCPETHUKOB C
noMoteio nHeTpyMeHnTa Avispa. Tpynst UCII PAH, tom 30, Bem. 4, 2018 1., ctp. 155-168
(na anrmiickoMm s3bike). DOI: 10.15514/ISPRAS-2018-30(4)-10

Cnucok nutepatypbl
[1]. Overview of e-voting systems, NICK Estonia. Estonian National Electoral Commission.
Tallinn 2005.

167



Pisarev I.A., Babenko L.K. Registration protocol security analysis of the electronic voting system based on blinded
intermediaries using the Avispa tool. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 155-168

(2.

(3]
[4].

(5]

[6].

[71.

[8].

(91
[10].
[11].

[12].
[13].
[14].

[15].

[16].

[17].
[18].
[19].

[20].

168

Dossogne J., Lafitte F. Blinded additively homomorphic encryption schemes for self-
tallying votmg Journal of Information Security and Applications, vol. 22, 2015, pp. 40-
53.

Izabachene M. A Homomorphic LWE Based E-voting Scheme. In Proc. of the 7"
International Workshop on Post Quantum Cryptography, 2016, pp 245-265.

Hirt M., Sako K. Efficient receipt-free voting based on homomorphic encryption. In
Proc. of the International Conference on the Theory and Applications of Cryptographic
Techniques, 2000, pp. 539-556.

Rivest L. R. et al. Lecture notes 15: Voting, homomorphic encryption. MIT, 2002.
Pexxum jmoctyma:  http://web.mit.edu/6.857/OIldStuff/Fall02/handouts/L15-voting.pdf,
accessed 10.06.2018.

Ben Adida, Mixnets in Electronic Voting, Cambridge University, 2005. Pexum
JOCTyma: http://assets.adida.net/presentations/cambridge-university-voting-2005-01-
18.pdf, accessed 10.06.2018.

DJNEeKTpOHHBIC BBIOOPHI: omnaceHue ¢anbcuuKauy pe3yiapTaToB. KasaxcraH ceromHs,
2004. Pexxum pocryma: http://profit.kz/news/91/Elektronnie-vibori-opasenie-falsifikacii-
rezultatov/, nata o6pamienus 10.06.2018

Jlumens B.1O., Boponenxuit M.A., Jlunens J.B., IlomeBuxoB 3.JI. PesynpraTs
aHp06I/Ip0BaHI/IH TEXHOJIOTUH U CHUCTEM OJIECKTPOHHOI'O T'0OJIOCOBAHUS. O6’Be£[PIHeHHLIfI
uHcTHTYT mpobmem wunpopmatuku HAH Benmapycu, 2002. Pexum mocryma:
http://uiip.bas-net.by/structure/l_kg/results_testing_technology.php/, nara o6pamienus
10.06.2018

David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, vol. 24, no. 2, 1981, pp. 84-90.

Ali S. T., Murray J. An Overview of End-to-End Verifiable Voting Systems. arXiv
preprint arXiv: 1605.08554, 2016.

Smart M., Ritter E. True trustworthy elections: remote electronic voting using trusted
computing. In Proc. of the International Conference on Autonomic and Trusted
Computing, 2011, pp.187-202.

Bruck S., Jefferson D., Rivest R.L. A modular voting architecture («frog voting»).
Towards trustworthy elections. LNCS, volume 6000, 2010, pp. 97-106.

Jonker H., Mauw S., Pang J. Privacy and verifiability in voting systems: Methods,
developments and trends. Computer Science Review, vol. 10, 2013, pp. 1-30.

Shubhangi S. Shinde, Sonali Shukla, Prof. D. K. Chitre. Secure E-voting Using
Homomorphic Technology, International Journal of Emerging Technology and
Advanced Engineering, vol. 3, no. 8, 2013, pp. 203-206.

Neumann S., Volkamer M. Civitas and the real world: problems and solutions from a
practical point of view. In Proc. of the Seventh International Conference on Availability,
Reliability and Security (ARES), 2012, pp. 180-185.

Yi X., Okamoto E. Practical remote end-to-end voting scheme. In Proc. of the
International Conference on Electronic Government and the Information Systems
Perspective, 2011, pp. 386-400.

The AVISPA team, The High Level Protocol Specification Language. Available at
http://www.avispa-project.org/, accessed 10.06.2018

Ronan Saillard, Thomas Genet, CAS+, March 21, 2011. Available at
http://people.irisa.fr/Thomas.Genet/span/CAS_manual.pdf, accessed 10.06.2018

D. Basin, S. M odersheim, and L. Vigan'o. OFMC: A Symbolic Model- Checker for
Security Protocols. International Journal of Information Security, vol. 4, issue 3, 2004,
pp 181-208.

JLK. ba6enko, W.A. IlucapeB, O.b. MaxkapeBuu. 3auiuuieHHOE 3JIEKTPOHHOE
roJIOCOBAaHUE C HCIIOJIb30BaHUEM cllenbIX nocpeauukos, M3sectust FODOY. Texuuueckue
Hayku, Ne5, 2017 r., ctp. 6-15.


https://link.springer.com/journal/10207/4/3/page/1

Auto-calibration and synchronization of
camera and MEMS-sensors

A.R. Polyakov <polyakov.alx@gmail.com>
A.V. Kornilova <kornilova.anastasiia@gmail.com>
I.A. Kirilenko <y.kirilenko@spbu.ru>
Saint Petersburg State University, Software Engineering
28 Universitetskiy prospect, Petergof, Sankt-Peterburg, Russia, 198504

Abstract. This article describes our ongoing research on auto-calibration and
synchronization of camera and MEMS-sensors. The research is applicable on any system that
consists of camera and MEMS-sensors, such as gyroscope. The main task of our research is
to find such parameters as the focal length of camera and the time offset between sensor
timestamps and frame timestamps, which is caused by frame processing and encoding. This
auto-calibration makes possible to scale computer vision algorithms (video stabilization, 3D
reconstruction, video compression, augmented reality), which use frames and sensor’s data,
to a wider range of devices equipped with a camera and MEMS-sensors. In addition, auto-
calibration allows completely abstracting from the characteristics of a particular device and
developing algorithms that work on different platforms (mobile platforms, embedded
systems, action cameras) independently of concrete device’s characteristics as well. The
article describes the general mathematical model needed to implement such a functionality
using computer vision techniques and MEMS-sensors readings. The authors present a review
and comparison of existing approaches to auto-calibration and propose own improvements
for these methods, which increase the quality of previous works and applicable for a general
model of video stabilization algorithm with MEMS-sensors.

Keywords: camera calibration; auto-calibration; digital signal processing; rolling shutter;
computer vision; grid search

DOI: 10.15514/ISPRAS-2018-30(4)-11

For citation: Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and
synchronization of camera and MEMS-sensors. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 4, 2018. pp. 169-182. DOI: 10.15514/ISPRAS-2018-30(4)-11

1. Introduction

The high quality of frames, received from modern smartphone cameras, expands the
frontiers of solutions in computer vision tasks. Lately, there are more and more
attempts to scale current practices in such areas of computer vision as video

169



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

stabilization [1], [2], [3], [4], augmented reality[5], 3D reconstruction [6], [7],
photogrammetry on mobile platforms and embedded systems. However, these
algorithms demand big computational resources that not allows applying them to
above-mentioned platforms and in real time.

The presence of numerous different sensors on these platforms, caused by the low
cost of their production and high precision at the same time, allows using their data
effectively. As the majority of above-stated tasks is any way connected with
detection of camera movement (which is the “bottleneck” in most algorithms), the
main preference is given to motion sensors — gyroscope and accelerometer [8], [9].
Expansion of mathematical model of computer vision algorithm not only increases
quality and reduces calculations but gives rise to new difficulties. In particular,
besides general intrinsic parameters of the camera (focal length, optical center,
rolling shutter) there are parameters of sensors (i.e, bias for gyroscope) and
parameters of model “camera-sensors” (camera and sensors orientation, camera and
sensors synchronization parameters). Therefore, if desired to scale an algorithm to a
large amount of platforms (for example, in case of mobile phones) automatic
calibration of these parameters is needed. It is caused by a big variety of cameras,
sensors and their combinations.

This work is a continuation of the research [10] conducted on a subject of real-time
digital video stabilization using MEMS-sensors and aims to prototype and
implement an algorithm of auto-calibration of key parameters for this task: focal
length and parameters of synchronization of frames and gyroscope data.

2. Preliminaries

This section is devoted to basic definitions, general mathematical models, and
agreements, which will come out throughout this work.

2.1 Pinhole camera model

Pinhole camera model (fig. 1) is a basic mathematical camera model, which
describes a mapping from 3-dimentional real world to its projection onto the image.
This mapping satisfies the formula, in which X is coordinates of a point in real
world and x is coordinates of its projection. In addition, it depends on camera
parameters: f — focal length, (ox, oy) — optical center [11].

T f: 0 —op X
9 = 0 fy —0y XQ
1 0 0 1 X3

2.2 Rotation camera model

In case of camera rotation in space using rotation operator R, we get the next
relationship between two projections x; and X, of one point in space X caught at a
different time t; (rotation R;) and t, (rotation Ry) correspondingly (fig. 2).

170



TTonsixo A.P., Kopuunosa A.B., Kupuienko SI.A. ABromMaTH4ecKas KanuOpoBKa ¥ CHHXPOHU3AIMs kKamepbl 1 MOMC-
narunkoB. Ipyost UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 169-182

Pinhole

Image

Fig. 2. Rotation camera model
xr = KR(tl)X
€To = KR(tg)X
By transforming these expressions, the following needed relationship is established:
Ty = KR(tQ}RT(tl)K71m1
Thus, the matrix of image transformation between moments in time t1 and t2 is
defined as:
W(tl, tQ) = KR(tQ)RT(tl)K_l
o = W(tl,tg)ml

2.3 Rolling shutter effect

«Rolling shutter» (fig. 3, 4) is an effect arising on the majority of CMOS cameras,
at which each row of the frame is shot at different time due to vertical shutter.
When shutter scans the scene vertically, the moment in time at which each point of
the frame is shot, directly depends on the row it is located in. Thus, if i is the
number of the frame and y is the row of that frame, then the moment, at which it
was shot can be calculated this way:

171



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

tisy) = ti+ b

where t; is the moment when frame number i was shot, t; is the time it takes to shot a
single frame, h is the height of the frame. This can be used to make the general
model more precise, when calculating the image transformation matrix.

Fig. 3. Object movement

Fig. 4. Rolling-shutter effect during capturing the moving object

2.4 Gyroscope

The gyroscope is a sensor (MEMS-sensor in our case) which sends information
about angular velocities of a body. Using this data and its timestamps, a rotation
matrix (rotation operator) can be calculated through integration.

There are two approaches for integration data of gyroscope with different
computational complexity and accuracy. The first approach is linear integration for
receiving Euler angles and then their transformation to a rotation matrix, where 6 —
is rotation angle of one axis and o — velocity over this axis between t and t + &:

t+48
0t + ) :0(1‘.)+[ w(t)dt, (2)
Jit

This approach is applied only in case of insignificant and small rotations, because of
the imperfection of Euler angles as an algebraic structure. The other and more
complex approach is to use quaternions for data integration. This article [12] gives a
full description about the integration of angular velocities using quaternions, and we
tend to apply it.

172



Tonskos A.P., Kopuunosa A.B., Kupuienko SI.A. ApromaTnueckas KaTMOpoBKa M CHHXpOHU3aLus kamepbl 1 MOMC-
nataukoB. Tpyoet UCIT PAH, tom 30, Beim. 4, 2018 r., ctp. 169-182

2.5 Stabilization quality metrics

There are two main metrics which can estimate the quality of video stabilization of
static scene — RMSE (root mean square error) and ITF (inter-frame transformation
fidelity). The first is a comparison between two frames pixel-by-pixel using typical
L2 metric. The ITF metric directly depends on PSNR (peak signal-to-noise ratio)
parameter between two consecutive frames (k, k+ 1):
PSNR(k) = 10log, 17887

where Imax is maximum pixel intensity, and is counted as:

ITF = < S PSNR(k),
where N is count of frames in the video.

2.6 Features

In the computer vision, feature is a pattern that satisfies certain properties and can
be detected on the image. One of directions of feature use is feature matching,
which is mainly focused on searching of similar objects on two frames. In our work,
we use feature matching to estimate how the camera moved through shooting.

In our experiments we have used two features types — ORB (Oriented FAST and
rotated BRIEF) [13] and SIFT (Scale-Invariant Feature Transform) [14] which
prove themselves as the most stable and robust in feature matching. SIFT is
considered to exhibit the highest matching accuracies, but requires significant
computational resources, while ORB is very fast but less precise [15].

2.7 Description of stabilization algorithm

At the moment stabilization algorithm, proposed in our previous paper [10], works
as follows:

1) integrate gyroscope data (angular velocities and timestamps) using
quaternions;

2) determine frame timestamp and corresponding rotation matrix;

3) count transformation camera matrix for every horizontal section of the
frame (typically, there are several gyro reading per frame and,
consequently, several rotation matrices);

4) transform every section using transformation matrix and combine them;
5) write transformed frame to the video.

The algorithm stabilizes video like a tripod, at now complex camera motion is not
supported, but in progress.

173



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

3. Detailed problem description

As it was mentioned in the description of the stabilization algorithm, it directly
depends on camera parameters: focal length, optical center and rolling shutter
parameter. In most cases, all parameters besides focal length can be got from API of
the device on which this algorithm runs (at the moment the major advantage is
given to Android platforms). Thus, one of the main goals of this research is to find
focal length, which is the most accurate for our stabilization algorithm.

The other significant direction is to synchronize frames received from the camera
and data received from sensors (fig. 5). Mistiming is caused by the time needed for
frame processing — scanning and encoding. Therefore, we need to find time offset of
this processing to consider it in our model.

angular velocities

A
'z N
U.)-l U.)2 U.)S U.)4 U.Js U.)a U.)7

""" S DU T SO S SOV

I current frame next frame I

Fig. 5. Matching the time series of frames and gyroscope

Thus, the main goal of this research is to find the suitable focal length and time
offset. Some of the described methods are wider and cover other parameters, and we
also consider this information.

4. Calibration algorithms

In this section, we describe various approaches that we have tested during this
research. The section contains a description of our basic method, review and
implementation of the most known methods of calibration from other areas, and our
improvements on these methods for our specific task.

4.1 Calibration based on stabilization metrics

focal length, time offset, rolling shutter

This simple approach is based on stabilization metrics described in section 2. Using
ITF metric, we can estimate the quality of video stabilization after transformation of
frames: the higher the value of metric — the better video is stabilized.

The approach determines three parameters: focal length, time offset and rolling
shutter parameter and is as follows: detect a range and step of each parameter (for

174



Tonskos A.P., Kopuunosa A.B., Kupuienko SI.A. ApromaTnueckas KaTMOpoBKa M CHHXpOHU3aLus kamepbl 1 MOMC-
nataukoB. Tpyoet UCIT PAH, tom 30, Beim. 4, 2018 r., ctp. 169-182

example, range of focal length — [500, .., 1200] and step — 50) and find tuple of
parameters on which metric is maximized using brute-force search.

It is worth noting, despite of the huge computational complexity this method gives
the most accurate results due to the strong dependence on the current mathematical
model.

4.2 OpenCV calibration method

focal length, optical center, distortion coefficients
This algorithm is applicable only in case of known geometry of subject which is on
the scene. Also, the subject should contain easily distinguished feature points. This
subject is usually called calibration pattern. We have used use the main calibration
pattern which is supported by OpenCV — chesshoard. It depends on such parameters
as size of chesshoard, the distance between cells and others.
The algorithm also determines distortion coefficients and is as follows:

1) count initial intrinsic parameters of the camera. Initial distortion

coefficients are equal to zero;

2) estimate camera position using this initial parameters using PnP method;

3) using Levenberg-Marquardt algorithm minimize reprojection error — sum
of square root distances between two matched point.

4.3 Grid search method

focal length, time offset
Using frames and gyroscope data, we can estimate the motion of camera in two
ways:
1) use feature points on frames and estimate motion using the difference
between matched points on consequence frames;

2) use data of gyroscope — measurements and their timestamps.

This approach is as follows. Firstly, we determine two functions which describe the
average measure of camera motions in two ways — using feature points and using
gyroscope measurements. These functions must depends on time and if necessary
must have facilities for interpolation (data of gyroscope is discrete). Having these
functions, that describes motion in different ways, we can estimate shift (time
offset) of functions using cross-correlation.

Let us determine these functions:

Pmenr(ey (Ma—mp)+(my—m )

ri(t) = 2[M (1) (ti—t:_1)
wa (T +0Jy t)t+w:(t
ro(t) = 2= 35 )+w: (1)

175



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

frame translation

100 /\ gyroscope translation
50 = ‘/\
v,/\
N A

YA YA

Translation rate

~100 N ’\/\

Time

Fig. 6. Time offset between frame and gyroscope

On the picture (fig. 6), you can see similar shape of these functions.
We have tried two typical cross-correlation functions to find offset:
s(a,b) =axb

s(a,b) = —|a — b
If we have a set of possible offsets Td, we can find offset with a maximum value of
correlation between frames and gyroscope functions:

of fset = argmaxy,eT, Do S(re(t —ta),ry(t))
Authors who support this approach tend to opinion that initial scale constant is a
focal length value and try to find this constant like:
rg(t) = fxrp(t)
Using a method of the least squares:
f=argming >.i, (rp(ti +ta) — f*rg(t;))?

4.4 Improvements for grid search method

This method presents a combination of two methods — method with stabilization
metrics and method with grid search. The time offset is found by grid search
method. If we have a set of possible focal lengths F and the calculated value of time
offset, we can calculate a value of focal length. which maximizes stabilization
metric:

f=argmaxsep ITF(f tq)

This method is suitable very well in case of using these time offset and focal length
in our video stabilization algorithm.

In addition, we have abandoned to take in account motion over zaxis, which is
perpendicular to the camera matrix. This motion has non-linear correlation with
linear angular velocity over this axis and leads to an error in the algorithm.

176



Tonskos A.P., Kopuunosa A.B., Kupuienko SI.A. ApromaTnueckas KaTMOpoBKa M CHHXpOHU3aLus kamepbl 1 MOMC-
nataukoB. Tpyoet UCIT PAH, tom 30, Beim. 4, 2018 r., ctp. 169-182

5. Results of prototyping

In this section, we will describe results of experiments and conditions in which they
were conducted.

5.1 Dataset and environment

Our algorithm was tested on a dataset, which consists of video and gyroscope data
from smartphones with the Android operating system. For these purposes, we have
a special Android application, which records mp4 video file and csv format file with
stamps for gyroscope and frame events. This application supports mobile platforms
starting with 21 level Android API because of in this API event-driven scheme for
camera frames was supported by camera2 interface. The csv file consists of two
types of strings: «f» — for frames and «X, Y, Z, timestamp» — for gyroscope
readings.

A framework for calibration algorithm comparison was implemented in Python
using OpenCV 3.4 library. It consists of modules for video and gyroscope file
parsing and a module for integration of gyroscope readings using quaternion. The
framework also has opportunities for calculating metric statics for every method.
We have tested our algorithms on a dataset from the smartphone with the following
parameters:

e Model number: Xiaomi Redmi 3S;
e Android version: 6.0.1 (build MMB29M).

5.2 Experiments

Inside our framework, we have implemented all described algorithms and compare
them using stabilization quality metrics. We have tested algorithms on different
scene types and with different camera movements. An algorithm with stabilization
metric was considered as standard. All results are presented in tables. We compare
grid search method using different cross-correlation functions and different feature
detectors.

Experiments show that OpenCV algorithm has the worst result because of it is very
sensitive for the scene (user needs to use chessboard or other pattern) and rotation
and is not fit for our mathematical model. In the tables 1-3 you can see results of
grid search algorithm without/with improvements (metric) in comparison with
stabilization metric algorithm.

The algorithm is parametrized with feature types and shows the best results with the
second cross-correlation function (similarity function).

177



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

Table 1. Result of calibration in case of 1-dimentional motion

Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 14.04
Grid Search + ORB 45 825 13.97
Grid Search + SIFT 45 950 13.33
Grid Search + Metric + ORB 45 850 14.04
Grid Search + Metric + SIFT 45 850 14.04
Table 2. Result of calibration in case of 1-dimentional motion
Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 16.25
Grid Search + ORB 50 850 16.10
Grid Search + SIFT 40 925 15.87
Grid Search + Metric + ORB 50 850 16.10
Grid Search + Metric + SIFT 40 850 15.53
Table 2. Result of calibration in case of 2-dimentional motion
Algorithm Offset, us | £ | Metric
Metric (standard) 45 850 | 15.82
Grid Search + ORB 45 950 15.05
Grid Search + SIFT 50 825 15.31
Grid Search + Metric + ORB 45 850 15.82
Grid Search + Metric + SIFT 50 850 15.30

The first two tables show the result of calibration in case of 1-dimentional motion. It
is demonstrated that in case of ORB and SIFT features results are identical in
accuracy. In addition, results show that in case of metric improvements focal length
after calibration is equal to standard in comparison with simple grid search.

The third table describes results of calibration in case of 2-dimentional motion.
Results are equal to the case of 1- dimensional motion. As we discussed earlier, the
algorithm does not consider 3-dimentional motion because of constraints of grid
search model.

5.3 Main results

To sum up, experiments have demonstrated that:
1) grid search method shows the better result for our mathematical model of
camera and camera motion;

2) using grid search method, the best calibration result is achieved with the
second cross-correlation function (similarity function);

3) ORB and SIFT features show equals results in search of the time offset,
therefore we can use ORB as a faster method of feature matching;

4) our improvements of grid search with stabilization metric allow to find
focal length which is equal to standard;

178



Tonskos A.P., Kopuunosa A.B., Kupuienko SI.A. ApromaTnueckas KaTMOpoBKa M CHHXpOHU3aLus kamepbl 1 MOMC-
nataukoB. Tpyoet UCIT PAH, tom 30, Beim. 4, 2018 r., ctp. 169-182

5) the algorithm supports only two-dimensional motion (except motion over,
axis which is perpendicular to camera matrix), but this is not a strong
restriction for users, therefore, our algorithm can be used on a large scale.

6. Conclusion

As lately cameras and motion sensors (gyroscope, accelerometer) very often tend to
occur on one platform (smartphones or embedded systems), the quantity of the
algorithms, using their joint information, has significantly increased. These
algorithms directly depends on parameters of the system «camera-sensors» such as
focal length, rolling shutter, synchronization parameters, which differ from platform
to platform, and therefore these parameters must be calibrated for increasing of
scalability.

Our work proposes the method for auto-calibration of focal length and time series
offset (synchronization parameter), which is the most suitable for our video
stabilization algorithm using MEMS-sensors. We have review different approaches
and choose the nearest for our specific task. We have found parameters for this
method, which increase the quality of the calibration algorithm.

It worth noting that proposed algorithm can be scaled not only for stabilization
video task. It can be scaled for all algorithms, which support our mathematical
model of camera and camera movement.

In the future, we plan to expand the count of calibration parameters with rolling
shutter parameter and parameter of relative orientation of the camera and sensor
axes.

Acknowledgment
Funding for this work was provided by JetBrains Research.

References

[1]. S. Liu, M. Li, S. Zhu, and B. Zeng. Codingflow: Enable video coding for video
stabilization. IEEE Transactions on Image Processing, vol. 26, Issue 7, Apr. 2017, pp.
3291-3302

[2]. M. Grundmann, V. Kwatra, and I. Essa. Auto-Directed Video Stabilization with Robust
L1 Optimal Camera Paths. In Proc. of the 2011 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2011), 2011, pp. 225-232

[3]. W.-C. Hu, C.-H. Chen, Y.-J. Su, and T.-H. Chang. Feature-based real-time video
stabilization for vehicle video recorder system. Multimedia Tools and Applications, vol.
77,n0.5, Mar. 1, 2018, pp. 5107-5127

[4]. F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala. Subspace video stabilization.
ACM Transactions on Graphics, vol. 30, issue 1, 2011, pp. 4:1-4:10

[5]. D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui. Mobile augmented reality survey:
From where we are to where we go. IEEE Access, vol. 5, pp. 6917-6950, 2017

179



Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

[6]. A. Bethencourt and L. Jaulin. 3d reconstruction using interval methods on the kinect
device coupled with an IMU. International Journal of Advanced Robotic Systems, vol.
10, no. 2, 2013
[7]. J. Rambach, A. Pagani, S. Lampe, R. Reiser, M. Pancholi, and D. Stricker. Fusion of
unsynchronized optical tracker and inertial sensor in EKF framework for in-car
augmented reality delay reduction. In Proc. of the 2017 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR-Adjunct), Oct. 2017, pp. 109-114
[8]. A. Karpenko, D. Jacobs, and J. Baek. Digital Video Stabilization and Rolling Shutter
Correction using Gyroscopes. Stanford Tech Report CTSR 2011-03, 2011, 15 p.
[9]. S. Bell, A. Troccoli, and K. Pulli. A Non-Linear Filter for Gyroscope-Based Video
Stabilization. Lecture Notes in Computer Science, vol 8692, 2014, pp. 294-308
[10]. Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using
MEMS-sensors. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86. DOI:
10.15514/1SPRAS-2017-29(4)-5
[11]. R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag London,
2010, 812 p.
[12]. J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors.
Matrix, 58, 2006, pp. 1-35
[13]. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift
or surf. In Proc. of the 2011 International Conference on Computer Vision, Nov. 2011,
pp. 2564-2571
[14]. D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, vol. 60, no. 2, pp. 91-110
[15]. E. Karami, S. Prasad, and M. S. Shehata. Image matching using sift, surf, BRIEF and
ORB: performance comparison for distorted images. arXiv:1710.02726 [cs.CV], 2017

180



TTonsixo A.P., Kopuunosa A.B., Kupuienko SI.A. ABromMaTH4ecKas KanuOpoBKa ¥ CHHXPOHU3AIMs kKamepbl 1 MOMC-
nataukoB. Tpyoet UCIT PAH, tom 30, Beim. 4, 2018 r., ctp. 169-182

ABTOMaTMYeCcKas KaNnMOPOBKA U CUHXPOHMU3AaLMA KaMepbl U
M3MC-paTuukoB

A.P. Honsixos<polyakov.alx@gmail.com>
A.B. Kopnunosa <kornilova.anastasiia@gmail.com>
A.A. Kupunenxo <y.kirilenko@spbu.ru>
Canxm-Ilemepbypeckuii I'ocyoapcmeennuiii Yuugepcumem,
Kagpeopa Cucmemnozo npoepammuposanus
198504, 2. Canxm-Ilemepoype, . [lemepeogh, Ynueepcumemckuii npocnexm, 28

AnHoTanms. JlaHHAas cTaThsl ONMCHIBAeT TEKYIIHE HCCIECAOBAHMS II0 TeME aBTOMAaTHIECKOH
KaJMOpPOBKM M CHHXpOHM3aluu Kamepbl 1 MOMC-naTunkoB. Pe3ynbraThl McCieqOBaHHSA
MPUMEHUMBI K 0001 cucteMe, umeroniei kamepy 1 MOMC-natyuku, IpuMepoM KOTOPBIX
sBisiercss rupockon. OCHOBHasi 3ajaya HAIIETO HCCIEJOBAHMSA — HAXOXKACHHE TaKHX
IapaMeTpoB CHCTEMBI KaMepa-JaTUMKH, Kak (OKYCHOE pacCTOSHHE KaMepbl U pa3HuIa BO
BPEMEHH MEXIy CUUTBIBAHMEM IIOKa3aHHWsS IaT4NMKa M CYHTHIBAHMEM Kaapa KaMepsl,
BbI3BaHHAs HEOOXOJMMOCTBIO MpPEA0OpabOTKU “CHIPOTO” KaJpa W TMEPEBOJOM €ro B
omnpeneNeHHbIH (GopmaT. ABTOMaTHuecKasi KaJHOpOBKa ITO3BOJISIET IPHMEHSATH AITOPUTMBI
KOMIBIOTEPHOTO 3peHusl (umdpoBas Buaeo crabummszanus, 3D-pekoHCTpyKImMs, cxKaTHe
BHUJICO, TOTOJHEHHAS PEAIbHOCTB), HCIOJIB3YIONINE KaAPbl BUJICO M MOKAa3aHUs JAaTYMKOB, Ha
0OJbIIIEM KOJMYECTBE YCTPOWCTB, OCHAIIEHHBIMH Kamepodh m MOMC-partumkamu. Taxoke
ABTOMAaTHYECKask KaJuOpOBKa IO3BOJIIET MOJHOCTHIO abCTparupoBaThCsi OT XapaKTEPHCTUK
KOHKPETHOTO YCTPOMCTBa ¥ pa3pabaTblBaTh AJITOPUTMBI, pabOTarOIIMEe HA PA3IHYHBIX
mwiatpopmax (MOOWIbHBIE TIAT(GOPMBI, BCTPaMBAEMBIE CHCTEMBI, JKIIH-KaMmepbl). CTaThbs
OIUCBHIBACT OOIIYI0 MaTeMaTHYECKyI0 MOJelb, HEOOXOAMMYIO [UIS pealM3alllid JIaHHON
(YHKIMOHATIBHOCTH, HCIOJB3Ysl METOJbI KOMITBIOTEPHOTrO 3peHHs W mokaszanust MOMC-
JaTYNKOB. ABTOpBI TPOBOAAT 0030p M CpaBHEHHE CYIIECTBYIOIIMX IOJIXOJ0B K
ABTOMATHYECKOH KanuOpOBKe, a Takke MpeIaraloT CBOM YIYYIICHHs, NOBBIIIAIONINE
KaueCTBO CYLIECTBYIOLINX alTOPHTMOB.

KioueBble coBa: KamuOpoBKa KaMepbl; aBTOMaTHueckas KannOpoBka; o0paboTka
IU(POBBIX CUTHATIOB; KOMIBIOTEPHOE 3PEHHE

DOI: 10.15514/ISPRAS-2018-30(4)-11

Jas uutupoBanus: [lomsxos A.P., Kopaunosa A.B., Kupunenko S.A. ABromaruueckas
KanuOpoBKa W CHHXpoHU3amus kamepsl 1 MOMC-narunkoB. Tpyast UCIT PAH, Tom 30,
BoI. 4, 2018 1., crp. 169-182 (na anrmmiickom si3bike). DOI: 10.15514/ISPRAS-2018-30(4)-
11

Cnucok nutepaTtypbl

[1]. S. Liu, M. Li, S. Zhu, and B. Zeng. Codingflow: Enable video coding for video
stabilization. IEEE Transactions on Image Processing, vol. 26, Issue 7, Apr. 2017, pp.
3291-3302

181


mailto:y.kirilenko@spbu.ru

Polyakov A.R., Kornilova A.V., Kirilenko I.A. Auto-calibration and synchronization of camera and MEMS-sensors.
Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 169-182

2.

(3]

[4].
[5].
[6].

[7].

(8].

[9].
[10].

[11].
[12].

[13].

[14].

[15].

182

M. Grundmann, V. Kwatra, and |. Essa. Auto-Directed Video Stabilization with Robust
L1 Optimal Camera Paths. In Proc. of the 2011 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2011), 2011, pp. 225-232

W.-C. Hu, C.-H. Chen, Y.-J. Su, and T.-H. Chang. Feature-based real-time video
stabilization for vehicle video recorder system. Multimedia Tools and Applications, vol.
77,n0.5, Mar. 1, 2018, pp. 5107-5127

F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala. Subspace video stabilization.
ACM Transactions on Graphics, vol. 30, issue 1, 2011, pp. 4:1-4:10

D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui. Mobile augmented reality survey:
From where we are to where we go. IEEE Access, vol. 5, pp. 6917-6950, 2017

A. Bethencourt and L. Jaulin. 3d reconstruction using interval methods on the kinect
device coupled with an IMU. International Journal of Advanced Robotic Systems, vol.
10, no. 2, 2013

J. Rambach, A. Pagani, S. Lampe, R. Reiser, M. Pancholi, and D. Stricker. Fusion of
unsynchronized optical tracker and inertial sensor in EKF framework for in-car
augmented reality delay reduction. In Proc. of the 2017 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR-Adjunct), Oct. 2017, pp. 109-114

A. Karpenko, D. Jacobs, and J. Baek. Digital Video Stabilization and Rolling Shutter
Correction using Gyroscopes. Stanford Tech Report CTSR 2011-03, 2011, 15 p.

S. Bell, A. Troccoli, and K. Pulli. A Non-Linear Filter for Gyroscope-Based Video
Stabilization. Lecture Notes in Computer Science, vol 8692, 2014, pp. 294-308
Kornilova A.V., Kirilenko I.A., Zabelina N.l. Real-time digital video stabilization using
MEMS-sensors. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86. DOI:
10.15514/1SPRAS-2017-29(4)-5

R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag London,
2010, 812 p.

J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors.
Matrix, 58, 2006, pp. 1-35

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift
or surf. In Proc. of the 2011 International Conference on Computer Vision, Nov. 2011,
pp. 2564-2571

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, vol. 60, no. 2, pp. 91-110

E. Karami, S. Prasad, and M. S. Shehata. Image matching using sift, surf, BRIEF and
ORB: performance comparison for distorted images. arXiv:1710.02726 [cs.CV], 2017



Medical Images Segmentation Operations

S.A. Musatian <sabrina.musatian@yandex.ru>
A.V. Lomakin <alexander.lomakin@protonmail.com>
S.Yu. Sartasov <Stanislav.Sartasov@spbu.ru>
L.K. Popyvanov <lev.popyvanov@gmail.com>
I.B. Monakhov <i.monakhov1994@gmail.com>
A.S. Chizhova <Angelina.Chizhova@lanit-tercom.com>
Saint Petersburg State University,

7/9, University Embankment, Saint Petersburg, 199034

Abstract. Extracting various valuable medical information from head MRI and CT series is
one of the most important and challenging tasks in the area of medical image analysis. Due to
the lack of automation for many of these tasks, they require meticulous preprocessing from
the medical experts. Nevertheless, some of these problems may have semi-automatic
solutions, but they are still dependent on the person's competence. The main goal of our
research project is to create an instrument that maximizes series processing automation
degree. Our project consists of two parts: a set of algorithms for medical image processing
and tools for its results interpretation. In this paper we present an overview of the best
existing approaches in this field, as well the description of our own algorithms developed for
similar tissue segmentation problems such as eye bony orbit and brain tumor segmentation
based on convolutional neural networks. The investigation of performance of different neural
network models for both tasks as well as neural ensembles applied to brain tumor
segmentation is presented. We also introduce our software named "MISO Tool" which is
created specifically for this type of problems. It allows tissues segmentation using pre-trained
neural networks, DICOM pixel data manipulation and 3D reconstruction of segmented areas.

Keywords: deep neural networks; convolutional neural net-works; brain tumors; bony orbit;
medical images; segmentation

DOI: 10.15514/ISPRAS-2018-30(4)-12

For citation: Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov
I.B., Chizhova A.S. Medical Images Segmentation Operations. Trudy ISP RAN/Proc. ISP
RAS, vol. 30, issue 4, 2018. pp. 183-194. DOI: 10.15514/ISPRAS-2018-30(4)-12

1. Introduction

Modern ray diagnosis is at the stage of development, and completely different
settings and methods are required for different organs: x-ray, MRI, CT, ultrasound
are supplemented with invasive contrast methods. Only the doctor can see

183


mailto:alexander.lomakin@protonmail.com

Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

everything necessary for correct diagnosis and subsequent treatment. However, at
the heart of all these methods lie common tasks - the most accurate visualization of
the selected zone and obtaining as much data as possible from the results of the
examination. In 3D methods (CT and MRI), these tasks are essentially the same,
despite the differences in both physical principles and additional settings.

Since the goal of our work is to create a tool that would as accurately as possible
visualize isolated structures from raw data obtained by MRI and CT procedures,
then this complex work can be decomposed into separate logical components. To
isolate complex structures, we formulated the problem of segmentation of tumor
processes in MRI images. MRI better visualizes soft tissue and allows to carry out
various sequences, change the basic settings of the method in a wide range and use
contrast agents. To determine the volume and edge isolation of structures, the
problem of determining the volume of bony orbits on a CT was singled out. In this
method the bone structures have a high contrast, the distance between slices is very
small, and the method itself is widely distributed and takes little time, which allows
to study a large data volume.

From the point of medical informatics those problems are not completely dissimilar
and could be solved in a unified manner. Moreover, creating a single instrument that
may solve all of these challenging tasks autonomously will not only save doctors’
time, but also decrease the amount of errors. To the best of our knowledge, there
have not been introduced any instrument for automatic segmentation of different
body tissues. We came to the conclusion that while the segmentation tasks on
different body parts may seem different, they may also all be derived from a core
solution based on the deep neural networks.

In this work, we explored state-of-the-art solutions based on deep neural networks
for brain tumor segmentation and created an ensemble to see if their performance
can be improved and used not only for the brain segmentation task but also for
complicated head bony structures in general. We use the results of this research as a
first step for creating a convenient and powerful instrument for all medical
specialties.

2. Overview

An interest in the possibility of medical images segmentation has increased during
the last decade and many different approaches were explored. However, only a few
researches evolutionized into complete useful tools for medicine. Commonly used
software, that allows semi-automatic segmentation is Brainlab IPlan (commercial
distribution) and ITK-SNAP (open source project). The main feature of IPlan, that
have already been used in several studies [1, 2], is atlas-based segmentation. Atlas is
the described and sketched out by experts shape variations of the ROIs (Region of
Interest). Due to complexity of human body structure, there are many problems
about the accuracy of delineated atlas. ITK-Snap allows segmentation via active
contour evolution method - smooth blow-out of preplaced bubbles into the desired
region of interest [3]. Although many of the tasks have been solved by these

184



Mycatsan C.A., Jlomakun A.B., Capracos C.1O., ITonsisanos JI.K., Monaxos WU.b., Unxosa A.C. CriocoObl
CerMEHTallK MEANIMHCKUX n300paxenuit. Tpyow UCIT PAH, Tom 30, Beim. 4, 2018 1., ctp. 183-194

instruments, there are still many problems that specialists face constantly waiting
for improvement. Segmentation is performed by manual or semi-automatic
methods.

For the brain tumor segmentation problem many different approaches have been
explored and evaluated. There may be formed mainly two classes for these
algorithms: methods, which require training on the dataset in advance and those
which do not. Early works in this area treated a brain tumor segmentation problem
as an anomaly detection problem on the image. Representative works for these
approaches may be [4] and [5]. The main advantage of these works is that the
presented solutions do not need to be trained beforehand, however that makes it
harder to improve the quality of the detection, especially on the smaller tumors.
Another class of approaches is based on the idea of using supervised learning
methods, such as random forests [6] or support vector machines [7]. These models
can learn a powerful set of features and work quite well on the most common cases,
but due to the highly discriminative nature of brain tumors it is hard to detect the
correct feature set and create a good model. As a result, recent approaches on
segmentation refer to the deep neural networks. It is a powerful instrument that has
a capability of extracting new features while training and hence may outperform
pre-defined features sets of the supervised learning methods. The results of these
algorithms may be also used for different kinds of medical images.

We are developing our own tool - Medical Images Segmentation Operations
(MISO), which uses neural networks as a back-end for solving various segmentation
tasks in medicine. In the next sections we overview separately application of neural
networks for brain tumor and bony orbit segmentation as they were trained and used
in MISO.

3. Brain Tumor Segmentation

For that task we chose to overview two CNNs (Convolutional Neural Networks)
with different architecture which have proven to be the best in this field: DeepMedic
[8] — 11-layers deep, multi-scale, 3D CNN with fully connected conditional random
field and WNet [9] — fully convolutional neural network with anisotropic and
dilated convolution.

3.1 Data

For the experiments we used BraTS 2017 dataset [10, 11], which includes images
from 285 patients of glioblastoma (GBM) and lower grade glioma (LGG). For
acquiring this data each patient (fig. 1) was scanned with native T1, post-contrast
T1l-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (Flair). For all patients ground-truth segmentation was provided.

185



Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

(@) (b)
Fig.1. Original data from BRaTS 2017 dataset: a) T1Gd b) T1 c) Flair d) T2 e) Ground-truth

(d)

3.2 Implementation Details

For WNet we used configuration described in the original papers and BRaTS 2017
dataset for training. For DeepMedic we trained two versions of this network on
different datasets and injected some changes into original architecture of this
network. For the first version we introduced the following changes: model was
trained only on T1 and T2 images.

The reason for that change was that these are the most common MRI sequences.
Having a network trained only with this data makes the model available for more
hospitals in future. Also, instead of PReLu non-linearity, introduced in the original
model, we use SELU [12], which improves the performance and time spend on
training. For the second version of DeepMedic we also used SELU, but this network
was trained only on T1 images. We wanted to explore how this network will cope
when having only one source. For all of these three networks we separated initial
dataset into 3 chunks: training (about 80% percent), validation (10%) and test
(10%). The performance of these networks on test data may be seen at Table 1. In
the observed studies, authors were aiming not only to detect the tumor but also to
segment the tumor into three categories: whole tumor, tumor core and enhancing
tumor core. However, in our work we are only interested in the whole tumor
detection problem.

Table 1. Individual performance of observed CNNs

Network Dice coefficient
Whet 0.9148
DeepMedic (inputs: T1+T2) 0.8317
DeepMedic (inputs: T1) 0.6725

3.3 Detecting the Percentage of False Negative Segments

The original works analyse the quality of CNN performance based on the Dice and
Hausdorff measurements, which are good for the segmentation problems in general,
but hides the necessary details about misclassifications. For that reason, we explored
the results from work of the considered networks to determine the percentage of
false positives via false negatives results. Our main goal was to examine whether
these methods are more prone to predict false positives then false negatives.

186




Mycatsan C.A., Jlomakun A.B., Capracos C.1O., ITonsisanos JI.K., Monaxos WU.b., Unxosa A.C. CriocoObl
CerMEHTallK MEANIMHCKUX n300paxenuit. Tpyow UCIT PAH, Tom 30, Beim. 4, 2018 1., ctp. 183-194

Since the decisive opinion during the diagnosis and treatment is always on doctor,
our main goal is to indicate if there may be a pathological tissue and get the
surgeon’s attention to this area. Our system is aiming to find all suspicious areas and
send them for reevaluation to medical specialist. Hence, one of the main qualities of
this system that should be optimized first-hand would be not false positive results,
but false negatives, because those when unnoticed may not get the essential medical
care and be a reason for future proliferation of tumor cells. The results of this
experiment may be seen at Table 2.

Table 2. Number of false positive via false negative in the final segmentation

Network mean (False positive / mean (False negative /
ground truth) ground truth)
Whet 0.0863 0.0830
DeepMedic (inputs: T1+T2) 0.2330 0.1170
DeepMedic (inputs: T1) 0.4690 0.2455

3.4 Neural Network Ensembles

We wanted to detect whether the general performance of these three networks can
be improved, when they are used together. So, we proposed the idea of forming the
neural networks ensemble [13] out of them. We implemented the following voting
scheme: for each voxel we determine each individual result for every neural
network, based on their already pre-trained models, and then we qualify a voxel as
part of the tumor if and only if the majority of networks classify it as tumor,
otherwise it is considered to be a healthy matter. The results of this experiment may
be seen at Table 3.

Table 3. The performance of neural network ensemble. The results of combining networks
together differently

CNN 1 CNN 2 CNN 3 Dice coefficient
Whnet DeepMedic - 0.8861
(inputs: T1 + T2)
DeepMedic DeepMedic - 0.7657
(inputs: T1+T2) (inputs: T1)
DeepMedic Whet - 0.7941
(inputs: T1)
DeepMedic DeepMedic Whnet 0.8823
(inputs: T1+T2) (inputs: T1)
DeepMedic DeepMedic Whet 0.8823
(inputs: T1+T2) (inputs: T1)

187



Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

4. Bony Orbit Segmentation

4.1 Methods

Our approach consists of two steps. First of all, image classification was presented,
dividing initial dataset into two groups: «contains orbit» and «does not contain
orbit». The next step is to segment the orbit in the images marked by the classifier in
the previous stage. In this paper first step is described in details, whereas the second
step is introduced briefly as it is the subject of further research.

4.2 Data Collection

Raw CT scans was presented by faculty of Medicine of Saint Petersburg State
University. Using Toshiba Scanner as instrument and Helical image acquisition as
main method, 5 series were made and anonymized. The initial image dimensions
were 512*512, using short (2-byte number) to represent radiation intense with
Grayscale Standard display function. Orbits occupy less than 1/4 of the image, so
we reduced the original size from 512*512 to 256*256 in order to decrease
computation complexity (fig. 2 b). Slices with orbit was labeled and some of them
was manually segmented by expert (fig. 2 ¢). Total amount of data: 601 sinus + 80
head CT images were marked as «contains orbit» and 1414 were marked as
«doesn’t contain orbit». 150 images were segmented.

@) (b) © ©)

Fig. 2. Data for bony orbit segmentation: a) Initial image b) cropped image c) segmented by
expert d) extracted mask (label for cropped image)

4.3 Model Choosing

To achieve best classification performance of 1st CNN, some important parameters
like number of layers and convolutional kernel size must be chosen. So, several
kernel sizes and layers number have been evaluated for classification accuracy. The
guantitative assessments are shown in Table 4. As a result, the model used for
training consisted of eight layers, out of which four were convolutional layers and
four were fully connected layers. The output of last fully-connected layer has been
fed to a sigmoid function, as it is a standard neural network classification layer [14].
The initial images were cropped and compressed in order to reduce training time.

188



Mycatsan C.A., Jlomakun A.B., Capracos C.1O., ITonsisanos JI.K., Monaxos WU.b., Unxosa A.C. CriocoObl
CerMEHTallK MEANIMHCKUX n300paxenuit. Tpyow UCIT PAH, Tom 30, Beim. 4, 2018 1., ctp. 183-194

Hence, network accepts grayscale images of dimension 128 X 128 as inputs. The
first layer filters input with 32 kernels of size 5 * 5.

As it could be seen from experiments, rectified linear unit (ReLU) [15] nonlinearity
applied to the outputs of all convolutional layers gives best result compared with
other activation functions. The (n+1)th convolutional layer takes the output of nth as
input processed by ReLU nonlinearity and max pooling layer respectively and
process it with Fn + 1 filters. Filters configuration are shown in Table IV. All fully
connected layers have equal number of neurons i.e., 256. For the Second CNN the
U-net architecture [16] was chosen, as it has already proven its suitability for
segmentation in general. Several layer sequences were evaluated to find most fitting
model. In order to reduce bias and increase universality, 2 dropout layers with
dropout rate equals to 0.2 were added.

Table 4. Quantitative assessments of different CNN configurations

Neurons in each 1st CVL* kernel Filters model val.acc.
FCLs*
3200 11 32-64-128-128 0.725
256 11 32-64-128-128 0.9964
3200 7 32-64-128-128 0.7821
512 7 32-64-128-128 0.9782
512 7 64-64-128-256 0.9295
512 11 32-64-128-128 0.9964
256 7 32-64-128-128 0.8214
FCL — fully-connected layers, CVL — convolutional layer, val. acc. — accuracy on validation
dataset

4.4 Training Details

Classification CNN was implemented, trained and evaluated using Python 3.6 as
programming language on NVIDIA GTX740M GPU with CUDA Toolkit 9.0 and
CuDNN 7.0.5. Keras 2.1.*(version was continuously updated during development)
was chosen as neural networks framework, working on top of Tensorflow 1.5*. We
have trained and evaluated CNNs on a range different filter models (number of
filters in each convolutional layer), kernel sizes and neuron amount in fully-
connected layers. Also experiments with dropout layer [17] were performed.

4.5 Output Image Visualization

After segmentation has been performed, series of marked images are converted to
voxel grid using initial DICOM metadata in order to create 3D model using
Marching cubes algorithm by means of MISO Tool and The Visualization Toolkit
library. Result is presented in fig. 3.

189



Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

Fig. 3. Rendered bony eye orbit using marching cubes algorithm

4.6 Experimental Results
4.6.1 Images cropping

As the main purpose of our work is to create an instrument, that could be run on our
servers from multiple clients, in order to deliver the best performance to the
customers and lessen waiting time, computation complexity must be decreased as
much as possible. To achieve that goal, it was decided to perform experiments with
cropped and resized images. When the image was reduced to less than 128*128, we
were unable to achieve the required accuracy. The best result under the condition
"accuracy > 0.95" showed the approach in which a piece of 256*256 was cut out of
the image, which subsequently was compressed to 128. Because of high similarity
of head position in CT scans, it was not necessary to move the cropping window.

Fig. 4. Different cropping window positions and sizes were examined

4.6.2 Performance

For the 1st CNN we used different kernels from 3 to 11 pixels, different CNN
model configurations, activation functions and a suitable epoch number to illustrate
190



Mycatsan C.A., Jlomakun A.B., Capracos C.1O., ITonsisanos JI.K., Monaxos WU.b., Unxosa A.C. CriocoObl
CerMEHTallK MEANIMHCKUX n300paxenuit. Tpyow UCIT PAH, Tom 30, Beim. 4, 2018 1., ctp. 183-194

which one of these properties support CNN to get the highest level of performance.
Data was split between train and validation in proportion 4:1. Our model performs
best after 115 training epochs - validation accuracy 99% and then stabilizes.
Dropout layers with dropout rate lower than 0.4 doesn’t impact the accuracy
significantly, and more than 0.4 fails the accuracy to ~85%, so it was decided to
exclude dropout layers from final model. Worth noticing the fact that models with
512 neurons in each FCL showed approximately same result as a model with 256
neurons, but it takes up to 1.4 times more computation time, so 256 was chosen as
less resource-consuming.

5. Conclusion

In this paper, the first step for the medical segmentation system was introduced.
Based on the existing CNN solutions we demonstrated that they may be easily
adapted for the segmentation tasks on different medical images. Also, in this work
has been shown that these segmentations may be used for creating 3D models and
volume estimation. Based on the obtained results, the target tool model was
developed using C# 7.0 as programming language and .NET 4.7 as framework.

As the development is still in the very beginning, there is no purpose for service
hosting, although it is considered as the only possible option for the further
development, so for now MISO (Medical Images Segmentation Operations) tool has
been prototyped as a classic desktop application with CNN results visualization
abilities (fig. 5)

‘ @ MISO teol - a x

File Help

Fig. 5. MISO tool interface

References

[1]. Wagner M.E., Gellrich N.C., Friese K.I. et al. Model-based segmentation in orbital
volume measurement with cone beam computed tomography and evaluation against

191



Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

[2].
3].

[4].

[5].

[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

192

current concepts. International Journal of Computer Assisted Radiology and Surgery,
vol. 11, issue 1, 2016, pp 1-9

Jean-Franois D, Andreas B. Atlas-based automatic segmentation of head and neck organs at
risk and nodal target volumes: a clinical validation. Radiation Oncology, 2013, 8:154
Yushkevich P.A. Piven J., Hazlett H.C. et al. User-guided 3D active contour
segmentation of anatomical structures: significantly improved efficiency and reliability.
Neurolmage, vol. 31, issue 3, 2006, pp. 1116-1128

Doyle, S., Vasseur, F., Dojat, M., Forbes, F. Fully Automatic Brain Tumor
Segmentation from Multiple MR Sequences using Hidden Markov Fields and
Variational EM. In Procs. of the NCI-MICCAI BRATS, 2013, pp. 18-22

Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S. Template-based multimodal joint
generative model of brain data. Lecture Notes in Computer Science, vol. 9123, 2015, pp.
17-29

H. N. Bharath, S. Colleman, D. M. Sima, S.Van Huffel. Tumor Segmentation from
Multimodal MRI Using Random Forest with Superpixel and Tensor Based Feature
Extraction. Lecture Notes in Computer Science, vol. 10670, 2018, pp. 463-473.
Chi-Hoon Lee, Mark Schmidt, Albert Murtha, Aalo Bistritz, Joerg Sander,
Russell Greiner. Segmenting brain tumors with conditional random fields and support
vector machines. Lecture Notes in Computer Science, vol. 3765, 2005, pp. 469-478
Kamnitsas K., Ledig C., Newcombe V.F.J., Simpson J.P., Kane A.D., Menon D.K,,
Rueckert D., Glocker B. Efficient multi-scale 3DCNN with fully connected CRF for
accurate brain lesion segmentation. Medical Image Analysis, vol. 36, 2017, pp. 61-78.

G. Wang, W. Li, S. Ourselin, T. Vercauteren. Automatic brain tumor segmentation using
cascaded anisotropic convolutional neural networks. Lecture Notes in Computer
Science, vol. 10670, 2018, pp. 178-190

Menze B.H., Jakab A., Bauer S. et al. The multimodal brain tumor image segmentation
benchmark (BRATS). IEEE Transactions on Medical Imaging, vol. 34, issue 10, 2015,
pp. 1993-2024

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras et al. Advancing The Cancer Genome
Atlas glioma MRI collections with expert segmentation labels and radiomic features.
Scientific Data, vol. 4, 2017, Article number: 170117

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter. Self-
Normalizing Neural Networks. Advances in Neural Information Processing Systems,
vol. 30, 2017

L.K. Hansen and P Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, issue 10, 1990, pp. 993- 1001

J. van Doorn. Analysis of deep convolutional neural network architectures. Available at:
https://pdfs.semanticscholar.org/6831/bb247c¢853b433d7b2b9d47780dc8d84e4762.pdf,
accessed: 13.06.2018

Hahnloser R.H., Sarpeshkar R., Mahowald M.A., Douglas R.J., Seung H.S. Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature,
vol. 405, 2000, pp. 947-951

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. Lecture Notes in Computer Science, vol. 9351, 2015,
pp. 234-241

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, vol. 15, issue 1, 2014, pp. 1929-1958


https://www.sciencedirect.com/science/journal/10538119

Mycatsan C.A., Jlomakun A.B., Capracos C.1O., ITonsisanos JI.K., Monaxos WU.b., Unxosa A.C. CriocoObl
CerMEHTallK MEANIMHCKUX n300paxenuit. Tpyow UCIT PAH, Tom 30, Beim. 4, 2018 1., ctp. 183-194

Cnoco6bl cermMeHTaLUMM MeaULMHCKUX N300pakeHnn

C.A. Mycamsan <sabrina.musatian@yandex.ru>
A.B. Jlomaxun <alexander.lomakin@protonmail.com>
C.1O. Capmacos <Stanislav.Sartasov@spbu.ru>
JLK. Ionwvisanos <lev.popyvanov@gmail.com>
HU.b. Monaxos <i.monakhov1994@gmail.com>
A.C. Humcosa <Angelina.Chizhova@lanit-tercom.com>
Canxm-Ilemepbypeckuii 20cy0apcmeeHHbLIL YHUgepcumen,
719, Vnusepcumemckas nabepesicnas, Cankm-Ilemepbype, 199034

AHHOTanus. V3BreueHne pa3nu4yHOi 3HAYNMOH MeauuuHckoi nHpopmarnyn u3 KT u MPT
CHHMKOB — 3TO OJJHA M3 HauOoJiee BAKHBIX M TPYIHBIX 33/1a4 B chepe aHaIM3a MEIUIIMHCKIX
n3obpaxxeHnid. HemocraTok aBroMaTu3ammMM B OTHX 3aJadax CTaHOBUTCS IPHYMHOMN
HEOOXOMMOCTH CKPYITyJIe3HOH 0OpabOTKM JaHHBIX SKCIEPTOM, YTO BEAET K BO3MOXKHOCTH
OUIMOOK, CBSI3aHHBIX C 4YeJIOBEYeCKHM (hakTopoM. HecMOTpst Ha TO, 4TO HEKOTOpHIE U3
METOJOB pEIICHHS 33a7a4 MOTYT OBITH MOJYyaBTOMATHUYECKHIMHU, OHU BCE €Il OMHPAIOTCS Ha
yenoBeyeckue KomreTeHIH. OCHOBHOW IIENbI0 HAIIMX MCCIIENOBAaHMH SBISETCS CO3JaHUE
WHCTPYMEHTa, KOTOPBI MakKCHMHU3UPYeT YpPOBEHb aBTOMATH3allMH B 3agadax OOpabOTKH
MEAWIMHCKAX CHUMKOB. Haml mpoeKT COCTOMUT W3 ABYX 4YacTel: HabOp aJrOpUTMOB IS
00pabOTKM CHUMKOB, a TaKXKEe HHCTPYMCHTHI JUIS HMHTCPIPETUPOBAHUS W BU3yaTH3aI[HH
pe3ynbTaToB. B aHHOI cTaThe MBI MPEACTaBIsIeM 0030p JIyUIIMX CYLIECTBYIOIINX PELIeHHU
B 9TOH 00NacTH, a TakKe ONHCAaHHE COOCTBEHHBIX AJTOPUTMOB JUIS aKTyaJbHBIX MPOOIeM,
TaKUX KaK CETMEHTAIUS KOCTHBIX TJIa3HBIX OPOUT M OMyXOJIeH MO3ra, HCIOJIb3Ysl CBEPTOUHBIC
HEeWpoHHBIC ceTH. [IpencTaBieHO WHCCIenIoBaHHEe S(PPEKTUBHOCTH PA3JIUUHBIX MOJCICH
HEHpPOHHBIX MoOJeNell Npu KiacCH(pUKAMM W CErMEHTAlH JUIs O0enX 3amad, a TaKKe
CPaBHHUTENBHBI aHANMN3 Pa3NHYHBIX HEHPOHHBIX aHcaMOJiel, MpPUMEHSEMBIX K 3ajade
BBIJICJICHHS OITyXOJIEH TOJOBHOTO MO3Ta Ha MEIMIMHCKAX CHUMKaX. Takke MpencTaBICHO
Hale mporpamMMmHoe obOecnedenne nopn HasBanueM «MISO Tool», koTopoe co3zmano
CIIEIMAJIBHO JUIs TOJ00OHOT0 poJia 3a/1a4 ¥ IO3BOJISET BHIIOJHATE CErMEHTHPOBAaHHE TKaHeil ¢
HCIOJIb30BAHUEM TIPEBAPUTEIHLHO OOYUSHHBIX MOCTaBisieMbIX BMecTe ¢ [1O HelpoHHBIX
CeTei, NPOU3BOAMUTH pA3JIMYHBIE MAHUNYJSIUH C MUKCENbHBIMU JaHHbIMH DICOM-
H300paKeHNs, a TAKXKE MOTY4aTh 3D-peKOHCTPYKIHS CETMEHTHPOBAHHBIX 00JIaCTEH.

KnioueBble ciioBa: rayOokne HEHpOHHEBIE CETH; CBEPTOUHBIC HEHPOHHBIC CETH; OITYXOJH
MO3ra; KOCTHBIC TJIa3HbIE OPOUTHI; MEUITHHCKHE H300paskeHUSL.

DOI: 10.15514/ISPRAS-2018-30(4)-12

Juasi uutupoBanusi: Mycarsa C.A., Jlomakun A.B., Capracos C.1O., [lonssanos JIL.K.,
MonaxoB U.b., Ymkosa A.C. Crioco0bl cerMeHTaIlMu MEANIMHCKHAX H300paxeHuid. Tpymsl
UCIT PAH, tom 30, Bem. 4, 2018 r., crp. 183-194 (ma aurmmiickom s3bike). DOI:
10.15514/ISPRAS-2018-30(4)-12

Cnucok nutepartypbl

[1]. Wagner M.E., Gellrich N.C., Friese K.I. et al. Model-based segmentation in orbital
volume measurement with cone beam computed tomography and evaluation against

193


mailto:sabrina.musatian@yandex.ru
mailto:alexander.lomakin@protonmail.com
mailto:Stanislav.Sartasov@spbu.ru
mailto:lev.popyvanov@gmail.com
mailto:i.monakhov1994@gmail.com
mailto:Angelina.Chizhova@lanit-tercom.com

Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

[2].
3].

[4].

[5].
[6].

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

194

current concepts. International Journal of Computer Assisted Radiology and Surgery,
vol. 11, issue 1, 2016, pp 1-9

Jean-Franois D, Andreas B. Atlas-based automatic segmentation of head and neck organs at
risk and nodal target volumes: a clinical validation. Radiation Oncology, 2013, 8:154
Yushkevich P.A. Piven J., Hazlett H.C. et al. User-guided 3D active contour
segmentation of anatomical structures: significantly improved efficiency and reliability.
Neurolmage, vol. 31, issue 3, 2006, pp. 1116-1128

Doyle, S., Vasseur, F., Dojat, M., Forbes, F. Fully Automatic Brain Tumor
Segmentation from Multiple MR Sequences using Hidden Markov Fields and
Variational EM. In Procs. of the NCI-MICCAI BRATS, 2013, pp. 18-22

Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S. Template-based multimodal joint
generative model of brain data. Lecture Notes in Computer Science, vol. 9123, 2015, pp. 17-29
H. N. Bharath, S. Colleman, D. M. Sima, S.Van Huffel. Tumor Segmentation from
Multimodal MRI Using Random Forest with Superpixel and Tensor Based Feature
Extraction. Lecture Notes in Computer Science, vol. 10670, 2018, pp. 463-473.
Chi-Hoon Lee, Mark Schmidt, Albert Murtha, Aalo Bistritz, Joerg Sander,
Russell Greiner. Segmenting brain tumors with conditional random fields and support
vector machines. Lecture Notes in Computer Science, vol. 3765, 2005, pp. 469-478
Kamnitsas K., Ledig C., Newcombe V.F.J., Simpson J.P., Kane A.D., Menon D.K.,
Rueckert D., Glocker B. Efficient multi-scale 3DCNN with fully connected CRF for
accurate brain lesion segmentation. Medical Image Analysis, vol. 36, 2017, pp. 61-78.

G. Wang, W. Li, S. Ourselin, T. Vercauteren. Automatic brain tumor segmentation using
cascaded anisotropic convolutional neural networks. Lecture Notes in Computer
Science, vol. 10670, 2018, pp. 178-190

Menze B.H., Jakab A., Bauer S. et al. The multimodal brain tumor image segmentation
benchmark (BRATS). IEEE Transactions on Medical Imaging, vol. 34, issue 10, 2015,
pp. 1993-2024

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras et al. Advancing The Cancer Genome
Atlas glioma MRI collections with expert segmentation labels and radiomic features.
Scientific Data, vol. 4, 2017, Article number: 170117

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter. Self-
Normalizing Neural Networks. Advances in Neural Information Processing Systems,
vol. 30, 2017

L.K. Hansen and P Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, issue 10, 1990, pp. 993- 1001

J. van Doorn. Analysis of deep convolutional neural network architectures. Tocrymuo

10 CCBIJIKE:
https://pdfs.semanticscholar.org/6831/bb247c¢853b433d7b2b9d47780dc8d84e4762.pdf,
nata obpamenuns 13.06.2018

Hahnloser R.H., Sarpeshkar R., Mahowald M.A., Douglas R.J., Seung H.S. Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature,
vol. 405, 2000, pp. 947-951

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. Lecture Notes in Computer Science, vol. 9351, 2015,
pp. 234-241

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, vol. 15, issue 1, 2014, pp. 1929-1958


https://www.sciencedirect.com/science/journal/10538119

NMpnmeHeHUe accounaTUBHO-
CeMaHTM4YeCKOoro npenpoueccopa B
WHTEepPaKTUBHbIX ANANOroBbIX CUCTEMAX Ha
eCTeCTBEeHHOM fi3blKe

B.E. Cauxose <megawatto@mail.ru>
DPI'EOY BO MHP3A — Poccuiickuii mexHoa02UYecKuli yHugepcumemn,
119454, 2. Mockea, Ilpocnekm Bepnadckoeo, 0. 78

AHHOTanmusi. B cTratee wucciemyercs BO3MOXKHOCT IPHMEHEHHS  acCOI[MATHBHO-
CEMaHTHYECKOT0 Mperpoleccopa CIeHaIbHOi 00paboTKN TEKCTa Ha €CTECTBEHHOM SI3bIKE B
JUaNoroBeIX  cucreMax. [IpuMeHeHHe B Ipempoleccope  accoluanuil  Mo3BoigeT
abCTparupoBaThCs OT MPSIMOT0 3HAYCHUS CJIOBA M 3aMEHHTH €ro Ha Habop APYTHX CIOB. DTOT
3¢ ekt umeeT U 00paTHOE ACHCTBHE: MO HabOpy CIOB (accomuamyii) MOKHO BOCCTaHOBUTH
HCKOMOE CJIOBO, YTO TO3BOJISIET YENOBEKY (POPMHUPOBATH 3alIpOC Ha ECTECTBEHHOM SI3BIKE, HE
3Has KIIOYEBBIX CIIOB WIM TEPMHHOB TOW WM MHOHM NMpeIMETHOH 00JacTH, HO MpPU 3TOM
MONy4aTh HYXKHBIH eMmy pesynsTar. [lpm cemaHTHYeckoil 00paboOTKe TeKcTa C
HCIIOIb30BaHIEM aCCOLMALNI COBEPIICHHO HE Ba)YKEH MOPSIOK CIOB U MX KOJIMYECTBO, YTO
MO3BOJISICT YEJIOBEKY OOIIAThCsS C MaIIWHON, He GopMupys (passl crenuaIbHBIM 00pa3oM,
TaK KaKk MHTEPaKTHBHAs JUAJOroBas CHCTeMa cama o0OpaboTaeT 3ampoc, OYHCTHB €ro OT
Bcero JmiuHero. [IpuMeHeHHe CchenuasbHOro TEKCTOBOIO IIpenpoleccopa Ha OCHOBE
aCCOIMATHBHO-CEMAHTUIECKOH 00pabOTKM TEKCTa IO3BOISIET HAAENUTh WHTEPaKTHBHbIC
JINAIOTOBBIE  CHCTEMBI CIOCOOHOCTBIO K IIOHMMAHMIO TEMBI JHalora MAaIldHBl C
MOJTB30BaTeIeM, YIYYIINTh B3aUMOJCHCTBHE ITyTeM OOIIEHHS Ha E€CTECTBEHHOM S3BIKE, a
TaKOKe YIIPOCTHTH MPOLIECC CO3/IaHUs U pa3pabOTKH AUATIOTOBBIX CHCTEM.

KiwueBble cjioBa: ceMaHTHKa; qUajoroas cucrema; Merpuka EMD; nouckoBas cucrema;
accoLuaIun
DOI: 10.15514/ISPRAS-2018-30(4)-13

Jasa  uutupoBanmsa: CauxkoB B.E. IIpuMeHeHue acconMaTHBHO-CEMAaHTHYECKOTO
IPENpoLeccopa B UHTEPAKTUBHBIX JUAJOTOBBIX CHCTEMAaX HAa €CTECTBEHHOM si3bIKe. Tpyabl
WCII PAH, Tom 30, Bbim. 4, 2018 1., ctp. 195-208. DOI: 10.15514/ISPRAS-2018-30(4)-13

1. BeedeHue

TekcT Ha €CTECTBEHHOM S3BIKE€ MOHSITEH MMOJIB30BATCIIFO, HO OJI1 MAaIIWHBI OH
MpeACTaBJIACTCA HE Ooilee uem Ha60p0M 3aKOJAUPOBAHHBIX CHUMBOJIOB. ﬂﬂﬂ

195



Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

U3BJICYCHUS LICHHBIX JaHHBIX MallMHE HEOOXOANMO PELINTh MHOXKECTBO 3a1ad IO
00paboOTKEe TEKCTa HA ECTECTBEHHOM s3bIke. TakuMMHM 3aJadaMH 3aHHMAaeTCs
CHEeNHANbHBIA pa3fen TMPHUKIATHON IJMHTBUCTHKH «ABTOMarnieckas oOpaboTka
TEKCTOB Ha ecTecTBeHHOM s3bike» (Natural Language Processing, NLP). Ha
CerOJHALIHMI JEHb CYIIECTBYeT OoJiblIoe pazHooOpasue 3amad o00paboTKH
€CTECTBEHHOTO sI3bIKa, HAMOOJEE PACIPOCTPAHEHHBIMH CPEIH KOTOPBIX SIBISIOTCS
cnenytomue [1]:

®  MOWCK (parMeHTOB TEKCTa — pa3[eieHHE TEKCTa HA PA3INYHbBIC SIEMEHTHI

pa3HBIX TUIIOB: CIIOBA, MPEAIOKEHUSI, a03a1lbl U T. 11.;

e nouck npemnoxenuid (Sentence Boundary Disambiguation, SBD) —
orpeJieTICHUE TPaHuUL] PEATI0KEHHS;

e TmoHcK WMeHOBaHHBIX 00BekTOB (Named entity recognition, NER) —
MEXaHHM3M IIOWCKa aJpecoB, HAa3BaHWM, MMEH, JaT, WU JIOOBIX JIPYTUX
MMEHOBAaHHBIX CYIIHOCTEH;

e onpenencane yactelr peunm (Parts of speech, POS) — xmaccudpukarms
9JIEMEHTOB TEKCTa Ha YpPOBHE NPEUIOKEHHUS; MPEJIOKESHUE MOXKET OBITh
pasaeneHo Ha OTHEIbHBIC CI0BA U CIOBOCOYCTAHUS 110 TAKUM KAaTETOPHUSIM,
KaK CYIECTBUTEJbHBIE, [IaroJbl, HApEeUHsl, IPEUIOTH U T. 11.;

e  kiaccuuKalMs TEKCTOB U JOKYMEHTOB — LieJIb JJAHHOM KiacCH(UKaIKUU B
MIPUCBOCHUHU METOK (pparMeHTaM, HailICHHBIM B TEKCTaX M JJOKYMEHTAX;

®  BbIJICJICHHUC B3aMMOOTHOIICHUN — BBISBJICHUC CBS3CH MEKAY CIOBAMH KM
CJIOBOCOYCTAHUSMH IS TOCTPOCHUS CEMaHTHUECKOTO JICpeBa.

OmHOM W3 TPUOPHUTETHHIX 3a/ad aBTOMATHYECKOW 00pabOTKH TeKCTa, SIBIACTCS
CEeMaHTUUECKUN aHajau3 — I[OHUMAaHUE COJAEp)KAaTeIbHOM U CMBICIOBOM 4YacTu
Tekcta. IIpM CO3MaHMU THAJIOTOBBIX CHCTEM HA €CTECTBEHHOM SI3BIKE IIHPOKO
MIPUMEHSICTCSI CEMaHTHKA, MIOCKOJIBKY OT 3THX CHCTEM B MEPBYIO 04Yepe/b TpeOyeTcst
[MOHHMAHKUE 3ampoca IMOJb30BATENsA. OTAJOHHBIM [PUMEPOM MOXKET CIYKHTh
nepBasi auanoroBas cucrtema «Eliza», cozmannas B 1966 romy m uMHTHpYIOmIas
quanor ¢ ncuxoaHanmutukom [2]. st cBoero Bpemenu mporpamma «Elizay 6puna
MPOPEIBOM, HO €€ alrOPUTM OCHOBBIBAJICS Ha TPOCTOM TMepedpa3upoBaHUN
BOTIPOCOB | €if OBIJIO TaJeKO J0 TIOHIUMAaHUS «CMBICIIAY.
CoOBpeMEHHBIN TMPUMEpP pPAa3BUTHS JHAJOTOBBIX CHCTEM MOXHO IIPEIACTABUTH
nporpammoit «A.L.I.C.E» [3] — aT0 BupTyanbHblii cOOECEHUK, CIIOCOOHBIN BECTH
nmuanor Ha ectecTBeHHOM s3bike. OcHOBOU «A.L.I.C.E» sBisercs s3bIK pa3zMeTKH
uckyccrBennoro uuremiekra (Artificial Intelligence Markup Language, AIML),
OoJiee IEeTabHO PaCCMATPUBACMEIN B CTAThE JIANIEe.
Mpu co3manun «Elizay, «A.LI.C.E» u TOMy MOJOOHBIX CHCTEM KJIKOUYEBBIM
MOMEHTOM BCETJa OCTaBaJlACh IIOTPEOHOCTh B TOHHUMAHHUU «CMBICIA» 3aIpoca
MOJIb30BaTE)II HAa ©CTCCTBEHHOM S3BIKE, T.€. IMOTPEOHOCTP B HMHCTPYMEHTE,
COCOOHOM BBISIBUTH U3 TEKCTa WH(POPMAILHUIO, O YeM II0JIH30BATENb CIIPAIIUBACT
CHUCTEMYy, H TMpHUBECTH 3Ty wuHGOpMAIMIO B (QOPMAJIBHBIA M  IOHSTHBIH

196



CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

BBIYHCIIUTENIbHON MalHe Buj. Pa3paboTka Takoro MHCTPYMEHTA 10 CHX OCTAaeTCsI
aKTyaJIbHOH TPOOIEMOI.

2. AHanu3s 3adayqu

CaMBIM CIIOXKHBIM 3TalioM aBTOMAaTHYECKOH OOpabOTKH TEKCTa Ha €CTECTBEHHOM
SI3BIKE CUMTACTCS CONEpIKaTeNbHBIN aHamm3. [ ero yCIemHoro BBHIIOJTHEHUS
HEOOXOIWUMBI 3HAHUSA O TOM, YTO TaKO€ 3HAYCHHUS CIIOB M TPEIUIOKEHUH, KaK STH
3HAYCHUS Omucath (opMarbHO, KaK TPEACTaBIATE M XPAHUTh CMBICIOBOE
collepKaHWe TEKCTa B MaMATH KOMIIBIOTEPa, KakK IPOU3BOAUTH OINEpaLUU CO
3HAYEHMSIMH, NIEPEBOUTH 3HAYECHHSI C €CTECTBCHHOTO SI3bIKa Ha (DOPMAJIBHBIN SI3BIK
n oOpatHo. OTBETHl Ha 3TH M MHOTHE JPYTrHMe€ BOIPOCHI JaeT KOMIBIOTEpHAas
CeMaHTHKa, B BEJICHUN KOTOPOI HaXOJQUTCsl pa3paboTka Mojenell ceMaHTHYECKOTO
YPOBHS €CTECTBEHHOTO s13bIKa [4].

IIpuMeHeHNne MHTEpaKTUBHBIX AUATOroBbIX cucteM (MJIC) 3HAUNTENIHHO yHpoIaeT
B3aMMOJICHiCTBHE BBIYMCIUTEIBHON MAIMHBI C IOJb30BaTeNIeM 3a CYET TOro, YTO
oO1IeHre MeXay HUMH TPOUCXOJMT Ha €CTECTBEHHOM si3bIke. [1osib30BaTenb Takoi
cucTeMbl He 00s13aH 001a1aTh ClIeMAIbHBIMU HaBBIKAMH U 3HAHUSIMU, MOYKET BECTH
¢ UJC ocMBICICHHBIH AHMAJOT, YTO OOeCHeYrWBaecT yIOOCTBO HCIIONB30BAHU
CHUCTEMBI W TOBHIIACT YPOBEHH IOBEPHUS MOJB30BATENA K 3TOW cucteme. Jlis
peanmm3anus Takux Bo3MoxkHocTel B MJIC wacTto TpeOyercs: pa3paboTKa CIOKHBIX
HMHTEIUICKTYaTbHBIX CHCTEM, OCHOBAHHBIX Ha 0a3ax 3HAHWM, MpaBHIaX, CIOBAPSIX H T.1I.
CoBpemenHast  TenaeHuust paszputus HWJC  mo-mpexxHemy — mpenmoJiaraet
HCIOIb30BaHHE 3HAYMTEIBHBIX MHKEHEPHBIX M KCIEPTHBIX 3HaHWiA. B crathe [5]
MpeaCTaBICH 0030p TaKOro MOAXOJa C NETaJbHBIM pPa30opoM HAOOPOB NAaHHBIX,
KOpPITyCOB JTOKYMEHTOB Ha E€CTECTBEHHOM S3BIKE, C IOMOIIBI0 KOTOPBIX MOXHO
CO3/1aBaTh JAMAJOTOBBIE CHCTEMBI Ha 0a3e Mojeneil MalIMHHOTO OOYy4eHus s
pa3HbIX TEMATHK.

ODHMM W3 BaXXHBIX CBOWCTB JIMANIOTOBBIX CHCTEM SIBISETCS KOPPEKTHOCTH
c(OpMUPOBAHHOTO OTBETa HA BONPOC MOJB30BATENs, W OYCHb BAXKHO YMETh
OIICHUBATh OTBET, BBIIaBAEMBIil II0JIH30BATEII0 HA ECTECTBEHHOM s3bIke. KoHeuHOM
pe3yapTaTOM JODKHA OBITh OIIEHKA YIOBICTBOPEHHOCTH moOjb30BaTens [6]. B
pabote [7] TpoBeJeHBI CpaBHEHUS HECKOJbKUX MAIIMHHBIX METPUK OIICHKH
pe3yIbTaTOB THAIOTOBOI CHCTEMBI C OIIEHKAaMH YeJIOBEKa.

I'eHepaunsi  €CTECTBEHHOTO  S3bIKa  SIBJISETCS  KPUTHYECKUM  KOMIIOHEHTOM
pPa3TOBOPHOTIO JHajiora M OKa3bIBaeT 3HAYMTEIbHOE BIMSHHE KaK Ha YHOOCTBO
HCTIONB30BaHMUs, TaK W Ha BOCIPHHHMAaeMoe KadecTBO. B OONBIIMHCTBE CiydaeB
HCTIONB3YIOTCS MPaBWJIa U 3BPUCTUKH, TCHEPUPYIOTCS JKECTKHE W CTHIIN30BAHHEIC
OTBEeTHl 0€3 ECTECTBEHHOTO H3MEHEHHs 4YeJOBEYeCKOro si3bika. B pabore [8]
OIMCHIBAETCSI TEHEPAaTOpP OTBETOB Ha OCHOBE CEMAHTHYECKH KOHTPOJIMPYEMOM
CTpyKTYpbl HeliponHoii ceru «Long Short-term Memory» (LSTM) [9],
MIO3BOJISIOINMH MPHUOJIM3UTE MAIIMHHBIE OTBETHI K €CTECTBEHHOMY SI3bIKY. Jpyrum
NIPUMEPOM TIOCTPOCHUS JNAJIOTOBOH CHCTEMBI MOXKET CiIykHTh pabota [10], rme

197



Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

UCIIONB3YIOTCA  OONbInpe HAOOPbl MJAHHBIX [UII TPEHUPOBKH PEKYPPEHTHBIX
HEUPOHHBIX CETEH.

YroOBl HAay4YWTh KOMIIBIOTEp IIOHMMAaTh ECTECTBEHHBIH S3BIK, €ro Tpebyercs
OCHACTUTH MEXAaHM3MOM, IO3BOJIIIOIINM IOJIydYaTh, HM3BJIEKaTh M 0OpabaThIBaTh
colepXKaHHue OKyMEHTa, IIOHUMAaTh CMBICI CJIOB, CIIOBOCOYCTAHHI M OTIEIBbHBIX
npemroxkeHuid. g storo TpeOyeTcss NPUMEHSTh METOABl KOMITBIOTEPHOM
CEeMaHTHKH, W KOMIBIOTEPY HYXHa HeKas CTIPyKTypa, 4YTOOBl XpaHHUTh
COOTBETCTBYIOIINE 3HAHUSL.

OnuH M3 MOAX00B OCHOBAH Ha MCIIOJIB30BaHUM KOHIEnuu Semantic Web [11], na
OCHOBE KOTOpO# ObLIa pa3paboTana mMojens qokymenToB RDF [12], no3sonsiomias
XpaHUTh CeMaHTH4YeCKHue CTpyKTypbl. CymectBeHHOH mnpoOiemoit monenu RDF
SIBJISIETCSI CJIOKHAsI CTPYKTYpa OHTOJIOTHH, a y si3eika SPARQL, npennosxeHHoro B
KayecTBe craHmapra maus  pabotel ¢ RDF, wumeercs psa  cymiecTBEHHBIX
CHUHTaKCHMYEeCKMX M CEMaHTHYECKHX HeJOCTaTKoB. Kpome Toro, KOHUIENIus
Semantic Web nonyunna orpanudeHHOE pacmpoCTpaHEHHE Cpemd Pa3paboTIUKOB,
MOCKOJIBKY NPUXOAMIOCH CO3/1aBaTh JIBa OAWHAKOBBIX IT0 COINCPIKAHUIO TOKYMEHTA,
HO OJIMH JUTA «TI0ZICiT», a BTOPOH IS «MALIMHBI.

Jpyroii coBpeMeHHBIN TOIX0J] K TOHUMAHUIO CEMAHTUKH TEKCTa, MOUCKY OJIM3KHUX
IO CMBICITY CIIOB M ONIPEACIICHAIO TEMATHKN TEKCTa OCHOBAaH HA OOYYCHHH MOJeNeH
HEUpOHHBIX ceTeld. CyIecTBYeT 1Ba KOHKYPUPYIOIIMX MOAX0MA, ONUH M3 KOTOPBIX
OCHOBaH Ha 4aCTOTHOM BXOXKJCHHE B KOPITYC TOKYMEHTOB, a APYTOd — Ha MOJEIH
NPOTHO3UPOBaHMs. [lONMyNApHBIM IPEACTABUTENEM IEPBOrO MOAXONA SBIACTCS
JaTeHTHO-ceMaHTHueckuii amamu3 (Latent semantic analysis, LSA) [13],
Mpe/ICTaBUTENh BTOPOro — Habop anroputmoB word2vec [14].

Mopnens LSA ocHOBaHa Ha YaCTOTHBIX MOACYETAX, IJC aHAJOTHYHbIE CIIOBA UMEIOT
OJMHAKOBBIC 3HAYCHUS B Pa3HBIX JNOKyMeHTaX. LSA mmpoko ucnoms3yercs B
MOMCKOBBIX CHCTEMaX JUIl MHICKCUPOBAHHUS U MOUCKA OJNM3KHX IO CMBICIY CJIOB U
nokymeHToB. Ho y oaToli Mozmenu uMeercsi psiii HEJOCTATKOB, B YAaCTHOCTH,
pa3pexEHHOCTh JAHHBIX, WIHOPHPOBAaHHME CEMAaHTHYECKHUX acCOLMALUi MExay
cnoBamu. Kpome Toro, Moiens 1mioxo paboraer ¢ OOJbLIIMMU MAacCHBaMH JAHHBIX
n3-3a OOJIBLIOTO MOTPEOJICHUS MaMSITH TPH MPOBEJCHUH PACYETOB U NMPOUIPHIBAECT
word2vec no kauecTBy pe3yiabTatoB [15].

B wmomenmn word2Vec cioBo mpencTaBisieTcs B BHIE BEKTOpa, a caMa MOJETb
Npe/ICKa3bIBaeT HA0OP BEKTOPOB, OMIDKAWIINX K UCXOAHOMY, 110 JTUCTPUOYTHBHBIM
npu3HakaM. [IperMyIiecTBOM M OJHOBPEMEHHO HEJIOCTATKOM MOJIENH SBJISETCS
HE0OX0MMOCTh B 00y4eHUM Ha OOJBLIOM KOpITyce JAHHBIX, IIPH 3TOM OHa Ooiiee
9KOHOMHA TO BBIYHMCIUTENBHBIM pecypcaM. XoTs Mojenb WOrd2Vec mokasbiBaeT
pesynbratel, Jydmue, 4em LSA, eif cBolicTBeHHa mpo0iemMa YacTOTHOTO
MIEPEKPBITHS CIIOB, YTO TIOPOXKAAET CEMAHTUUECKYIO HEOTHO3HAYHOCTb.
PaccMoTpeHHbIE MOsIeNI 00JIAIAI0T PSAAOM APYTUX MPEUMYIIECTB M HEZOCTAaTKOB.
Bonee neranpHOE cpaBHEHHE MPUBOAUTCS, HaNpHMep, B pabote [16].

IMomBomss WTOTH, MOXHO 3aKIIOYHTH, 4TO I pa3paboTku coBpemenHoi MJIC
HEOOX0MMO pellIeHHe, KOTOPOE YUUTHIBAET CEMaHTHUYECKHE aCCOIMAIIH, OCHOBAHO
198



CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

Ha TMPOTHO3UPYEMOH MOJETM CXOJACTBA CJIOB, pEHIaeT 3a7ady 4YacTOTHOTO
MEPEKPBITHS, @ TaKXKe OOJafgaeT alropuTMOM CPaBHEHHS [BYX [IOKYMEHTOB Ha
eCTeCTBEHHOM s3bIke. C ygeToM 3TuxX TpeboBaHuit OBUTO pa3paboTaHO CHEeNHATbHOE
mporpaMMHOEe  o0ecriedeHre «AcCOLMaTUBHO-CEMAHTUUECKUH  TEKCTOBBIN
Impemnpoieccop». B crarbe ONHUCHIBAIOTCA pe3yJbTaThl €ro IMPUMEHEHUs IpHU
coznanuu coBpemennbix UJIC.

Ha4vano

YeTaHoska Cocraanenite
MaTpuLsl
BekTOph3aTOpa oMCTaHLMRA
Mpepobpaborka
B’;‘;ﬂﬂmgo Konuuectso cnos
po 8 3anpoce Gonbwe N
Her
MonyyeHue
CEMaHTU4ECKOro Koo Eexnuporo
Anpa MHYCHaR Mepa paccroAHve
Sarpyska Kopnyca
T Pveronn
MeTPUKN
Mony-enve Habopa | |
accoumalmia

Habop penesaHTHbIX
AOKYMEHTOB

Puc. 1. A/lzopumM accoyuamuBHo-cemanmuiyecKkoco noucka
Fig. 1. Algorithm of associative-semantic search

3. AccoyuamueHo-ceMaHmMu4ecKuli mekcmoenblil npernpoyeccop

AccoIMaTHBHO-CEMAHTHYECKUH  TEKCTOBBIM  mpemporeccop  (ACTII)  —
IMpeqHa3HayeH [ NpeABapUTEeIbHONM HOPMANM3allid TEKCTOB C  IEJNBI0
npeoOpa3oBaHusi B HAOOPHI aCCOLMATUBHBIX CEMAaHTHYECKHX BEKTOPOB C 33/IaHHOM
CMBICTIOBOW aHHOTAIMeH. [IONONMHUTENBEHO MOIePXKUBAIOTCA (DYHKIIMH 00paboTKH
€CTECTBEHHOI'0 f3bIKa B MpOLECCaX B3aMMOJEHCTBHUS €CTECTBEHHOIO SI3bIKa H
SI36IKOB KOMITBIOTEPHBIX CHCTEM M POOOTH3MPOBAHHBIX YCTPOWCTB (TOKEHM3aIUs W
CTeMMU3aLysl) JUIsl ociieyromei oopadorku cpeacrsamu NLP kopiryca nokymMeHTOB
JUIS IIPOBEPKH TMIIOTE3, 00YUYEHHS U CTATHCTHIECKOTO JIMHIBUCTUYECKOTO aHAITH3a.
IIpenponeccop ACTII MOXeT KCIOJIB30BAaThCA KaK JJIsi BCTPAUBAHMUS B MAKETHI
IMPUKIAJHBIX MPOrpaMM, TaK M B KAayeCTBE CaMOCTOSATENBHOro npunoxeHus. Ha
puc. 1 nokasan oxuH u3 anroputMoB ACTII, oTBedaromuii 3a CeMaHTUYECKUIT
MTONUCK OJIM3KUX IO CMBICTY TEKCTOB.

199



Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

PaccmoTpuM Hanbosiee BaKHBIE HIIEMEHTHI aITOPUTMA.

CemaHTHYECKOE SIIPO — 3TO BEKTOPHOE NPOCTPAHCTBO CEMAaHTUYECKOTO
MOJsA, B KOTOPOM IIPOM3BOAMTCS IOUCK ONM3KHX IO CMBICIY CIOB H
acconmanuii. OHO TpEACTaBIACT YMNOPSAOYCHHBIH HAOOp CIIOB HIIH
CIIOBOCOYCTaHMH, HamboJiee TOYHO XapaKTCPU3YIOMHUH MpPEIMETHYIO
o0macTe, BUI AEATCIBHOCTH WIM TPEIAMET, W IO3BOJIAET CO3/1aBaTh
Hanbolee peNeBaHTHbIE MOMCKOBBIE 3apochl. CEMaHTHUECKOE PO NMEET
LEHTPAJIbHOE KIIOUEBOE CJIOBO, KaK IPAaBMIIO, BBICOKOYACTOTHOE, U BCE
OCTaJIbHBIE KIIIOYEBBIE CJIOBAa B HEM PAHXXHMPYIOTCS MO Mepe yObIBaHMS
YaCTOTH COBMECTHOTO UCIIOJIb30BAHMS C LIEHTPAJIBHBIM 3alPOCOM B 00LIeH
KOJUIEKITUH JOKyMeHTOB [17].

Kopmyc — 310 Ha®Op CHenuanbHO MOATOTOBICHHBIX JOKYMEHTOB, CPCAH
KOTOPBIX MPOU3BOINUTCS CEMAHTUYECKUI MOKMCK. B Hammx sKCHepuMeHTaX
Kopmyc cobupaincs ¢ HoBoctHoro moptama «PHUA  HOBOCTU»
(https://ria.ru), ¢ mnomorplo Beb-ckpammepa (web-scraping). Kopmyc
coctouT u3 250 ThICSIY JOKYMEHTOB Ha E€CTECTBEHHOM s3blke 1o 13
OCHOBHBIM pa3zziefiaM caiiTa 3a 3 ToJa HOBOCTHBIX ITyOJIMKANK opTaia.

Mopnynb OLEHKH acCOLMALUN — 9TO MOAYJIb, KOTOPBII IIPOU3BOAUT OLICHKY
1 GUIBbTpaIMIO HAlAEHHBIX ACCOIHAINA B CEMaHTHYECKOM SIAPE.

Mertpuka EMD (Earth Mover’s Distance) — 3T0 METO/ OI[CHKH HECXOCTBA
MEXJy JBYMS MHOI'OMEPHBIMHU pAaCHpeleleHUIMH B  HEKOTOPOM
MIPOCTPAHCTBE ITPHU3HAKOB, U KOTOPOTO 3a/aHa UCTaHIMOHHAS Mepa
MEXITy ONMHOYHBIMH mpm3Hakamu [18]. Merpuka EMD Berumciser
MHUHHAMAJbHYI0O CTOMMOCTh HM3MEHEHWIl mim paboTel, TpeOyeMoH uis
npeoOpa3oBaHMsl OJHOTO JOKYMEHTa B Ipyroil. BeramcieHue 3HaueHus
EMD 6a3upyercs Ha penieHHH TPAaHCIIOPTHOM 3a7aqu.

Martpuna paccTOSHHI —MaTpHLa BECOB KaXKIOr0 CIOBA B JOKYMEHTE IS
pacuéra metpuku EMD

YHpOH.IeHHHﬁ AJITOPUTM  ACCOLMATUBHO-CEMAHTUYCCKOI'0 IMOMCKA  BBIINOJHACT
CIICAYIOIIME IIaru:

200

1.
2.

YCTAaHABJIIMBACTCA TUII BEKTOPA, B KOTOPOM 6y,I[yT XPAHUTHCS JTaHHBIC,

IIPOU3BOAUTHCA r{pe/:[06pa60TKa TCKCTAa: TOKEHH3alHA, CTCMMU3aluA,
JJ€MMaTHU3anys, yaajaeHue CTOI CJIOB U T. 1.,

3arpy’KaeTcs HeOOXOMMOE CEMAHTHIECKOE PO B 3aBUCUMOCTH OT TEMBI
BXOJISIIET0 COOOMIEHH; BHIOOP CEMAHTHYECKOTO SJApa OCYIIECTBIISET
0o0y4eHHass MOJieb IO aJTOPUTMY MYJIBTHHOMHHAIBLHOTO OalecOoBCKOTO
knaccudukarTopa [19];

3arpykaercs  HEOOXOAMMBIM  KOPIyC  JOKYMEHTOB, B  KOTOPOM
IIPOU3BOJIUTCS IIOUCK;



CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

5. s TOMCKOBOrO 3ampoca pPacCYMTBIBACTCS MATpHIA PACCTOSHHNA B
BEKTOPHOM IPOCTPAHCTBE CEMAHTUYECKOTO SI/pa;

6. IS KaXI0T0 TOKYMEHTa KOPITyca CO3[aeTCs BEKTOP acCOLUALNA;
7. paccuutbeBaercs auctannus EMD,;

8. BO3BpaliacTcs OTCOpTI/IpOBaHHHﬁ peBaJ’IeHTHLIﬁ CIIUCOK TOKYMCHTOB,
YAOBJICTBOPAIONIUX TOMCKOBOMY 3alpocCy.

<aiml version="1.0.1" encoding="UTF-8">

<!—HELLO-—>
<category>
<pattern>NPUBET</pattern>
<template>
<random>

<Li>puseT !</1i>
<li>[lobpblit OeHb!</1i>
<li>Papa Bac supgetk!</li>

</random>

<random>
<li>Kak Bac 30ByT?</li>
<li>Bawe wms?</li>
<li>Kak MHe Bac Has3biBaThb?</li>

</random>

</template>
</category>

<category>
<pattern>x</pattern>
<that>_ KAK BAC 30BYT</that>
<template>
fl 3anoMHI0 Bac Kak
<set name="user">
<star/>
</set>
</template>
</category>

Puc. 2. lllabnon AIML
Fig. 2. AIML Template
B xauectBe ocHOBBI ans cosfmanus MJIC Obin BBIOpaH CHENUAIbHBIN cTaHIApT
s3pIka mabmonHor pasmetrkn AIML AIML — 3To s3BIK pa3MeTKH MCKYCCTBEHHOTO
HMHTEJJIEKTa, OCHOBaHHbIA ¢ XML u no3BojsOUN CO34aBaTh BHUPTYalbHBIX
cobecennukoB [20]. Mcmonp3oBaHue 3TOTO sI3bIKA Pa3METKHU YCKOPSET CO3JaHue
JIUAIIOTOBOHM cucTeMBI ¢ npuMeHeHneM npenporneccopa ACTII qis acconmnaTUBHO-
ceMaHTuueckoro noucka. [Ipumep nokymenta AIML npexacrasieH Ha puc. 2.
Hns co3manuss AIML nmokyMeHTa, KOTOPBIM T03BOJIMII OBl BBECTH JHAJIOT
aCCOLMATUBHO-MIOUCKOBBI CHCTEMBI C II0JNB30BAaTENEM Ha €CTECTBEHHOM S3BIKE,
ObUTH pa3pabOTaHBI CJIETYIONINE CMBICIIOBBIE OJIOKH:
201



Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

e  TPHBETCTBHE — ITOT OJIOK OTBEYAET 3a HAadao pPabOTHI C IMOJIb30BATEIEM,
37€Ch OMaJoroBas CHCTEMAa 3allOMHHAET MM IOJb30BaTeNsd IS
MaJbHENIIEr0 UCITOIb30BAHMS B IAAJIOTE;

e 0 cebe — B 3TOM OJIOKE JHAJIOrOBasi CHCTEMa PacCKa3bIBaeT O cede M CBOMX
BO3MOYKHOCTSX

e  accomupanyy — 3TOT OJIOK OTBEYaeT 3a 00pabOTKy 3alpoCOB, CBA3AHHBIX C
ITONCKOM aCCOLMAIINN, ¢ UCTI0Ib30BaHueM mpernporeccopa ACTII;

° MOMCK — 3TOT OJIOK OTBEYAET 3a aCCOLMATUBHBIIN IIOHMCK;

e  OTBET IO YMOJYAHMIO — 3TOT OJIOK CpabaThIBaeT TOJBKO B TOM CIIydae,
KOTa HH OJWH W3 TPEeNpIAyIINX OJIOKOB HE CMOT 00padoTaTh 3ampoc
TTOJTE30BATEII.

VYhpoueHHas cxema BEACHHUS Iuajiora Ha €CTECTBEHHOM S3bIKe IpeICTaBIeHA Ha
puc. 3.

NJIC 3HaYUTEIHHO YIPOIIACT MOUCK OJM3KUX MO CMBICIY TEKCTOB M aCCOIMAIINHA,
TaK Kak II03BOJISIET II0JIb30BAaTEIsIM OOINATBCS C IIOMCKOBOW CHUCTEMOI Ha
€CTECTBEHHOM SI3BIKE, YBEIMUYUBAs KOJIUIECTBO (POPMYIHPOBOK 3aIpoca, KOTOPHIC
MOXXHO WCIIONIb30BaTh. [IpuMeHeHHMe ceMaHTH4Yeckux suep mo3Bomster WMJIC
IOBOJIGHO TOYHO OMNpENeNATh TEMaTHKy Juaiora C TIOJNb30BaTelieM, U ecld
TeMaTHKa He ompenensercs onHo3HadHo, To MJIC 3amaeT yTOUYHSIOIIUI BOIPOC,
KOppEKTHPYIOUIHiA moadop ceMaHTHYecKoro sapa. [locne ompeneneHus TEMaTHKH
nuanora MJIC cnocoOHa BBITIOJIHUTE J1BA JICHCTBUS.

1. Tlomck accommammii — TMOWCK TPOUZBOAMTCS ITYTEM BBIYUCICHHS
CEMaHTHYECKOTO pPACCTOSHUS B CEMaHTHYECKOM szpe. BrramcieHue
0asupyeTcsi Ha AUCTPUOYTUBHOH CEMaHTHKE — O0O0JacTH HAyJYHBIX

HCCIICIOBAHU, 3aHUMAIOIIECHCS BBIYMCICHHEM CTCIICHH CEMAaHTHYECKOM
OJIM30CTH MEXAy JIHHTBUCTHYCCKAMHU CAMHHI[AMH Ha OCHOBE WX
JUCTPUOYIHOHHBIX MPU3HAKOB B OOJBIIMX MAaCCHBAX JIMHTBHCTHYECKHX
JaHHbIX [21]

2. Tlouck OMU3KUX 1O CMBICIY TEKCTOB: IPOUCXOAMT IO aITOPUTMY,
paccMOTPEHHOMY paHee, C BEIYHCIIeHHeM 3HaueHni Metpuku EMD.

202



CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

] + Kax Bac s08y1?
NPUBET "————> ., fousen! - Bate umA?
fIPMBET———>  + [l06puiit nexs! = Ka M@ Bac HasbiBaTh?

HE » *+ PanaBacaunnets! T
t

‘ A 3anomHio Bac kax "nmA" ‘

A WHTenexTyanbHan
AManorosan cucTema
accouHaTeHo-
noucka

KTO Th =,

YTO Thl *

Al YMEID MCKATE [OKYMEHTbI 1
+OCEBE* CTaTLM NOXOXHE N0 CMbICTTY =)
Mon 3a3a4a NOMOral MoaAM
MCKATE MKBOpMALIMID

ACCOUWMALIMK K CNOBAM *

‘ K 4emy nonoGpate

accoumaumm?

MENPOGYI0 HAHTH ACCOUMALIMA
* ACCOLMALIMM K * ANA "CNWCOK 2CCoUMaumi”

COLIMALY

rloroBOpHMM O HOBOCTRX, 4TO
Bbl XOTHT® y3HaTL?

* HOBOCTH
* HOBOIO *

: BbINONHM NOMCK *
oW *

HARM *
: L
‘ A LyMal0 Mbl r0BOPHM 0 "Tewma Becensi™?

[

oA HET.

XOpOWO, NOCMOTPUM 4TO A
CMOrY HARTA.

VTouHwTe noanydcTa sa
BONPOC

Puc. 3. Cxema sedenus ouanoea na ecmecmeenHOM A3bIKe ¢ NOIb308AMeNeM
Fig. 3. Diagram of dialogue in natural language with the user
[pumepom npumenernus: anroputMoB ACTII ¢ s3pikom pasmerku AIML moxer
CIy’)XUTh paboTa HEOONBIOIOrO TMPIIOXKECHHUS M TIOWCKA acCOlWaluid B
CEMaHTHYECKHX fAJpax HOBOCTHOIO Kopmyca JOKYMEHTOB. (COOTBETCTBYIOLIMI
JIMAJIOT MpeACTaBIIeH Ha puc. 4.

Loading bot/astp_bot.aiml...done (0.00 seconds)
User >>> npuseTt

Bot >>> Papa Bac Bupetn! Kak Bac 30ByT?

User >>> Watto

Bot >>> fl 3anomH0 Bac kak Watto

User >>> noMoru MHe HAMUTU accouuauuu

Bot >>> Ckaxute Watto « uemy nopobpats accouuauun?

User >>> uctpebutenn

Bot >>> Xopowo Watto nonpobyw HaiWTu accouuauun ans: ucTpebuTens

Bot >>> § ayman cnepyowve accouuaumu noaxopasT Bam: {'uctpebuten', 'wrypmoBuK',
‘mur', '30mku', '25cM3'}

Puc. 4. Pazeosop ¢ ouanozosou cucmemoi
Fig. 4. General conversation with the dialogue system

203



Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

B 3aBepmienne nponemonctpupyem padoty MJIC mo moucky OJU3KHX IO CMBICTY
HOBOCTEH M3 Koprmyca JOoKyMeHTOB Ha Temy «Kpymenus camonera». [Quamor
MIPEACTaBJIEH Ha pUC. 5.

>>> Xopouwo Watto noroBMM O HOBOCTAX, YTO Bbl XOTUTE Y3HATHL?
>>> PACCKOKM MHE O KpYWeHWM caMmoneTa B AoH6acce HA yKpauHe
>>> Xopowo Watto wuy: pacckaxu MHe O KpyweHun camoneTa B AoHGacce Ha ykp

>>> fl AymMan Mbl FOBOPMM O NOAMTHKE?

>>> Ad

>>> Xopouwo, NOCMOTPMM YTO i CMOTY HAWTH, ..

>>> (MOTpI AokymMeHT 19996 u3 19997 doc_num (2)]

text

18348 5.114148 wm™ockB NPUYMH KPYWeEH MANAA3UACK NaWHep Hec. ..
18331 5.114148 mMocks NpUUMH KpYLIEH MANAA3WACK NaiHep Hec...
18365 5.114148 MockB MPMYMH KpylleH MAnam3vicK namHep Hec...
18343 5.360942 Mocks 3asBNeH KWEBCK BNACT KpYWEH MAnamsu. ..
18315 5.360942 wmocks 3asBfIeH KMEBCK BNACT KpYWeH Manamsu. ..
18326 5.360942 Mocks 3a5BNeH KWEBCK BNACT KpYWeEH MANamsu. ..
18360 5.360942 wmocks 3asBfIeH KMEBCK BNACT KpYUleH MAanamsu. ..
18333 5.687893 wMocks Nwpep cnpasefnuB pocc Cepr MUpPOH ¥6. ..
1835@ 5.687893 mockB Nuaep cnpasesiMB pocc cepr MMpoH ¥6...
18367 5.687893 wMockBs vpep cnpaseaiuB pocc Cepr MMpOH ¥6...
18164 6.503808 mocks OCHOBOH Nonara xof pacuMdpoBK YepH ...
18366 6.677729 MOCKB poOCC rOTOB OKA3a NOrMCTUYECK COAENHcC. ..
18332 6.677729 wmocks pPOCC roTOB 0Ka3a /IOFMCTMUYECK Copeiic, ..
18349 6.677729 MoOCKB poOCC rOTOB OKA3a NOrMCTUYECK COAEHC. ..
18215 6.754733 MoOCKB LaH NOA. ..

Puc. 5. llouck ooxymenmos ¢ HJ[C

Fig. 5. Searching documents in an interactive dialog system

4. 3aknroyeHue

Kaxk MIOKa3bIBAIOT HCCIIeIOBAHMS BO3MOXKHOCTH MIPUMEHEHHS
CIenHaTu3upoBaHHOr0 mporpammHoro obecneuennss ACTII B HJC, ACTIL
TIOBBIIIAET YPOBEHb B3aUMO/ICHCTBYSI IT0OIH30BATENS M MAIIMHEL, TAK KK IO3BOJISIOT
BECTH JMAJIOT Ha €CTECTBEHHOM si3bIke. B oTmmume, Hampumep, ot mozenn RDF,
NPUMEHEHHEe JaHHOTO MpOrpaMMHOro oOecrieueHuss He TpeOyeT OObIIOoi
CIIO)KHOCTH B COCTaBJICHHH OHTOJOTMH M CIIOXKHBIX IIOMCKOBBIX 3alpoCOB IIO
KOpIycaM JIOKYMEHTOB, He 0O0JaJaloT TakoWl ke OOJBIION CIIOXKHOCTBIO B
peammzani W OO0y4YeHHH, 4YTO Tmo3BoysieT HaaenuTh WJAC MUHUMAIBHO
HEOOXOIMMBIM TMOHMMAHHEM TEMBI AMANOTa JUIS PELICHHS THIOBBIX 3ajad, He
MIpUBJIeKas OOJBIINE BEIYUCIUTENbHBIC M HHTESIUIEKTYalIbHBIE PECYPCHI.
Vcnonp30BaHNe CEMAaHTHKH, ACCOIMANINN U COBPEMEHHBIX METO/I0B KOMITBIOTEPHOU
00pabOTKH TEKCTOB Ha €CTECTBEHHOM S3BIKE II03BOJIAET YIYUIINTH KaduecTBO
MIOWCKA, a TAK)K€ YBEIWYIHUThH CTEIIEHb MOHUMAHUS THAJIOTa MAIIMHBI C YEJIOBEKOM U
HAJICJIUTh KOMIIBIOTEpP JOTOJHUTEIFHBIMA WHCTPYMEHTaMH JJIsl OOLICHWS Ha
€CTECTBEHHOM SI3BIKE.

204



CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

BnaropapHocTu

PaGora BeImonHeHa 3a cuer QuHAHCHMPOBaHMS MHHHUCTEPCTBOM 00pa3oBaHUS U
Haykd P® KOHKypCHOH 4YacTH TOCYIAapCTBEHHBIX 3aJlaHWH BBICHIMM Yy4eOHBIM
3aBEJICHUAM M Hay4HBIM OpPTaHU3alMsM 110 BHIIOIHEHUIO MHUIMATUBHBIX HAYYHBIX
npoekrtoB. Homep mpoekrta 28.2635.2017/[IY, HanmenoBanme «Pa3zpaboTka
Mozenei CTOXaCTUYECKOH CaMOOpraHu3aluu CITabOCTPYKTYPHPOBAHHOU
nH(pOpMaINN M peanu3anuy MaMsATH NPH MIPOTHO3UPOBAHUHM HOBOCTHBIX COOBITHH
Ha OCHOBE MAaCCHBOB €CTECTBEHHO-SI3BIKOBBIX TEKCTOBY.

Cnucok nutepatypbl

[1]. Caukor B.E., TwiemyrtauaoBa E.®., Marsm E.JI., Axumo [I.A. O6pabGotka u
KOMHB}OTCpHBIﬁ AQHAJIN3 TCEKCTAa Ha CCTCCTBCHHBIX A3BIKAX. COBpCMCHHaﬂ HayKa:
aKTyaJbHBIe TPOOIEMBI TEOPUH M TIPAKTHUKU, CepHsi ECTECTBEHHBIE UM TEXHUYECKUE
Hayku, Ne 12, 2016 r., ctp. 57-64

[2]. Weizenbaum J. Computer Power and Human Reason: From Judgment to Calculation.
Freeman and Company, New York, 1976, 281 p.

[3]. Wallace R. S. The Anatomy of A.L.I.C.E. In Parsing the Turing Test. Springer, 2009,
pp. 181-210

[4]. Tpuknagsas w xommbroTepHas nuHrBuctuka. Ilon pex. M. C. Huxomaesa, O. B.
Murpuennnoii, T. M. Jlauno. M., IEHAH/I, 2016, 320 ctp.

[5]. Serban I. V., Lowe R., Henderson P., Charlin L., Pineau J. A Survey of Available
Corpora for Building Data-Driven Dialogue Systems [anekrponnsiii pecypc] URL:
https://arxiv.org/abs/1512.05742 (nara o6pammenus: 01.06.18)

[6]. Walker M., Litman D., Kamm C., Abella A. Paradise: A framework for evaluating
spoken dialogue agents, In Proc. of the Eighth Conference on European chapter of the
Association for Computational Linguistics, Spain, 1997, pp. 271-280

[7]. Chia-Wei Liu, Lowe R., Serban I. V., Noseworthy M., Charlin L., Pineau J. How NOT
to Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation
Metrics for Dialogue Response Generation [smextponHsiii pecypc] URL:
https://arxiv.org/abs/1603.08023 (nara obparenus: 01.06.18)

[8]. Henderson M., Thomson B., Williams J. The Second Dialog State Tracking Challenge
[anexrponnsiii pecypc] URL: http://camdial.org/~mh521/dstc/downloads/handbook.pdf
(mata obpamenus: 01.06.18)

[9]. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation, vol. 9,
issue 8, 1997, pp.1735-1780

[10]. Serban I. V., Sordoni A., Bengio Y., Courville A., Pineau J. Building End-To-End
Dialogue Systems Using Generative Hierarchical Neural Network Models
[snextponnsbiii pecypc] URL: https://arxiv.org/abs/1507.04808 (nata oGpaiueHus:
01.06.18)

[11]. w3C Semantic web activity [aeKTpOHHBII pecypc]. URL:
https://www.w3.0rg/2001/sw/ (nata obpamienus: 25.06.2018)

[12]. Cpena Onucanust Pecypca (RDF): IMoustus u AGerpaktablit CHHTAKCHC [3IEKTPOHHBIN
pecype]. URL: https://www.w3.0rg/2007/03/rdf_concepts_ru (mara oOpamenus:
20.02.2017)

[13]. Landauer T., Foltz P. W., Laham D. Introduction to Latent Semantic Analysis.
Discourse Processes, vol. 25, issue 2-3, 1998, pp. 259-284

205


https://arxiv.org/abs/1603.08023
http://camdial.org/~mh521/dstc/downloads/handbook.pdf
https://arxiv.org/abs/1507.04808
https://www.w3.org/2001/sw/

Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

[14]. Tomas Mikolov, Quoc V. Le, llya Sutskever Exploiting Similarities among Languages
for Machine Translation [anexTponHbIi pecypc] URL:

https://arxiv.org/pdf/1309.4168.pdf (nata obpamienus: 20.04.2017)

[15]. Levy O., Golberg Y., Dagan I. Improving Distributional Similarity with Lessons
Learned from Word Embeddings [snexTponHbIiA pecypc] URL:

http://www.aclweb.org/anthology/Q15-1016 (nara o6pamiesus: 01.06.2018)

[16]. Altszyler E., Sigman M., Ribeiro S., Slezak D.F. Comparative study of LSA vs
Word2vec embeddings in small corpora: a case study in dreams database [3nekTpoHHBIH

pecypc] URL: https://arxiv.org/pdf/1610.01520.pdf (gata o6pamenus: 01.06.2018)

[17]. CemanTHueckoe PO [anexTponHsIi pecypc] URL:

https://ru.wikipedia.org/wiki/Cemantnueckoe_siapo (mara obpamenus: 25.05.2017)

[18]. Rubner Y., Tomasi C., Guibas L. J. A metric for distributions with applications to image
databases. In Proc. of the Sixth International Conference on Computer Vision, 1998, pp.

59-66

[19]. AIML: Artificial Intelligence Markup Language [smektponHsii pecypc] URL:

http://www.alicebot.org/aiml.html (nara o6pamenus: 13.06.2017)

[20]. Jason D. M., Rennie, Shih L., Teevan J., Karger D. R. Tackling the Poor Assumptions of
Naive Bayes Text Classifiers. In Proc. of the Twentieth International Conference on

Machine Learning (ICML), 2003, pp. 616-623

[21]. Mopo3zosa FO.U. TlocTpoeHHE CEMAHTUYECKHX BEKTOPHBIX MPOCTPAHCTB PA3THMYHBIX
npeaMeTHbIX obmacteil. Tperes mkoma Momoxeix yuyenbix WIIM PAH. CO6opruk

noknanos, 2012, ctp. 4-11

206


http://www.aclweb.org/anthology/Q15-1016
https://arxiv.org/pdf/1610.01520.pdf

CaukoB B.E. IIpiMeHeHne accolnaTiBHO-CEMaHTHYECKOT0 MPENpPOoLeccopa B MHTEPAKTHBHBIX IHAIOrOBBIX CHCTEMaX
Ha €CTeCTBEHHOM si3bIke. Ipyowt UCII PAH, Tom 30, Beim. 4, 2018 1., ctp. 195-208

The use of associative semantic preprocessor in the
interactive dialogue systems in natural language
V.E. Sachkov <megawatto@mail.ru>

MIREA - Russian Technological University,
78 Vernadsky Avenue, Moscow 119454

Abstract. The article explores the possibility of using an associative-semantic preprocessor
for special text processing in natural language. The use of associations allow to abstract from
the direct meaning of a word and to replace it with a set of other words. This has also the
opposite effect: by typing words (associations) a person is able to restore the search word,
which allows to form a query in a natural language without knowing the keywords or terms
of a particular domain but at the same time to receive the required result, in contrast to
systems oriented to frequency occurrences of words. In the semantic processing of text using
associations, the order of words and their number are not important, which allows a person to
communicate with the machine without formulating phrases in a special way, since the
interactive dialog system itself will process the request clearing everything else. The use of a
special text preprocessor based on the associative-semantic processing of text allows
interactive systems to be able to understand the topic of the machine's dialogue with the user,
improve interaction by communicating in a natural language, and also to simplify the process
of system creation and development.

Keywords: semantics; dialogue System; EMD; search engine; associations

DOI: 10.15514/ISPRAS-2018-30(4)-13

For citation: Sachkov V.E. The use of associative semantic preprocessor in the interactive
dialogue systems in natural language. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018.
pp. 195-208 (in Russian). DOI: 10.15514/ISPRAS-2018-30(4)-13

References

[1]. Sachkov V.E, Gilmutdinova E.F, Matyash E.D, Akimov D.A. Processing and computer
analysis of the text in natural languages. Sovremennaja nauka: aktual'nye problemy
teorii i praktiki, serija Estestvennye i tehnicheskie nauki [Journal of Contemporary
Science: Actual Problems of Theory and Practice, Series of Natural and Technical
Sciences], Ne 12. 2016. pp. 57-64 (in Russian)

[2]. Weizenbaum J. Computer Power and Human Reason: From Judgment to Calculation.
Freeman and Company, New York, 1976, 281 p.

[3]. Wallace R. S. The Anatomy of A.L.I.C.E. In Parsing the Turing Test. Springer, 2009,
pp. 181-210

[4]. Applied and Computational Linguistics, I1.S Nikolaeva, O.V Mitrenina, T.M Lando, eds.
Moscow, LENAND, 2016, 320 p. (in Russian)

[5]. Serban I. V., Lowe R., Henderson P., Charlin L., Pineau J. A Survey of Available
Corpora for Building Data-Driven Dialogue  Systems [online] URL:
https://arxiv.org/abs/1512.05742 (accessed at: 01.06.18)

207


https://arxiv.org/abs/1512.05742

Sachkov V.E. The use of associative semantic preprocessor in the interactive dialogue systems in natural language.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 195-208

[6].

[71.

[8].

9.
[10].

[11].
[12].
[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

208

Walker M., Litman D., Kamm C., Abella A. Paradise: A framework for evaluating
spoken dialogue agents, In Proc. of the Eighth Conference on European chapter of the
Association for Computational Linguistics, Spain, 1997, pp. 271-280

Chia-Wei Liu, Lowe R., Serban I. V., Noseworthy M., Charlin L., Pineau J. How NOT
to Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation
Metrics for Dialogue Response Generation [online] URL:
https://arxiv.org/abs/1603.08023 (accessed at: 01.06.18)

Henderson M., Thomson B., Williams J. The Second Dialog State Tracking Challenge
[online] URL: http://camdial.org/~mh521/dstc/downloads/handbook.pdf (accessed at:
01.06.18)

Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation, vol. 9,
issue 8, 1997, pp.1735-1780

Serban I. V., Sordoni A., Bengio Y., Courville A., Pineau J. Building End-To-End
Dialogue Systems Using Generative Hierarchical Neural Network Models [online] URL.:
https://arxiv.org/abs/1507.04808 (accessed at: 01.06.18)

W3C Semantic web activity [online]. URL: https://www.w3.0rg/2001/sw/ (accessed at:
25.06.2018)

Resource Description Framework (RDF): Concepts and Abstract Syntax [online]. URL:
https://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/ (accessed at 20.02.2017)
Landauer T., Foltz P. W., Laham D. Introduction to Latent Semantic Analysis.
Discourse Processes, vol. 25, issue 2-3, 1998, pp. 259-284

Tomas Mikolov, Quoc V. Le, llya Sutskever. Exploiting Similarities among Languages
for Machine Translation [online] URL: https://arxiv.org/pdf/1309.4168.pdf (accessed at:
20.04.2017)

Levy O., Golberg Y., Dagan |. Improving Distributional Similarity with Lessons
Learned from Word Embeddings [online] URL: http://www.aclweb.org/anthology/Q15-
1016 (accessed at: 01.06.2018)

Altszyler E., Sigman M., Ribeiro S., Slezak D.F. Comparative study of LSA vs
Word2vec embeddings in small corpora: a case study in dreams database [onine] URL:
https://arxiv.org/pdf/1610.01520.pdf (accessed at: 01.06.2018)

Semanticheskoe yadro [Semantic kernel] [online] URL:
https://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BC%D0%B0%D0%BD%D1%
82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%8F%D
0%B4%D1%80%D0%BE, accessed at: 25.05.2017 (in Russian)

Rubner Y., Tomasi C., Guibas L. J. A metric for distributions with applications to image
databases. In Proc. of the Sixth International Conference on Computer Vision, 1998, pp.
59-66

AIML: Artificial Intelligence Markup Language [online] URL:
http://www.alicebot.org/aiml.html (accessed at: 13.06.2017)

Jason D. M., Rennie, Shih L., Teevan J., Karger D. R. Tackling the Poor Assumptions of
Naive Bayes Text Classifiers. In Proc. of the Twentieth International Conference on
Machine Learning (ICML), 2003, pp. 616-623

Morozova Yu.l. The construction of semantic vector spaces of different subject
domains. In Proc. of the Third School of Young Scientists of the IPI RAS, 2012, pp. 4 —
11 (in Russian)


https://arxiv.org/abs/1603.08023
http://camdial.org/~mh521/dstc/downloads/handbook.pdf
https://arxiv.org/abs/1507.04808
https://www.w3.org/2001/sw/
http://www.aclweb.org/anthology/Q15-1016
http://www.aclweb.org/anthology/Q15-1016
https://arxiv.org/pdf/1610.01520.pdf
https://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BC%D0%B0%D0%BD%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%8F%D0%B4%D1%80%D0%BE
https://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BC%D0%B0%D0%BD%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%8F%D0%B4%D1%80%D0%BE
https://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BC%D0%B0%D0%BD%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%8F%D0%B4%D1%80%D0%BE

O6 oHnanHOBLIX anropuTMax ansa 3agad
YNaKoOBKU B KOHTeMHEPbI U NOMOCHI, UX
aHanuse B XyALlleM criy4yae u B cpegHeMm

L2 11.0. azapes <dennis810@mail.ru>
Y2 i H. Kysiopun <nnkuz@ispras.ru=>
1HHcmumym cucmemnozo npoepammuposarnus um. B.I11. Heannuxoea PAH,
109004, Poccus, . Mockea, yn. A. Conxcenuysvina, 0. 25
2 Mockosckuii @u3sUKO-MmexXHUYeCKUll UHCMUmym,
141700, Mockosckas obnacmes, . [oneonpyousiti, Hncmumymcxuii nep., 9

AnHoTanmsi. B paboTe paccMOTOpEHBI OHJIAHOBHIC AITOPUTMBI Ul KIACCHYECKUX 3a7ad
ynakoBkd Bin Packing u Strip Packing m ux o6oOmienwii: 3agad Multidimensional Bin
Packing, Multiple Strip Packing u 3agade 06 ymakoBKe B IMOJIOCHI Pa3IMYHON IMUPUHBL. J{71st
MoCIIeIHe 3a[a4y OIMKCaH aHAIN3 B XY/IIEM CIly4ae; Uil OCTAIBHBIX 33a7a4 MPUBEICH Kak
aHANM3 B XYy/ILIEM CITydae, TaKk U aHAIIN3 B CPeJHEM (BEPOSITHOCTHBIH aHanu3). PaccMoTpeHsl
JydIlde W3BECTHBIC HI)KHHE W BEpXHHE OLEHKU. [IpHBEIEHBI OCHOBHBIC AITOPUTMBI H
OIMUCaHbl METObI UX aHaJIH3a.

KmoueBnie ciaoBa: Bin Packing; Multidimensional Bin Packing; Strip Packing; Multiple
Strip Packing; 3amaua 06 ymakoBKe B MOJOCHI pa3inYHON [IMPHHBI, BEPOSTHOCTHBIN aHAJN3;
aHaJIu3 B XyJIIEM cllydae

DOI: 10.15514/ISPRAS-2018-30(4)-14

Js murupoBanms: Jlazapes [1.0., Kystopun H.H. O6 oHnaiiHOBBIX anroputMax ajis 3a1ad
YIaKOBKH B KOHTEHHEPHI U MOJIOCHI, UX aHaIM3€e B Xy/ueM ciydyae U B cpegaeM. Tpyast UCIT
PAH, tom 30, Beim. 4, 2018 r., ctp. 209-230. DOI: 10.15514/ISPRAS-2018-30(4)-14

1. BeedeHue

B mocnemHue roabl 3aMETHO TOBBICWIICSA WHTEpeC K 3ajladaM ONTHMH3AINK B
pa3IMYHBIX MNPOM3BOJACTBEHHBIX M JIOTHMCTHUECKMX mporeccax [1,2,3,11]. s
MOMYJSIPHBIX B HACTOsIIee BpeMs 3alad aHajdm3a OOJBIIUX JaHHBIX YacTo
UCIIONIB3YIOTCSI 00IaYHbIC BBIYUCIICHHS, KOTOPBIC TAKXKE TPEOYIOT PEIICHHsS 3ama4
onTUMM3ALMK. BaxkHyl0o posib B TAKOro poja 3ajayax ONTUMHU3aLUU UTPAET TeOpUs
pacmucaHuii ¥, B 4aCTHOCTHU, Pa3JIMUHbIC KJIACCHI 33]1a4 ynakoBku [4,5].

HNurepec x 3amayaM yHakoOBKM BCerga CTUMYJIUPOBAICS WX MHOTOYHCIEHHBIMH
MPaKTUUYECKUMHU NpUJIOKeHUsiMU. Tak, oJHOMepHas 3ajJada yMNakOBKH B

209



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

KoHTeHHepH! (bin packing) BO3HHKIA B CHITY IOTPEOHOCTH pEIIeHHS 3a/1a4 pacKpost
W TIEPEBO3KH MaTepHaioB. J[ByMepHas 3amada yMaKOBKH B KOHTEHHEPHI XOPOIIO
MOJIEIMpOBalia  33/ady ONTHMH3AlUN  pasMemeHus OOBEKTOB, HAIpUMeEp,
aBTOMOOWIIEH, B BaroHax, mapomMax H T.I., a TaKKe Pa3MEMICHUS MHKPOCXEM Ha
wiatax B 3agadax noctpoenuss CBUC. TpexmepHas 3ajadya yIaKOBKH YYHUTHIBAJIA
elle OJHO M3MEPEHHWE U XOPOIIO OIHUCHIBAJa ONTHUMU3ALMIO pPa3MeEIleHUs
TPEXMEPHBIX 00BEKTOB Ha CKJIaaX U T.II.

B mHacrosmiee Bpems B CHIy OBICTPOTO pOCTa MOMYJISPHOCTU PACIpPECICHHBIX
BBIYUCIICHUH, MIUPOKOT0 PACHPOCTPAHCHUS BBIYUCIHUTEIBHBIX KIACTEPOB, TPU-
TEXHOJIOTHH a Takke OOJaYHBIX BBIYMCICHHUN 3TOT MHTEPEC K 3aJadyaM YIaKOBKH
BO3pacTaeT B CBSI3U C HOBBIMU NPUJIOKEHUSIMU: 3aJjauaMy yIPaBICHUs pecypcaMu
pacmpele/ieCHHbIX  BBIYHCIUTEIBHBIX CHCTEM, pa3BUTHS TEXHUKHA OOJAYHBIX
BbUUCHeHnid [6,7,8,12,35,41]. Tlpm 5ToM BO3HHKAIOT HOBBIC KIJIACCHI 3a1a4
VIAaKOBKH, B YaCTHOCTH, 3a/ladd YIAKOBKH IPSMOYTOJBHUKOB B TIOJNOCY |
HECKOJIBKO IIOJIOC, 3a/ladd YIAaKOBKH TIPHIOKCHHHA B BUPTyalbHBIC MALIMHBI U
KOHTEHHEpH U T.I. B maHHO# paboTe MBI CTaBUM IENBI0 OMHCATH KIACCHYCCKUE
pe3yIbTaThl, Kacaromluecs Pa3IMYHBIX 3aJad YIAaKOBKH, a TaKXKe IMPHUBECTH P
HOBBIX PE3YJIbTaTOB, IIOIYYEHHBIX B CAMOE ITOCIICTHEE BpeMsI.

2. MocmaHoeka 3aday4u

2.1 Bin Packing

Omnpenenum 3amagy Multidimensional Bin Packing Problem (Multidimensional
BPP), umu 3amady 06 ymakoBKe B KOHTCHHEPHI PasMEPHOCTH N B TOCTAHOBKE
ymnakoBku B stk (Box Packing): nan Habop d-MepHBIX OTKPBITBIX MPSIMOYTOIBHBIX
MapajieNuuIesioB, JINHBl CTOPOH KOTOphIX He mpeBocxomar 1. TpeOyercs
YIAKOBaTh TMapAJUICIUIUNEAb 0e3 BpalleHHMH M TepecedeHHid B Kak MOXKHO
MEHbIIIee YUCIIO d-MepHBIX KyOOB ¢ eIMHIYHONW CTOPOHOM.

Hampumep, B ciyuae omHomepHoi 3amaun Bin Packing (BP) tpeGyercs
pacrpenenuTb OOBEKTH B MHHHMAaJbHOE KOJMYECTBO KOHTEHHEPOB TaK, YTOOBI
CYMMapHBIH Bec 00BEKTOB B KaXJIOM KOHTEHHepe He IpeBbIma 1.

3amaua sBusercs NP-tpymHO#, mosTomy OyaeM paccMaTpuBaTh HpUOIMKEHHOE
pemenue. bynem paccmarpuBarh Cilydail OHJIaWHOBOW YIIAaKOBKHM, KOTJa ajirOPHTM
NOIy4aeT MapaUIeIUNUIEAbl TO0YEPEIHO, U Pa3MEIIEHUE KaXKJOro CIEAYIOIIEro
o0bekTa HE BIHMIET HA IOJIOKEHHE mpeablrymux. CymiecTBYIOT JBa CHocodba
aHaJIM3a TAaKuX aJlrTOPUTMOB.

e Amnanus B xyauem ciydae, unu Worst Case ananus.
3neck 3G (deKkTUBHOCTH anroputMa A Ha Habope MapaUIeTUIUINCIOB o
OIICHUBAETCA Yepe3 aACHMITOTHYECKYIO0 MYIbTHIDINKATHBHYIO TOYHOCTh

lim sup sup {costA(O')

RY =
A n—-oo O cost(o)

cost(a) = n},

rne cost, (o) — uncao KyOoB, 3aHATHIX NapaUIeUIIMIECIaMU U3 G, IPU UX
210



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

YIaKOBKE anroputMoMm A; cost(0)- MHHAMAIbHOE BO3MOJKHOE YHCIIO
3aHATHIX KyOOB IIPH YIIaKOBKE HAO0Opa mapaieNeIHIICA0B.

e Amnanus B cpequeM, nwiu Average Case ananus.

B npennonokeHWd, dYTO JJIMHBI CTOPOH MApaJUICIUIKIEI0B HMEIOT
pactipesenenue J', dyamie BCEro — pPaBHOMEPHOE paclpeeiieHHe Ha
Hekotopom otpeske [0,u], u < 1, HYKHO OLEHUTH MaTEeMaTHYECKOE
OKHJIAaHUE CYMMAapHOTO 00bheMa IUIONIAAN KOHTEHHEPOB, HE 3aI0JIHEHHON
napannenununesamu, W' = E(V,, nocne Beimajenus (He 6osnee dem) N
TapaJuIeHIAIE 0B
[Ipu aHamm3e B XYALIEM CIy4ae HCCIEAYIOTCS JIMIIb AITOPUTMBI, KOTOPHIM
HEW3BECTHO KOJIMYECTBO OOBEKTOB 10 BBIMAJCHHUS TMOCIECIHET0 W3 HHX. Ilpw
aHAM3e B CPEIHEM MOKHO aHAJIM3HPOBaTh 3(QPEKTHBHOCTH AITOPHTMOB, KOTIa
YKCIIO MapajieNenuIe[0B U3BECTHO 10 Havana paboTsl (closed-end) u koraa uucio
MapaJUIeIUIIATIEI0B CTAHOBUTCS M3BECTHBIM JIMIIB TOT/A, KOTJa BCE OHH BBIMAIH
(open-end). B cnyuae open-end W;' BbIYHCISIETCS [MOCTE BBIMAJACHHS POBHO N
napauie/IUIHIe 0B,
B [24] Ilopom 6Gbuto ocmabneno ycioBue Open-end u ObUTO JaHO CleyoIee
onucaHue paboThl aropuT™MoB open-end no lopy:

e  HATypaJbHOE YHCIIO 1 M3BECTHO aIrOPUTMY 10 Hadaja paboTH;

e  BBIOMpaeTcs ciaydvaitHo HaTypamsHoe k, 1 < k < n;

e  Ha BXOJ Nojaercsi kK 00BbEKTOB CO CITyYalHBIMH JJIMHAMH CTOPOH M IOCIe
HHX — CHMBOJI OCTaHOBA.

OuennBaeTcss Marematudeckoe oxumanue W] 06béMa KOHTEHHEPOB, He
3aI0JIHEHHOTO MOCIIe YIIAKOBKH BCex K 00BEKTOB.

2.2 Strip Packing v Multiple Strip Packing
B 3aBHCHMOCTH OT KOJIMYECTBA MOJIOC 33891 Pa3IeISIFOTCS Ha CISAYOLINE:

e  Strip Packing(SP): nana mony6eckoHeYHas M0I0ca CANHUYHOMN IMPUHB,

e  Multiple Strip Packing(MSP): nan Ha®op mnoONy0ECKOHEYHBIX MOJIOC

C ={C,, ..., C,,} enMHNYHOIM IIHUPHUHEI.

B 311 monockl TpeGyeTcsi ynakoBaTh 0e3 BpalleHHH U MepecedeHHd N OTKPBITHIX
npsimoyroneHukoB T = {Ty, ..., T,}, MUHUMHU3UPYS IPU 3TOM BBICOTY YMAKOBKH.
BeicoTa ymakoBKM — KOOpJHMHATA CAMOH BBICOKOW BEPXHEH CTOPOHBI OIHOTO H3
OpsIMOYTOJNIBHUKOB. VICCIeAyIOTCS OHIIAWHOBBIC ANrOPUTMBI YIIAKOBKH, TO €CTh
ANTOPUTMBI,  TIONYYalOl[Me MPSMOYTONBHHKA M3 |  IOCIEAOBaTeNbHO, H
pasmematonue T; mo noxydeHus T;yq, ..., T, Anst moboro i < n — 1.
Kak u B ciayuae 3amaunm BP, cymiectByer 1Ba crocoba aHanm3a aaropuTMOB
YIaKOBKH:

e Amnanm3 B Xyaurem ciaydae, wi Worst Case anamus.

3neck 3ddexTuBHOCTE anroputMa A Ha Habope NPAMOYTOJIHLHHUKOB T

211



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

OLCHHUBACTCA qepe3 €ro ACUMIITOTHYCCKYIO MYJIbTUININKATUBHY IO

TOYHOCTh
o _ limsup SUp (Ha(T)
Ry = n->oo T {HO(T) |H0(T) = nx hmax} ’

rae H,(T) — BicoTa yNAaKOBKH HPSIMOYTOJLHUKOB U3 T HPH MX YIMaKOBKE
anroputMoM  A; Hy(T)- MuHHManbHas BO3MOXKHas BBICOTa YHNAaKOBKH
HPSMOYTOJBEHUKOB M3 T, Rp,,,-MakCHMaJIbHasi BBICOTA NPSMOYTOJIBHHKA.
AHaJU3 MPOBOIUTCS B MIPEATIONOKECHUH, 9TO A,y g, U3BECTHO AJITOPHTMY JO
HadJaja paboTHI

e Amnamms B cpexneM, mwin Average Case aramms.
B MpCANOJI0KCHUN, YTO JIUHBI U BBICOTHI MPAMOYT'OJBHUKOB HWMCIOT
pacnpenenenus F; u F,, 4aiie Bcero — paBHOMEpHBIEC paclpesiesieHus] Ha

HekoTopbix otpeskax [0,u] ¥ [0,7] COOTBETCBEHHO, HYKHO OIEHHTH
MarTeMaTHUECKOe OXHAAHHE CYMMapHOM IUIOMIAAM YacTH TIOJOC OT

OCHOBaHUsI 1o BBICOTHI YIIaKOBKH, HE 3aII0JHCHHON
npsamoyronbuukamu W' = Ep ¢ SZ, nocie BBITIa/ICHUS n
OPSIMOYTOJIbHUKOB.

[Ipu ouenke B cpefaneM 3G(PEKTUBHOCTH AITOPUTMOB AHAIM3UPYETCA, KAK M JUIL
3agaun BP, B open-end u close-end criydasix.

3 3adava Bin Packing

3amaua Bin Packing mmm 3amaua ymakoBKH B KOHTEHHEPHI — OJHA U3 TMEPBBIX
u3BecTHBIX NP-TpyaHBIX B CHIBHOM cMbIcie 3amau [9]. Jlns Hee GBUTO COCTaBIEHO
MHO)KECTBO NPHUOMMKEHHBIX aJITOPUTMOB JUIS aHAIM3a B XyJIIEM W B CpPEIHEM
ciyyasix [10].

OnwuiieM BaXKHBIE METO/IbI OHJIAWHOBOH YIaKOBKH.

First Fit. Kaxaeiii ciaeayromuil moCTynMBIIMHA OOBEKT MOMAJAeT B MOCIETHUM
CO3/IaHHBIN KOHTEWHep, B KOTOPHIM OH momentaetrcs. Eciau ke oH He momeniaeTcs
HH B OJIMH KOHTEHHEpP, TO CcO34aéTCs HOBBIH KOHTEHHEP, B KOTOPOM OOBEKT H
OKa3bIBAETCS.

Best Fit. Kaxplit cieayronuii 00beKT MOnajacT B HanOoJee MIOTHO 3a0IHEHHBIN
KOHTEHHep, B KOTOPBII OH MOXeT MoMecTHThcsA. Ecmm o00BEKT HHKyZa He
MOMEIIAeTCs, TO AJISl €T0 YNAKOBKU CO3JaETCsl HOBBIM KOHTEHHEp.

3.1 AHanu3 B xyALwem crny4ae

Crnenys knmaccuueckoil pabore [11], mokakeM, YTO aCHMITOTHYECKAs TOYHOCTH
. . 17

anroputMma First Fit Rpy = o

IycTe Ha BXo anropurmy First Fit mocTynmio B mopsiake Bo3pacTaHus HHIEKCOB K

0OBEKTOB ay, ..., ) pazmepamu s(a,), ..., s(ay), oOpasyromux Habop a. AIroput™m

212



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

First Fit ux pasmemniaer B KOHTEHHEPHI By, ..., B,; HOMepa KOHTEHHEPOB BO3PACTAIOT
B TIOPSAKE MX CO3/IaHHMS.

Omnpenesiedne: TpyObOCTBIO @; i-TO KOHTeHiHepa B; Ha30BEM MaKCHMAJIbHYIO
HE3aMOIHECHHYIO [UIMHY KOHTEHHepa ¢ HOMEPOM, MEHBILHM |.

Huxe cost,(w) o0003Ha4YaeT 4YUCIO KOHTEHHEPOB, B KOTOPHIC auroputM A
pa3memaet 00BeKTH U3 Habopa w, a OPT — ONTHMaNbHBIA aNTOPHTM.

Teopema 1 (Johnson, Demers, Ullman, Garey, Graham, 1974) [11]. dus mo6oro
Habopa g, BEPHO, UTO COStpp(0) < 1—Zcost0PT (o) + 2.

B noxazarensctBe ucnonbs3yercs BecoBas (ynkums W(a). Jlns nokazatenbcTBa
TEOPEMBI JTOCTATOYHO CTATHYECKOI BeCOBOW (PyHKIMH, T.€. BeC OOBEKTa 3aBHUCHT
JMIIB OT ero pasMepa. @yHkuus u3 padoTsl [11] mpomumocTpupoBaHa HUXE:

W(x)

T/10F

172+

1/5F

1 1 1
o] 1/6 /3 /2 |

Puc. 1. Becosas ¢ynkyus
Fig. 1. Weighting function

JlokazaTenbCTBO TEOPEMBbI OITUpaeTcs Ha JBe JIeMMbl:
17

Jemma 1: Y7, W(s(a;)) < =5 Costopr(0) -
Jlemma 2: Y W(s(a;)) = costpp(o) — 2.
s nokazatenbcTBa JIeMMBI 2 Hy>KHBI 1Ba YTBEPKICHHUS.

o 1
Yr1Bep:kaenne 1: Ecin KoHTeiiHep ¢ rpybocTeio a < 5 3ArloNHeH o0beKTaMu ¢
Becamu by,.., b, mecmu Yr_, by > 1— a, 10 Yo, W(b;) = 1.

o 1
YTBepkaenue 2: Ecnu koHTeiHEep ¢ TpydocThio o < 5 3aroJHeH o0beKTaMu ¢

1

Becamn by >..,= b, u Y, W(b)=1— B, o mu6o m=1 u b; < > 6o

5
Lib<1-—a-3p.

213



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

2 ! ! j—
[Hanee, mycTb Ansi KOHT€HHEpPOB By, ..., By, u Tonbko 1d HUX ZajEBi W(s(a;)) =
1—p;,B; > 0. Jlna mobeix 1 < i< j <m xonreitnep B 6bL1 co3man nosxe Bj.

1 o
Tak kak B By, HeT anemenra pasmepom s(a;) = > TO TpybOCTE M-rO KOHTElHEepa

1 5
ay < 7 Ilo yrBepxnenuto 2, a; = a;_, + gﬁi—u CJIE0BATEINBHO,

1 9 1 9 9 1
Yt Bz Xt (@ —a) = (@ — @) < x5 <L
W3 mpenmpigymero HepaBeHCTBA H - ONCHKH f5,, < 1, wmMmeem Tpedyemoe

YTBEpXKICHHE:
n

W(s(a;) = costpp(o) — 2
i=1
Orcrona nonyvaem, 9to Rpp < 1.7.
Jlnst mosTy4eHus paBeHCTBa JOCTATOUHO MIPUBECTH IIPUMEP CKOJIb YTOAHO GONBIIOrO
Habopa o ¢ coStpr(0) = %costow (o) (puc.2).

16 o =16 HuxHUe oLeHKK
ACMMNTOTUYECKON
34 34 To4HOCTHM First Fit
cost = 10k
514 51 Lower bounds for the
asymptotic ratio of
First Fit
x3k x7k
9 /
33 33
/ 50/
10ix5 |50 /
34 “
costpe =17k 16(x3) lag
51
6{x7} |42 34
10(x2) |20
xk xk x5k x 10k

Puc. 2. Tounas nuoicnss oyenxa First Fit
Fig. 2. Strict lower bounds for First Fit

OTMeTHM, YTO HIepBOHAYANBHO B paboTe [12] B mpaBoii 4acTH JIeMMBI 2 BMECTO «-2%
66110 «-3». [To3aHee B pabote [13] «-2» ObLIO yuydIIeHO 10 «-1».

3amerum, yto anroputm First Fit co3naér HOBBII KOHTEiHEp TOrAa M TOJNBKO TOTAA,
KOr/Zla HU B OJTHOM M3 Y)K€ CO3[aHHBIX KOHTCHHEpOB HE JOCTATOYHO MecTa JUIs
pasMelieHuss BHOBb MpUObIBIIEr0 00bekTa. CKakeM, YTO alrOpUTM NPHHAIIEKHUT
cemeiictBy Any Fit, ecnmu oH yzmoeieTBopsieT 3toMy ycioBuro. B pabore [10]
JOKa3aHo, 4ro Jro0oi amroputm AF m3  Any Fit nMeeT acHMITOTHYECKYIO
TOYHOCTH He Iydiie, uem First Fit.

Teopema 2 (Johnson, 1973) [10]. Rg% = Rpy mms moboro Any Fit anropurma AF.

214



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

TakuM 00pazoM, NMpH JadbHEHIIEM aHaau3e MOXKHO JHOO OcCIaOWTh TpeboBaHWE
OHJIAMHOBOCTH aJrOpuTMa, Kak, HampuMmep, OsUT0 caenano B paborax [15] u [16],
6o McciteIoBaTh anroput™Mel He u3 Any Fit, kak cienan So B cBoeii pabote [14].

1

CkaxkeM, 9TO OOBEKT — TUMA A, €CII JUIMHA €TO JIeKUT B HHTEpBae (5, 1]; Tuna By,

2 1 12 1
€CJI B (E’E]; Ttumna B,, ecnu B (E’E]; tHma X, eciu B (0, 5].
Aaropurm 1: Refined First Fit (RFF, Yao, 1981) [14].
[MakyeM OOBEKT KaKAOTO THIA, KPOME KaXIOr0 IecToro o0bekTa THma B,, B
OT/ENBHBIA Kiacc 1o anropurmy First Fit. Kaxmeri mectodt o6bexT Thma B,
maKyeM Takke 1o anropurmy First Fit B kiacc, rie sexar Bce 00beKTHI THITA A.

5 .

B [14] 6buto Takke MOKa3aHO, 4TO Rppp = - B nambHeiimem ObUT MIpeAsIokKeH

LI psAJ aJITOPUTMOB C YMEHBUIEHHOM aCMMOTOTHUYECKOM TOYHOCTHIO; CaMbId
JIYYIIMH W3 U3BECTHBIX — anroput™ Harmonic++ u3 pabotsr [17] ¢ R® = 1.58889.
OnHako,B CpemHEeM TaKHe alrOPUTMBI UMEIOT acuMnrotuky Wj' = 6(n) u Ha
MPaKTHUKE PEAKO UCTIONb3YIOTCS.

B pa6ore [14] Obu10 Takke MOKa3aHO, YTO JUIS JIFOOOTO OHIAMHOBOrO ajaropuTMa
3
R* > 5~ bBUIo BeIOpano 0 < &€ < 0.01, 1 Ha BXOJ AITOPUTMY CHAYaIo MOCTyIano K

1 1
00BCKTOB pasMepoM — — 2, 3aTeM — k 0GbekTOB pazmepom stemn k o6bekToB

pa3mepom %+ &. Buto mokaszano, 4ro jgubo mocie ymakoBkd K o6bexToB, 1m0
nocne ynakoBku 2K oObeKkTOB, MO0 Mocie yrnakoBKH BceX 3K OOBEKTOB YHCIIO
3aHATHIX KOHTEHHEPOB OyAeT B z pa3a Ooublie YHClIa KOHTEHHEPOB, 3aHSTBIX
ONITUMAJIEHOM YIaKOBKOIl TeX e 00BEKTOB.

B pa6ore [18] mpuBenena nyumias onenka, 4em B [14]: mokazano, 4to asst 00010

oHJlaifHOBOro airoputMa R® > 1.536.. Jlydymas W3 W3BECTHBIX OLGHOK R™ >
1.540.. 6pu1a monyuena B padote [19] don Biuerom.

3.2 AHanus B cpegHem

Yacto Hac uHTEpecyeT He AP PEKTUBHOCTh PAOOTHI allrOpUTMa B Xy/IIIEM CiIydae, a
€ro cpepHee NOBeneHHE. VI3BECTHBI aNrOPUTMBI YIAKOBKH IIPU  pasIMUHBIX
pacnpeneseHusX pa3MepoB YIakoBbIBaeMbIX 00bekToB [20], oHaKO B 3TOM 0030pe
MBI OTPaHHYKMMCS PABHOMEPHBIM pacrpesieienrem Ha otpeske [0, v], v < 1.

3.2.1 Paamepbl 06BHEKTOB MMEIOT paBHOMEpPHOe pacnpeaeneHue
Ha [0, 1]
Paccmorpum open-end cirydaii, To e€cTh ciiydail, KOrja ajlropurMy HEM3BECTHO

qUCIO0 O6'LCKTOB, KOTOPBIC OH JOJDKCH YIAKOBaTh, A0 BBIMAACHUA IOCICAHETO M3
HHX.

B pa6ote [23] Gbuia yiydinena orenka moaudukamuu [22] reopemsr u3 [21]:

215



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

Teopema 3 (Coffman, Shor, 1991) [23]. Ecau B kBagpare ciydaiiHO BeIOpaHbl 2N

TOYeK, O0O3HAYMM BC€ TOYKH Ha 4+’ wmwimm “-“ Tak, 4ro y IO0OH TOYKH

BEPOSATHOCTH OBITH 0003HAUEHHOH IUIIOCOM M MHHYCOM paBHEIL. [lycTh BBIOpaHO

MaKCHUMaJIbHOE YHUCJIO Map “+ -* Tak, 4yToO IUIIOC B KaXJOW Iape IpaBee MHUHYcCa, U

CyMMapHasi JUInHa OTpe3KoB T, COCAMHSIIOMINX IUTIOC ¢ MUHYCOM B Ka)XIO# mape,
3

muHEMabHA. Torga Matemarudeckoe oxunanue E(T) = 0(\/5 logs n).

B paborax [24] u [25] ¢ moMoIIpI0 MOAHU(UKAIINKE 3TOH TeOpeMbl ObliIa MOydIeHa
aCHMIITOTHKA 1A 3ama4du Best Fit.

Teopema 4 (Shor, Leighton, 1989) [24, 25]. MaremaTnueckoe OXHIaHHE

HE3AMOJIHEHHOTO MPOCTPAHCTBA KOHTEHHEPOB TIPU UCIIOIb30BaHUM alropuT™a Best
3

Fit Wj.=6(v/nlogz n).

IpuBeaéM KOHCTPYKIIUIO IS JOKA3aTENbCTBA JAHHOU OLIEHKH.

ChHavyana KaxIoOMy BblaBlIeMy o00bekTy a; raei=1,..,N, craBurcs B

cooTBeTCTBHE Touka B kBaapare [0,1] * [0,1]: koopaunaTta x = s(a;), KOOpaHHATA
i
Y=+
1
Ilnrocamu  momedaroTcss 00BeKTHl pasmepom  s(a;) = 5 @ BCE OCTalbHbIE —

MHUHYCaMH.

o 1
3aTeM Bech KBaJgpaT OTpaXa€TCsi OTHOCUTEIIBHO MPAMOU X = E TakK, 4TO IINIFOChI U

. 1
MHHYCBHI TIONAJal0T B 00pa30BaBUIMHCS IMPSIMOYTOJLHUK [O’E] *[0,1]. Haunee

npuMeHsiercst Teopema 3 it anropurMa MBF, unu namenénnoro anropurma Best
Fit. Janupnii amroput™m orimyaercs ot Best Fit numbe Tem, 4to KOHTelHeEp

1
3aKpPbIBACTCS IMOCJIC TOI'O, KaK B HETO NOaJacT 00BEKT pa3MepoOM MCHbLIIC E

B pa6orax [24] u [26] Obina orieHeHa acuMnTOTHKA anroputma First Fit:
Teopema 5 (Coffman et al., 1991) [24, 26]. MaremaTuveckoe OXHIAHUE
HE3AIO0JHEHHOTO TIPOCTPAaHCTBA KOHTEHHEPOB TIPH MCITONB30BaHUH anroputMa First
Fit W2,=6 (n3).
B pabore [24] Tarxke Obutla TIONydeHa HIWOKHAS oOueHka WS s mroGoro
OHJIAHOBOTO AITOPUTMA:
Teopema 6 (Shor, 1986) [24]. dus moboro omnaiiHoBoro open-end amropurma A
MaTeMaTHYeCcKOe OKUIaHNe HEe3aloTHEHHOTo poctpanctBa Wt = 2 (y/nlogn).
B paGote [27] 1llopom Gbut mosyueH oniaiiHOBEI 0pen-end mo Illopy anroputm C
Wi = 0(y/nlogn).
Hanee paccmorpum closed-end cnyuwaii, korma ajirOpuTM 3HAET KOJMYECTBO
00BEKTOB, KOTOPBIE HY:KHO YIIAKOBATh JI0 BINAJEHHS IIEPBOr0 00bEKTa ;.
B pabGore [24] Obu1 mpemnoXKeH CICAYIOIINH alrOpUTM OIS YHOAKOBKH N
npsAMoyronsHEKOB B peskume closed-end ¢ W = 6(v/n):

1) s KaXkI0ro U3 MepPBBIX E] 00BEKTOB cO3/1aéM HOBBIH KOHTEHHED;

216



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

2) ocraBmmecs 00BEKTHI IAKyeM anropurMoM Best Fit.

Takum o6pasom, B closed-end ciyuae HmkHss onenka Wby = 2(v/n) okassiBaetcs
TOYHOM.

3.2.2 Paamepbl 06BLEKTOB MMEOT paBHOMeEpPHOe pacnpenereHue
Ha [0,u],u<1

B [26] Obita modydeHAa HIDKHSAS —OLICHKA MAaTEMaTHYECKOTO — OXKHIAHHS
HE3aIl0JHEHHOT0 NPOCTPAHCTBA KOHTEHHEPOB!

Teopema 7 (Coffman et al, 1991) [26]. IIycts u < 1, pa3mepsl 00BEKTOB
BBIOMPAIOTCS MOMAPHO HE3aBUCHMO COIJIACHO PAaBHOMEPHOMY pPAaCHpelesICHHI0 Ha
[0,u] u A — onnaiiHOBBIN Open-end aJropuT™ ymakoBKH. Torja mMareMaTHueckoe
OKHIaHHe CBOOOIHOTO MPOCTPaHCTBA KoHTelHepoB W = N (vn).

Ha nanHBIil MOMEHT HEN3BECTHBI AJITOPUTMBI, HA KOTOPBIX 3Ta OLIEHKA JOCTUTACTCSI.

4. MHo2omepHas 3adaya Bin Packing

MeuoromepHas 3amada Bin Packing B mocraHoBke yIakoBKH B KOHTeiHepsl BOX
Packing siBisieTcst ectecTBeHHBIM 000OIIeHHEeM ofHOMepHOW 3amauun Bin Packing
(BPP). Kak u BPP, onma NP-tpyaHa B CHJIBHOM CMBICIE, U i Heé
paccMaTpUBAKOTCS MPUOIMKEHHBIE OHJIAMHOBBIE AITOPUTMBI.

4.1 AHanu3 B xyauwem crny4ae

B pa6orte [28] ObuM mONMyYeHBI HUKHHE OLEHKH IJISi aCHMIITOTHYECKOM TOYHOCTH
OHJIAWHOBBIX ~ANTOPUTMOB JUIsI MHOTOMepHOW 3amauu Bin Packing: mns
aByxmepHoro ciydas Rp° = 1.802, mis tpéxmeproro ciydas Ry = 1.974 nans
JFOOBIX OHJIAWHOBBIX anroputMoB A u B.

Jlydriast BepXHsisl OIEHKa U JABYMEPHOW 3amaud Obuia mojydeHa B [29], rume
npeuioxeH anroput™m ¢ Ry < 2.554

Kcupukom u ¢or Bmmerom B [30] mnst d-meproit 3amaum GbUT TOCTPOECH
OHJAHOBBIH AJITOPUTM ¢ acMMNTOTHYecKOH TouHOCTBIO RS = (M)%, rue M, ~
1.691.

BaxxHoll [u1s1 MPWIOKEHUH XapaKTEPUCTUKON OHJIAMHOBOIO alrOpUTMa SBISIETCA
OTKPBITOE KOJIMYECTBO SILUKOB B KAaXKIbli MOMEHT BpeMeHU. Eciu B Kakoi-TO
MOMEHT BPEMEHH SIIMK 3aKPBIT, TO MOCJIE 3TOTO B HETO HEJB3S YIIAKOBAaTh OOBEKT.
Ecnu B KaxAblii MOMEHT BpPEMEHHM YHCIO OTKDPBITBIX SIIMKOB HE IPEBBIIIAET
HEKOTOPOTO Harepe]] 33aHHOTO YhCia K, TO TOBOPHM, YTO &ITOPHTM HCIIOIB3YET
orpaHudyeHHoe npoctpancTo (bounded space).

B [31] Dmmreitnom u ¢on Cru ObUI NpPUAYMaH alrOPUTM, HCIIOIb3YIOMIAI
OrpaHHYEHHOE MPOCTPAHCTBO C TaKoi e TouHocthio Ry = (I,,)%. Kpome Toro,
OBLIO OKAa3aHO, YTO HE CYIIECTBYET AITOPUTMA, WCIIOJIB3YIOLMIETO OrPaHUYEHHOE
MPOCTPAHCTBO M UMEIOIIETO JIYYIIYI0 aCHMITOTHIECKYIO TOYHOCTb.

217



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

4.2 AHanu3 B cpegHeMm

Emé MeHbIe pe3yabTaToB OBUTO MONYYEHO TIPH aHaIHu3e B cpeaneM. B pabore [32]
6bu1 TpemToxked anroputMm Hash-Packing mst d-MepHO#M yIakoBKH € TOYHOCTBIO

d+1
Wit =0(nd+z) ans  [AAdH ~ CTOPOH  HAPAUICIUIHUICIOB,  PAaBHOMEPHO
pacnpenenéunpix Ha [0,1]. Wpmes anroputma 3akirouaeTcs B HAXOXKACHHU CPEId
HOCTYyNAoIUX ~ O-MEpHBIX  MAPAVICIHUIIMICIOB TIPYIIN  [apalIeIHIHICIOB,
JOCTaTOYHO IUIOTHO IOTOJIHSIOIMX APYT Apyra A0 KOHTEHHEpa, W B OTACIbHOMN
YTIaKOBKE TPYIII MapauIeIUIIHIIEI0B.
Aaropurm 2: Hash Packing (Chang, Wang, Kankanhalli, 1993) [32].

1
1. Bsibepem Harypanpaoe m = m(n): AN,g,6§ > 0vVn > N:n® <m < na®,

2. Cxkaxem, uto O-MepHbIC MPSIMOYTOJBHBIC MAPATUICIHUITHIICIB X1 U X, JIEKAaT B
OJTHO# IpyIIIe, eCIu IS JIIOOBIX MX COOTBETCTBYIOMMX CTOPOH h; (xy) ¥ h;(x,)
BEPHO OJIHO U3 YCJIOBUM:

j .
e Ha [hi(xl(mm 2)), h; (xz(mm 1))) HET TOYCK BUIA 5, = 1,...2m—1;
e Ha [hi(xl(mm 2)), 1 — hi(*3(um1))) MMeEETCSs POBHO OJHA TOYKA BHJA
i
%, ] = 1, ,2m —1.
3. Y xaxmoro mpsAMOYTOJNbHUKA B KOHTEHHEpe 000 TPyIIbl, B 3aBHCUMOCTH OT
JUTAH €TO CTOPOH, €CTh €r0 MECTO H, €CIIA B OJHOM M3 KOHTCHHEPOB €T0 TPYIIIEI ero
MECTO CBOOOJHO, TO OH Ha 3TO MeCTO Momelnaerca. MHadue co37aéTcsl HOBBIM
KOHTEHHEep, Ky/la U MOMEIIACTCs NapaICIUIIUIIE HAa CBOE MECTO.

Teopema 8 (Chang, Wang, Kankanhalli, 1993) [32]. [lns mnpeanoxeHHOTO
anroputma Wit = 9( )+9(\/nmd).

n
m
IlepBoe ciaraemoe y4uThIBa€T 00BEM CBOOOJHOTO MPOCTPAHCTBA B KOHTEHHEpaXx,
3aIONIHEHHBIX BCEMH BO3MOXKHBIMH (2%4) mapalieunumne 1aMmu, a BTopoe — YHCIIo He
1

HOJIHOCTHIO 3aIlOJHCHHBIX KOHTCHHEpOB. Bribupas m = nd+z, momydaem W, =
d+1

0(na+z).
Auroput™ yrmoBieTBopsietT ycinosmio open-end mo Ilopy, mis momydenus Goinee
CHJIHOTO YCIIOBHS Open-end ¢ MOMOIIBI0 aQNTOPHTMAa HYKHO YIIAKOBBIBATH
nocnenosatensuo 2, 22, ..., 2K, ... mapannenununenos, moka He MONY4HM CHMBOI
OCTaHOBA.

5. 3adaya Strip Packing ynakoeku npsiMoy2osibHUKO8 8 1osiocy

EcrectBennsiM 0600meHrem 3anaun BP sBisiercs 3amaya Strip Packing ymakosku
MPSIMOYTOJIBHUKOB B TIOJyOSCKOHEUHYIO IIOJIOCY. 3ajada BIEpBBIE OblIa
uccienosana B [33], a B [34] Bokepom u [1IBapiieM ajist NpUMEHEHHS aJITOPUTMOB M3
BP nmnst 3amaun SP Obu1 mpeniioxkeH Kiacce menb(OBBIX aJrOPUTMOB, TAC MICTb( —
Takas YacTh IIOJOCHI €IMHWUYHON [IMPUHBI W OrPAHUYEHHOU BBICOTHI, YTO
OPSAMOYTOJIHHUK HE MEPECEKAETCS C rpaHmIiei menbga, a JIeKUT b0 BHYTpH, THO0

218



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

cHapyxu Imenbha, W Jrodas BEepTHKAIbHAS TIpsMas, TIepeceKaromas menbd,
nepecekaeT He 6oJiee 0JHOTO MPSIMOYTOIBHHUKA, JIEXKAIIET0 BHYTPH HIeTbda.
Aaroputm 3: Shelf(A,r). Ilycts Bbicota mpsmoyronshuka R, h(R) € (r¥+1,rk],
r < 1. IIpAMOYrombHHK pa3MemaeTcs B OJHOM M3 LIedb(hoB BHICOTHI TX. Jlns
pasMelleHns MPSAMOYTrobHUKA B IIeb(ax BBICOTHI TF HCMONB3yeM HEKOTOPYIO
aBpuctuky A mis 3agaun BP B npennonosxeHnu, 4To MHOKECTBO MIETb(OB AaHHOH
BBICOTBI — 3TO KOHTEHHEpHI, a HIMPHHA NPSMOYTONBHHKA — BEC YMaKOBBIBAEMOTO
o6bekTa. [Ipy HAMOGHOCTH anrOpUTM A CO3/1aeT HOBBI meNb( BHICOTH ¢ HaBepXy
TEKyILIeH yIaKOBKH.

5.1 AHanu3 B xyAaLwem crny4ae

3amaua Strip Packing B ciy4ae, korja BRICOTHI BCEX MPSAMOYTOJIBHUKOB OJTHHAKOBHI,
SKBHMBaJIeHTHa 3amade BP, cramo ObITh, 111 OHJIAMHOBOM IOCTaHOBKH 3amadyu SP
BepHA HIKHsI onieHka u3 [19]: Ry > 1.540.

B [35] Obuti mpemioKeHbI IIENb(PBBIE ANTOPUTMBI C ACHMIITOTHYECCKOM
TOYHOCTBIO R, ckomb yromuo Ommskoit k Il (I, = 1.691), a Takke ObUIO
MOKAa3aHo, YTO JJIs IFOOOT0 OHJIAHOBOTO IienbhoBoro amroput™a Ry = Il,.

B [36] Xanom, FBamom, e u Xanrom 6601 MIPEUIOKEH aNrOPUTM I 3axadu SP,
UMCIONIMH ACHMIITOTHYECKYyI0 TouHocTh Ry° < 1.588.. [ns 3amau BP u SP
HEM3BECTEH AQJTOPUTM C JIy4llled AaCHUMITOTHYECKOW TOYHOCTHIO. AJITOPUTM
paszesnsieT NpsIMOYrOJbHUKK Ha TPYIIGI 10 HIHPHHE. [IPIMOYTONBHUKY C HITUPUHON
w < g, YyNakoBHIBAalOTCA Mieab(oBeIM anroputmMom Shelf (Harmonic + +,1).
HOycte gy <t; <..<tp =1, ¢>hyua, THE Apgy- MaKCHMallbHas BBICOTA
NpAMOYTOJNIbHUKA.  [IpAMOYTONIBHUKHM,  IIMPUHA  KOTOPBIX W € (&, ti4q],
YIAKOBBIBAJIKCh B MOJOCKH BBICOTBI C M WIMPHHBI t;,;. [10JOCKH OJMHAKOBOMN
BEICOTHI, TaK KaK B JaHHOM ciy4ae 3amada SP skBuBaneHTHa 3amade BP,
pa3mMeranuch anajgorom anropurma Harmonic++ us [17] mis BP.

5.2 AHanu3 B cpegHeMm

3ajava HCCIEIOBaIaCh B IMPEINOJOKEHUH, YTO MJIMHBI M BBICOTHl CTOPOH-

HE3aBHCUMBIE B  COBOKYITHOCTH cllydaiiHple ~ BEYMHBI, PABHOMEPHO

pacnpenesnénnsle Ha otpeske [0,1].

B 1993 roay 3amaua Strip Packing Osuta uccnenoBana B cpeguem ciydae B [29]

Koddmanom u Llopom. Beuto mokazano, 4to st J1t060ro meabHoBOro airopuTMa
2

W el fary = {2(N3). losnuee B [38] Obun M0TyYEHBI OLEHKH TOYHOCTH OHJIAHHBIX
menbdoBbix anropurmoB (B closed-end ciyuae mpu Hamepen 3aIaHHBIX 3HAYCHUIX
T), WCHoAB3yroIIuMX anroputMmbl First Fit w Best Fit mns pasmemenus
OpsIMOYTOJIbHUKOB BHYTPH LIETB(OB!

3 2 1
ST;Lelf(FF,rpp) =0 (N4) ) Wsrlllelf(BF,er) =0 (N3 log?2 N)

219



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

2
B pa6ore [37] 6but mpeanoxen closed-end anroputM ¢ TouHOCTBIO O (N 5), a 2011
roay B [39] KystopuusiM u ITocrenoBbiM ObLT MpeaioxeH Open-end aaroputm c
2

TOYHOCTBIO 6 (N 5). B pa6ote [40] TpyuHnKOBBIM GBI TIpesIokeH HOBBIN closed-
end aaropuT™, TOYHOCTH KOTOPOTO ObLIa WccienoBaHa B paborte [41], rme Gwuto

1 3
nokazano, auto W™ = O(Nzlogz N). B [42] orierka Gblia yiydiieHa 1o
1
wn =0 (NﬂogN).
3HaYUTENbHOS YIYy4YIICHHE TOYHOCTH II0 CPAaBHEHHIO C paHee H3BECTHBIMHU
ANTOPUTMaMH  OOYCIIOBIIEHO OTpaHHYCHHEM oOOImIell BBICOTHI pa30ueHHs Ha
KOHTeﬁHepLI N YCOBCPUICHCTBOBAHHBIM CIoco0oM YIIaKOBKU MPSAMOYTOJIbBHUKU B
KOHTEUHEpHI.
Aaropurm 4 (Tpyunukos, 2012) [40].
Ilycte N — 3apaHee HW3BECTHOE YHCIO MNPAMOYroNbHUKOB. OO03HaumM d =

VN N

s U= e B ocHOBaHMM TOJOCBI MO JIEBOMY Kpalw  BBLICHAIOTCA

IpSAMOYTONbHBIE 00nacTH (KOHTeHHephl) BhICOTHI U, HIMpuHA i-0ro KOHTeiHepa
i

pasHa —. Ot obmactu oOpasyloT mupaMuay. PaccMOTpuM BTOpYIO NHpaMHLY,

LHEHTPAIFHO CHMMETPUYHYIO AaHHOH OTHOCHTENBHO LEHTpa 00JacTH, KOTopas
Ha4YMHAETCSl OT OCHOBaHMs nupamuzsl, umeeT Boicoty (d + 1)U, a mmupuna paBHa
MIMPHUHE TOJIOCH (CM. puc. 3)

d+1 ropu3oHTaneHaa obnactb
d+1 horizontal areas

N of

Puc. 3. Pazbuenue nonocwvl na KoHmelinepuvl
Fig. 3. Division of the strip into containers

220



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

Kaxnaplii dyeTHBI TPSIMOYTOJIBHHK pa3MeliaeTcss B OAHY NUPaMHUIY, a KaKIbId
HEYeTHBIII — B ApyTyro. lIpn ymakoBKe KaXKIOTO CIETYIONMETO MPSIMOYTOJBHUKA
LIMPUHON W

®  HAXOIUM i. i_Tl <w< é;

e ymeM minj:i <j<d Takoe, 4TO MPSIMOYrOJBGHUK IIOMEIIACTCS B
KOHTECHHEp IMIUPUHOU é;

® €CIH TaKoe j CyIECTBYET, KJIAAEM IMPSIMOYTOJBHUK Ha BEPXHIOKO TPaHb

BEPXHETO MPSIMOYTOJIbHUKA B KOHTEHHEPE IUUPUHON ﬁ;

e yHaye Ha3blBaeM NPSMOYrOJILHHK BBINMABIIMM M KJIaAEM €ro HaBepX
TeKylleH yIaKOBKH.
[IpyHOMNHANEHBIM OTJIMYHEM IaHHOTO aJIrOPUTMa OT €ro Mpe/leCTBEHHUKOB
SBJISIETCS TO, YTO YHCJIO KOHTEHHEPOB (2d) — 3aBHCUT OT YKCIIa NPSIMOYTOJIBHUKOB,
HO HE 3aBHCHUT OT CAMUX NPSIMOYTOJILHHUKOB.
st 3amaum Strip Packing u3BecTHa JMIb OUYEBUAHAS HHIKHSS OIIEHKA, BEpHAsT Kak

1
qust online, tak u quis offline anropurmos: W™ = Q(N2).

6. 3adava Multiple Strip Packing ynakoeku npsiMmoy20/1bHUKO8 8
HECKOJILKO M0oJ10¢c eQUHUYHOU WUPUHbI

JUis  mpakTHYecKMX TpPUIIOKEHWH, Hampumep, JUId 3a4ad  ONTHMM3ALUH B
pacrpeenéHHBIX  BBIYMCIUTENBHBIX cHcTeMax [43] morne3Ho, mepedtu ot
paccMOTpeHusl 3ajaud 00 YIAaKOBKE TPSMOYTOJBLHHKOB B OJHY TIIOJIOCY K
PACCMOTPEHUIO 337a4u 00 YIMaKOBKe MPSIMOYTOJIBHUKOB B HECKOJIbKO monioc (MSP).
B nanHoi#1 3a1a1e NpogyKTHBHA HJes 00 YITaKOBKE HEKOTOPOTo 00beKTa B HANMEHEe
3aII0JHEHHYIO TI0JIOCY, TJie OOBEKTaMH MOTYT OBITh MIENb(bl I IIeNb(HOBBIX
AJITOPUTMOB WJIH BBITIABIINE NPSIMOYTOJILHUKH JJIsL anropuTMoB u3 [40].

6.1 AHanus B xyAlleM crny4vae
PaccmorpuM mienb(OBBIN QITOPUTM YITAKOBKH TMPSIMOYTOJBHHKOB B HECKOJIBKO
H0JIOC, IPEIOKEHHBII B pabote [44].
Aaropurm 5 (Me, Xan, XKanr, 2011) [44]:
e BpiOWpaeM 1enbd, B KOTOPBIA KIAmETCS MPSIMOYTOJIBHUK COTJIACHO
aspucruke Shelf (4,1);
®  cCIM Takoro meib(a He CYIIECTBYET, CO3/IacM HOBBIA IIENb() HaBEpXy
TEKYIIeH YMAaKOBKH B TOJIOCE, 3alOJHEHHOW HE BBINIEC JIIOOOW Ipyroi
TOJIOCHI.
Amnanornuno [35], MOXHO MOJYYUTh CEMEUCTBO IIECIB(POBBIX AJITOPHUTMOB C
ACHMIITOTHYECKOM TOUHOCTBIO R®, cKOJIb yroauo 6iuskoi K [, (M, =~ 1.691).

221



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

Pasmermass ke KaIblii KOHTEMHEpP COIJIACHO ajroputMy u3 paboTtel [36] B
HaFMEHee 3aIlOJIHEHHYIO M0 BBICOTE MOJIOCY, MOXKHO IONYyYUTh mis ciaydas MSP
onenky u3 [36]: Ry < 1.588...

6.2 AHanu3 e cpedHeM
Anroputm 4 MokeT OBITh 000OIIEH Ha ciay4aidl HECKOJIBKMX IOJOC YIMAaKOBKOW
BBIIIABIIUX NIPSMOYTOJBHUKOB B HAUMEHEEe BEICOKO 3aII0JHEHHBIN KOHTEHHED.

B paGore [42] amroputm ObUT 0000INEH Ha Cydaif, KOTIa YHCIO TIOJIOC JUIs
YIAKOBKM 3aBUCHT OT YHMCJIA NPSAMOYIOJLHHKOB. BbUI MNPEIOKEH AITOPUTM

ymakoBku N TpsSMOYrobHHKOB B k moisoc, k < +/N. Jlns Hero Oblma moka3aHa
cllelyrolias Teopema:

Teopema 9 (JIazapes, Ky3wpun, 2017) [42]. IIpu ynakoBke N OpsIMOYrOBHUKOB B

k momoc, k <+/N, amroputM obecrmeumBaeT IUIONAAb  HE3AMOJTHEHHOIO
1

npoctparcta W™ = O(Nzlog N).

Hus 3amaum Multiple Strip Packing, xax w mns 3agaun SP, u3BecTHa JIHIb

OYEBHIHAS HIDKHSIS OllEHKa, BepHas Kak /it online, Tak u mis offline anropurmos:

1
Wn = Q(N3).

7. 3adaya 06 ynakoeke npPsIMOYy20/IbHUKO8 8 [O0J10Chl
pa3uYyHol WupUHbl. AHanu3 e xyowem cry4ae

O6o6mennem 3amaun MSP sBnsiercs 3amaga 00 ymakoBKe NPSMOYTOJNBHHKOB B
MOJIOCHI PA3TMYHON IIUPUHBI.

Jlan wabop nony6eckoneunsix nonoc C = {Cy, ..., C;y}, W; — upuHa -0 TOIOCHL.
B 31u nonockl TpebyeTcsi yrnakoBath 0€3 BpallleHHil M HepecedeHuidl N OTKPBITHIX
npsmMoyroibHUKOB T = {T}, ..., T, }, MUHUMU3HUPYS TIPH ITOM BBICOTY YIAKOBKH.
Otnnurie oT 3amaun MSP 3akimovaercs Jdiie B TOM, YTO HIMPUHA Yy TOJIOC
pasznuuHas.

B [45, 46] 3amaua BnepBble ObUTa paccMoTpeHa JKykoM, W ObUI NpemIoKeH
QITOPUTM, PACHPEIEIAIOUINI IPSIMOYTOJIbHUKH B MOJIOCH B PEXKUME OHIIAWH, a B
[OJIOCAaX  HCHONB3YHOIMd  O(QIaliHOBYIO  OBPUCTHKY JUISL  YIAKOBKH  C
ACHMIITOTHYECKOH TOYHOCTBIO Ry < 10. B [47] mnsa V r € (0,1) Obl1 mpeasioxkeH

o o o 8
IMOJHOCTBIO OHJIAMHOBBIN aJITOPUTM Ar C AaCUMIITOTUYCCKON TOYHOCTBIO RXET) < ;

B [48] Xyk nokaszan, 4to st Jr0OOro OHJIaifHOBOro amroputMa Ry > e, e =
2,7182 ... B pabore [49] OBl mpemTOXKEH OHIAWHOBBIA aIrOPUTM  C

N 2e
ACHMIITOTHYECKON TOYHOCTBIO R < —,V r € (0,1).
T

[peamnonoxum, 9To Wy = -+ = Wy,. [lycth R — npsiMmoyrossHuK ¢ mmmpuHoid w(R).
Ckaxem, urto last(R) = max{k:w, =w(R)}. Pa3obsem Bce BbIIaBLINEC
npsIMOYTONBHUKH {T} Ha M MHOXeCTB My, ..., My,: R € M; & last(R) = i.

222



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

Ecnmn Q — MHOXECTBO NPSIMOYTOJILHUKOB, TO 3a S(Q) 0003HA4YUM CyMMapHYyiO

UTONIA/Ib PSMOYTOJIBHUKOB U3 MHOXKecTBa Q.

sup x& sy
k Z{‘czlwi

pacnpenenenus H, = h.

Onpenenum h(T) = . HetpyaHo noka3zaTh, 4TO BBICOTa ONTUMAIBLHOTO

3a y;(T) 0603HAYNM CYMMapHYIO IUIOLIAAb MPSMOYTOJbHUKOB, MOMABIINX B I-yIO
HOJIOCY TOCJIE BHIMAACHUSI MHOXKECTBa T IPSIMOYTOJIBHUKOB.
Aaropurm 6: 4, (Kyk, 2012) [49].
[Ipu noGaBneHNK OYEPETHOTO MIPSIMOYTONBHIKA R:
e BoruuciasseM h = h(T + {R});

. ; Vi
e ompezaenseM HoMmep monockl K. k = max {l: w(R) < W,-,W—L < eh} (6BUTO
i
JIOKa3aHO, 4TO TaKas [0JI0Ca BCEr/a CYIIECTBYET);

e s pa3MEUICHUS] BHYTPH IIOJIOCHI HCIIONB3yeTCs IIENb(OBBIN aaroputMm
Shelf (r),r <1, pasOuBaroIMii TOJOCY Ha CIIOM BBICOTOM 17,7z € Z;
ANTOPUTM KIAAET MPSIMOYTroNibHUK R BbicoToit h(R) B ciioll BhICOTOM 1%
(r* ' < h(R) <71%), a 119 yNakoBKU B CJIOH HCIOJB3YyeTCs SBPUCTHKA
First Fit.

Jns modydeHWs acHMITOTHYECKOW TOYHOCTH Rj;° HCHOJB3YyeTcs ClexyroIast
JeMMa.

Jlemma. [Ipu ymakoBke IpsSMOYTOJNBEHHKOB BBICOTOM HE OONBINE h,,, CYMMapHOM
wiomaapo S anropurmom Shelf () B mo0Cy MIMPUHBI W BBICOTA YIIAKOBKH

28 1
Hsperry < 72+ hmax (1 + m)

J1st mokaszazaTeNbCcTBa JIEMMBI HY)KHO PACCMOTPETh CIIOH, 3aNI0JTHEHHBIE MEHEE YeM
w

Ha — M0 WIMPHHE, CIIOW, 3aNONHEHHbIC Ooiee YeM HAIMOJIOBUHY IO IMUPWHE, U

MOCJIEIHUI CIIOH.

W3 neMMmbl momydaem, YTO s airoput™Ma A,  MYJIBTHIUIMKaTHBHAS
ACHMIITOTHYECKasi TOYHOCTh Ry < 2e.

8. 3aknro4yeHue

Knaccuueckas 3aiaua Bin Packing ouens xopoliio u3yueHa: npu aHajau3e B Xy/IIeM
cilydae IMOKa3aHo, 4To JJIs JIFo00ro omyaiiHoBoro amroputma R® = 1.540, u Obut
npetokeH anroput™ ¢ R < 1.589. Ipu aHanu3e B cpeaHEM Kak B CiIydae OpPen-
end, Tak u B ciuydae closed-end GbuTH TIpeTOKEHBI ANTOPUTMBI, y KOTOPBIX
MaTeMaTHYECKOE  OKUAAaHWE  IUIOMIAAM  HE3alOJHEHHOTO  MPOCTPAHCTBA
KOHTeHHepoB W™ mMeeT HeyIydIaeMyto aCUMIITOTHKY.

OnHako MHOTHE 000OIIEHYSI ATOW 3a/1a4l aKTUBHO M3y4aloTCs B HACTOSIIEE BPEMSI,
U MHOTHE PE3YJbTaThl €lIe MPEICTOUT IOJIY4nTh. B 4acTHOCTH, B MHOTOMEPHOM

223



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

0606mennn Multidimensional Bin Packing samaun Bin Packing mpu ananuse B
CpelHEM HEM3BECTHBI HIDKHHE OIIEHKH, KpoMe oueBHIHbIX W™ = 0(\/n).

B 3agagax Strip Packing u Multiple Strip Packing npu ananuse B xyaiiem ciydae
ObLT npeuiokeH anroput™ ¢ R < 1.589, a npu ananuse B cpenuem B closed-end
ciydae, 6bin mpemiosken anmroput™ ¢ W™ = 0(v/nlnn), omHako mpu aHanmse B
MOCTaHOBKE Open-end Hew3BecTHA HIDKHsIA omeHka W™, myunras W = Q(\/ﬁ), U
Hem3BecTeH anroput™ ¢ W = o(n?/?).

3amaya yMakoBKH MPSIMOYTOJBHUKOM B TIOJMOCHI PAa3iMYHOW IIMPHUHBI AKTUBHO
HCCIeaoBalaCh B XyJUIEM Clydae, OJZHAKO B CpPEJHEM 3ajada emie He OblIa
NpOaHATM3HPOBAHA.

Cnucok nutepaTtypbl

[1]. Macco6puo P., Hecmaunor C., UepHbix A., ABetucsH A., Pamuenko I'. Tlpumenenue
00JIaYHBIX BBIYMCIIEHHIMA JUIA aHajiu3a JaHHBIX 60JILIIOro 00BEMA B YMHBIX TropoJax.
Tpynst UCIT PAH, Tom 28, Bbmn. 6, 2016 r., crp. 121-140, DOI: 10.15514/ISPRAS-
2016-28(6)-9

[2]. Annukun A.C., CemenoB B.A. Maremarnueckas (GpopManusanus 3a1ad MPOSKTHOTO
IUIAHUPOBAHUA B paciiupeHHoi nmocranoBke. Tpyast UCIT PAH,Tom 29, Bem. 2, 2017 1.,
crp. 231-256. DOI: 10.15514/ISPRAS-2017-29(2)-9

[3]. 3enenoBa C.A., 3eneno C.B. Kpurepuii cymiecrBoBanus OeCKOH(IMKTHOTO
pacIucaHus sl CUCTEMBl cTporo mepuonuueckux 3agad. Tpyxael MCIT PAH, tom 29,
BbIIL 6, 2017 1., ctp. 183-202. DOI: 10.15514/ISPRAS-2017-29(6)-10

[4]. Ghalam L., Grosu D. A Parallel Approximation Algorithm for Scheduling ldentical
Machines. In IEEE International Parallel and Distributed Processing Symposium
Workshops, 2017, pp. 619-628

[5]. Sheikhalishahi M., Wallace R. M., Grandinetti L., Vazquez-Poletti J. L., Guerriero F. A
multi-dimensional job scheduling. Future Generation Computer Systems, vol. 54, 2016,
pp. 123-131

[6]. Tchernykh A., Schwiegelshohn U., Yahyapour R., Kuzjurin N. On-line hierarchical job
scheduling on grids with admissible allocation. Journal of Scheduling, 2010, vol. 13,
issue 5, pp. 545-552

[7]. Tshernykh A., Ramirez J.M., Avetisyan A., Kuzjurin N., Grushin D., Zhuk S. Two-
Level Job-Scheduling strategies for a Computational Grid. Lecture Notes in Computer
Science book series, vol. 3911, pp. 774-781

[8]. Cohil B., Shah S., Goleshha Y., Patel D. A Comparative Analysis of Virtual Machine
Placement Techniques in the Cloud Environment. International Journal of Computer
Applications, vol. 156, no. 14, 2016, pp. 12-18

[9]. Garey M.R., Johnson D.S. Computers and intractability: a guide to the theory of NP-
completeness. Freeman: San Francisco, 1979, 338 p.

[10]. Johnson D.S. Near-optimal Bin Packing Algorithms. PhD Thesis, Massachusetts
Institute of Technology, Department of Mathematics, Cambridge, 1973. 401 p.

[11]. Johnson D.S., Demers A., Ullman J.D., Garey M.R., Graham R.L. Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM Journal
on computing, vol. 3, issue 4, 1974, pp. 299- 325

224



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

[12].

[13].

[14].

[15].

[16].
[17].

[18].

[19].

[20].

[21].

[22].

[23].
[24].

[25].

[26].

[27].

[28].

[29].

Garey M.R. Graham R.L., Ullman J.D., Worst-case analysis of memory allocation
algorithms. Proceedings of the fourth annual ACM symposium on theory of computing.
1972, pp. 143-150

Garey M.R., Graham R.L., Johnson D.S., Yao A.C. Resource constrained scheduling as
generalized bin packing. Journal of Combinatorial Theory, Series A, vol. 21, issue 3,
1976, pp. 257-298

Yao A.C. New Algorithms for Bin Packing. Journal of the ACM, vol. 27, issue 2, 1981,
pp. 207-227

Gambosi G., Postiglione a., Talamo M.M. New algorithms for online Bin Packing. In
Proceedings of the First Italian Conference on Algorithms and Complexity, 1990, pp.
44-59

Ivcovi¢ Z. and Lloyd E. Fully dynamic algorithms for Bin Packing: Being (mostly)
myopic helps. Lecture Notes in Computer Science, vol. 726, pp. 224-235

Seiden S.S. On the Online Bin Packing Problem. Lecture Notes in computer science,
vol. 2076, 2002, pp. 207-227

Brown J.D. A lower Bound for On-Line One Dimensional Bin Packing Algorithms.
Technical Report R-864, coordinated Science laboratory, University of Illinois, Urbana,
IL, 1979.

Vliet A. An improved lower bound for on-line bin packing algorithms. Information
Processing Letters, vol. 43, issue 5, 1992, pp. 277-284

Breitgand D., Epstein A. Improving consolidations of virtual machines with risk-aware
Bandwidth oversubscription in compute clouds. In Proceedings of the IEEE INFCOM,
2012, pp. 2861-2865

Ajtai M., Komlés J., Tusnadi G. On Optimal Matchings. Combinatorica, vol. 4, issue 4,
1984, pp. 259-264

Karp R.M., Luby M., Marchetti-Spaccamela A. A probabilistic analysis of
multidimensional bin packing problem. In Proceedings of the sixteen annual ACM
symposium on theory of computing, 1984, pp.289-298

Coffman E.G., Shor P.W. A Simple Proof of the sqrt(n log3/4 n) Upright Matching
Bound. SIAM Journal on Discrete Mathematics, vol. 4, issue 1, 1991, pp. 48-57

Shor P.W. The average-case analysis of some on-line algorithms for bin packing.
Combinatorica, vol. 6, issue 4, 1986, pp. 179-200

Leighton F.T., Shor P. Tight bonds for minimax grid matching, with application to the
average-case analysis of algorithms. In Proceedings of the eighteenth Annual ACM
symposium on theory of computing, 1986 , pp. 91-103

Coffman E.G., Courcoubetis C., Garey M.R., Johnson D.S., McGeoch L.A., Shor P.W.,
Weber R. and Yannakakis M. Fundamental discrepancies between average-case analysis
under discrete and continuous distributions: a bin packing study. In Proceedings of the
Twenty-first Annual ACM symposium on theory of computing, 1991, pp. 230-240

Shor P.W. How to pack better than Best Fit: tight bounds for average-case online Bin
Packing. In Proceedings 32™ of the Annual Symposium of foundations of Computer
Science, 1991, pp. 752-759

Galambos G., A. van Vliet. Lower bounds for 1-, 2-, and 3- dimensional on-line bin
packing algorithms. Computing, vol. 52, issue 3, 1994, pp. 281-297

Han X., Chin F.Y.L., Ting H.-F., Zhang G., Zhang Y. A new upper bound 2.5545 on 2D
Online Bin Packing. ACM Transactions on algorithms, vol. 7, issue 4, 2011, article No.
50

225



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

[30].

[31].

[32].

[33].
[34].
[35].
[36].
[37].

[38].

[39].

[40].

[41].

[42].

[43].

[44].
[45].
[46).
[47].

[48].

226

Csirik J., A. van Vliet. An on-line algorithm for multidimensional bin packing.
Operation Research Letters, vol. 13, issue 3, 1993, pp. 149-158

Epstein I, R. van Stee. Optimal Online Algorithms for Multidimensional Packing
Problems. In Proceedings of the Fifteenth Annual ACM-CIAM Symposium on Discrete
algorithms, 2004, pp. 214-223

Chang E-C, Wang W., Kankanhalli M.S. Multidimensional on-line bin-packing: An
algorithm and it’s average-case analysis. Information Processing Letters, vol. 48, issue
3,1993, pp. 121-125

Baker B.S., Coffman E.G., Rivest R.L. Orthogonal Packings in Two Dimensions. SIAM
Journal on Computing, vol. 9, issue 4, 1980, pp. 846-855

Baker B.S., Schwarz J.S. Shelf algorithms for two-dimensional packing problems.
SIAM Journal on Computing, vol. 12, issue 3, 1983, pp. 508-525

Csirik J., Woeginger G.J. Shelf algorithms for on-line strip packing. Information
Processing Letters, vol. 63, issue 4, 1997, pp. 171-175

Han X., lwama K., Ye d., Zhang G. Strip Packing vs Bin Packing. Lecture Notes in
Computer Science, vol. 4508, 2007, pp. 358-367

Coffman E.G., Shor P.W. Packing in two dimensions: Asymptotic average-case analysis
of algorithms. Algorithmica, vol. 9, issue 3, 1993, pp. 253-277

Kystopur H.H., IlocmenoB A.J1. BeposTHOCTHBIM aHaInM3 pas3iHybIX HIETb(OBBIX
ITOPUTMOB YIAKOBKU MPSAMOYroJbHUKOB B monocy. Tpynsr UCIT PAH, Tom 12, 2007
r., ctp. 17-26

Kystopur H.H., ITocienos A.H1. BeposTHOCTHBII aHaTN3 HOBOTO Kiacca ajlrOPHTMOB
YIaKOBKH MPSMOYTOJIBHUKOB B TI00Cy. JK. BEIYUCI. MaTeM. U MateM. ¢u3., Tom 51, no.
10, 2011, ctp. 1931-1936

TpyunukoB M.A. O6 ognoit 3amaue Koddmana-Illopa, cBsizaHHOW ¢ ymakOBKOH
npsiMoyroipHUKOB B nonocy. Tpynast MUCIT PAH, Tom 22, 2012 r., ctp. 456-462, DOI:
10.15514/ISPRAS-2012-22-24

TpymnukoB M.A. BeposTHOCTHBI  aHaJW3 HOBOTO  QITOpUTMa  YHAKOBKHU
npsMoyroiasHUKOB B monocy. Tpynsr MUCIT PAH, Tom 24, 2013 r., ctp. 457-468, DOI:
10.15514/ISPRAS-2013-24-21

Jlazapes [1.0., Kystopua H.H. AnropuT™m ymakoBKH NPSIMOYTOJEHHUKOB B HECKOJIBKO
nosoc ¥ aHanu3 ero TouHoctd B cpexneM. Tpyxasr UCII PAH, Tom 29, Beim. 6, 2017 1.,
crp. 221-228, DOI: 10.15514/ISPRAS-2017-29(6)-13

Kystopun H.H., I'pymn [.A., @omun A. IIpoGieMs!l AByMEepHOI yIakoBKU U 3a1add
ONTUMM3ALMY B PACIpeeIEHHBIX BEIYMCIUTENBHBIX cucTeMax. Tpynsl MCII PAH, Tom
26, Bbim. 1, 2014 1., ctp. 483-502, DOI: 10.15514/ISPRAS-2014-26(1)-21

Ye D., Han X., Zhang G. Online multiple-strip packing. Theoretical Computer Science,
vol. 412, issue 3, 2011, pp. 233-239

Zhuk S.N. Approximation algorithms for packing rectangles into several strips. Discrete
Mathematics and Applications, vol. 16, issue 1, 2006, pp. 73-85

Kyxk C.H. AHanu3 HEKOTOpPBIX 3BPUCTHK YMAKOBKH TNPSIMOYTONBHUKOB B HECKOJIBKO
nonoc. Tpyznet UCIT PAH, Tom 6, 2004 r., cTp. 13-26

Kyx C.H. OHnaitHOBBIH aNropuT™M ymakoBKH MPSMOYTOJbHUKOB B HECKOJBKO IOJIOC C
rapaHTHPOBAaHHEIMU olleHKamMu TouHoctd. Tpynst UCII PAH, Tom 12, 2007 ., cTp. 7-16
Zhuk S.N. On-line algorithms for packing rectangles into several strips. Discrete
Mathematics and Applications, vol. 17, issue 5, 2007, pp. 517-531



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

Kyx C.H. O mocrpoeHun pacnucaHuil BBIIOJIHEHMs IapajUIC/IbHBIX 3a/lad Ha IpyIiax
KJIaCTepOB C pa3nu4yHoi mpousBogurensHocThio. Tpyner MCIT PAH, Tom 23, 2012 r.,
ctp. 447-454, DOI: 10.15514/ISPRAS-2012-23-27

On on-line algorithms for Bin, Strip and Box Packing,
and their worst- and average-case analysis

12p.0. Lazarev <dennis810@mail.ru>
LZN.N. Kuzjurin <nnkuz@ispras.ru>
! lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
> Moscow Institute of Physics and Technology,
Dolgoprudnyj, Institutskij alley, Moscow region, 141700, Russia

Abstract. In this survey, online algorithms for such packing problems as Bin Packing, Strip
Packing and their generalizations, such as Multidimensional Bin Packing, Multiple Strip
Packing and packing into strips of different width were considered. For the latter problem
only worst-case analysis was described, for all other problems, both worst-case and average
case (probabilistic analysis) asymptotical ratios were considered. Both lower and upper bonds
were described. Basic algorithms and methods for their analysis were considered. For worst-
case analysis of the Bin Packing Problem it was shown that for any online algorithm R® >
1.540, and an algorithm with R* < 1.589 was obtained. Both approaches for analyzing the
algorithm and obtaining the lower bonds were discussed. Also it was shown that First Fit
. . . . . . 17 .
algorithm for Bin Packing has asymptotical competitive ratio of o For average case analysis
in the case when object’s sizes have a uniform distribution on [0, 1] in open-end analysis a
construction for obtaining both lower bound of W™ = 2(vnlnn) and algorithm with
W™ = 6(vnlnn) was shown. In the case of closed-end analysis an algorithm with W™ =
0(v/n) was described. For Multidimensional Bin Packing with d dimensions an algorithm
with R® = (I1)<, where 1'[ ~ 1.691, was obtained. For average case analysis an

algorithm with W7 = O(nd+2) was shown. For worst-case analysis of Strip Packing Problem
and Multiple Strip Packing Problem algorithms with R < 1.589 were also obtained. For
the closed-end average case analysis algorithms with W™ = @(v/n Inn) were described. For
the open-end average case analysis of Strip Packing Problem an algorithm with W™ =

2
o (ni) was considered. For generalization of Multiple Strip Packing Problem, where strips

have different widths, an online algorithm with R® < ZT_e forany r < 1, where e = 2.718 ...,
was described.

Keywords: Bin Packing; Multidimensional Bin Packing; Strip Packing; Multiple Strip
Packing; Packing in Strips of different width; probabilistic analysis; worst-case analysis.

DOI: 10.15514/ISPRAS-2018-30(4)-14

227



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

For

citation: Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box

Packing, and their worst- and average-case analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 4, 2018. pp. 209-230 (in Russian). DOI: 10.15514/ISPRAS-2018-30(4)-14

References

[1].

2.

[3].

[4].

[5].

[6].

[71.

[8].

[91.
[10].

[11].

[12].

[13].

[14].

228

Massobrio R., Nesmachnow S., Tchernykh A., Avetisyan A., Radchenko G. Towards a
Cloud Computing Paradigm for Big Data Analysis in Smart Cities. Trudy ISP
RAN/Proc.ISP RAS, vol. 28, issue 6, 2016. pp. 121-140 (in Russian). DOI:
10.15514/ISPRAS-2016-28(6)-9

Anichkin AS., Semenov V.A. Mathematical formalization of project scheduling
problems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 2, 2017. pp. 231-256 (in
Russian). DOI: 10.15514/ISPRAS-2017-29(2)-9

Zelenova S.A., Zelenov S.V. Non-conflict scheduling criterion for strict periodic tasks.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017. pp. 183-202 (in Russian). DOI:
10.15514/ISPRAS-2017-29(6)-10

Ghalam L., Grosu D. A Parallel Approximation Algorithm for Scheduling ldentical
Machines. In IEEE International Parallel and Distributed Processing Symposium
Workshops, 2017, pp. 619-628

Sheikhalishahi M., Wallace R. M., Grandinetti L., Vazquez-Poletti J. L., Guerriero F. A
multi-dimensional job scheduling. Future Generation Computer Systems, vol. 54, 2016,
pp. 123-131

Tchernykh A., Schwiegelshohn U., Yahyapour R., Kuzjurin N. On-line hierarchical job
scheduling on grids with admissible allocation. Journal of Scheduling, 2010, vol. 13,
issue 5, pp. 545-552

Tshernykh A., Ramirez J.M., Avetisyan A., Kuzjurin N., Grushin D., Zhuk S. Two-
Level Job-Scheduling strategies for a Computational Grid. Lecture Notes in Computer
Science book series, vol. 3911, pp. 774-781

Cohil B., Shah S., Goleshha Y., Patel D. A Comparative Analysis of Virtual Machine
Placement Techniques in the Cloud Environment. International Journal of Computer
Applications, vol. 156, no. 14, 2016, pp. 12-18

Garey M.R., Johnson D.S. Computers and intractability: a guide to the theory of NP-
completeness. Freeman: San Francisco, 1979, 338 p.

Johnson D.S. Near-optimal Bin Packing Algorithms. PhD Thesis, Massachusetts
Institute of Technology, Department of Mathematics, Cambridge, 1973. 401 p.

Johnson D.S., Demers A., Ullman J.D., Garey M.R., Graham R.L. Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM Journal
on computing, vol. 3, issue 4, 1974, pp. 299- 325

Garey M.R. Graham R.L., Ullman J.D., Worst-case analysis of memory allocation
algorithms. Proceedings of the fourth annual ACM symposium on theory of computing.
1972, pp. 143-150

Garey M.R., Graham R.L., Johnson D.S., Yao A.C. Resource constrained scheduling as
generalized bin packing. Journal of Combinatorial Theory, Series A, vol. 21, issue 3,
1976, pp. 257-298

Yao A.C. New Algorithms for Bin Packing. Journal of the ACM, vol. 27, issue 2, 1981,
pp. 207-227



Jlazapes J1.0., Kystopux H.H. O6 OHJIaifHOBBIX aJIrOpHTMaXx Ul 3a/1a4 yIAKOBKH B KOHTCHHEPHI H TOJNIOCHI, UX aHAJIN3e
B XyALIEM cliydae u B cpenaeM. Tpyoer UCIT PAH, Tom 30, Beim. 4, 2018 r., ctp. 209-230

[15].

[16].
[17].

[18].

[19].

[20].

[21].

[22].

[23].
[24].

[25].

[26].

[27].

[28].

[29].

[30].

[31].

[32].

Gambosi G., Postiglione a., Talamo M.M. New algorithms for online Bin Packing. In
Proceedings of the First Italian Conference on Algorithms and Complexity, 1990, pp.
44-59

Ivcovi¢ Z. and Lloyd E. Fully dynamic algorithms for Bin Packing: Being (mostly)
myopic helps. Lecture Notes in Computer Science, vol. 726, pp. 224-235

Seiden S.S. On the Online Bin Packing Problem. Lecture Notes in computer science,
vol. 2076, 2002, pp. 207-227

Brown J.D. A lower Bound for On-Line One Dimensional Bin Packing Algorithms.
Technical Report R-864, coordinated Science laboratory, University of Illinois, Urbana,
IL, 1979.

Vliet A. An improved lower bound for on-line bin packing algorithms. Information
Processing Letters, vol. 43, issue 5, 1992, pp. 277-284

Breitgand D., Epstein A. Improving consolidations of virtual machines with risk-aware
Bandwidth oversubscription in compute clouds. In Proceedings of the IEEE INFCOM,
2012, pp. 2861-2865

Ajtai M., Komlés J., Tusnadi G. On Optimal Matchings. Combinatorica, vol. 4, issue 4,
1984, pp. 259-264

Karp R.M., Luby M., Marchetti-Spaccamela A. A probabilistic analysis of
multidimensional bin packing problem. In Proceedings of the sixteen annual ACM
symposium on theory of computing, 1984, pp.289-298

Coffman E.G., Shor P.W. A Simple Proof of the sqrt(n log3/4 n) Upright Matching
Bound. SIAM Journal on Discrete Mathematics, vol. 4, issue 1, 1991, pp. 48-57

Shor P.W. The average-case analysis of some on-line algorithms for bin packing.
Combinatorica, vol. 6, issue 4, 1986, pp. 179-200

Leighton F.T., Shor P. Tight bonds for minimax grid matching, with application to the
average-case analysis of algorithms. In Proceedings of the eighteenth Annual ACM
symposium on theory of computing, 1986 , pp. 91-103

Coffman E.G., Courcoubetis C., Garey M.R., Johnson D.S., McGeoch L.A., Shor P.W.,
Weber R. and Yannakakis M. Fundamental discrepancies between average-case analysis
under discrete and continuous distributions: a bin packing study. In Proceedings of the
Twenty-first Annual ACM symposium on theory of computing, 1991, pp. 230-240

Shor P.W. How to pack better than Best Fit: tight bounds for average-case online Bin
Packing. In Proceedings 32™ of the Annual Symposium of foundations of Computer
Science, 1991, pp. 752-759

Galambos G., A. van Vliet. Lower bounds for 1-, 2-, and 3- dimensional on-line bin
packing algorithms. Computing, vol. 52, issue 3, 1994, pp. 281-297

Han X., Chin F.Y.L., Ting H.-F., Zhang G., Zhang Y. A new upper bound 2.5545 on 2D
Online Bin Packing. ACM Transactions on algorithms, vol. 7, issue 4, 2011, article No.
50

Csirik J., A. van Vliet. An on-line algorithm for multidimensional bin packing.
Operation Research Letters, vol. 13, issue 3, 1993, pp. 149-158

Epstein I., R. van Stee. Optimal Online Algorithms for Multidimensional Packing
Problems. In Proceedings of the Fifteenth Annual ACM-CIAM Symposium on Discrete
algorithms, 2004, pp. 214-223

Chang E-C, Wang W., Kankanhalli M.S. Multidimensional on-line bin-packing: An
algorithm and it’s average-case analysis. Information Processing Letters, vol. 48, issue
3, 1993, pp. 121-125

229



Lazarev D.O., Kuzjurin N.N. On on-line algorithms for Bin, Strip and Box Packing, and their worst- and average-case
analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 209-230

[33]

[34].
[35].
[36].
[37].

[38].

[39].

[40].

[41].

[42].

[43].

[44].
[45].
[46).
[47].
[48].

[49].

. Baker B.S., Coffman E.G., Rivest R.L. Orthogonal Packings in Two Dimensions. SIAM
Journal on Computing, vol. 9, issue 4, 1980, pp. 846-855

Baker B.S., Schwarz J.S. Shelf algorithms for two-dimensional packing problems.
SIAM Journal on Computing, vol. 12, issue 3, 1983, pp. 508-525

Csirik J., Woeginger G.J. Shelf algorithms for on-line strip packing. Information
Processing Letters, vol. 63, issue 4, 1997, pp. 171-175

Han X., lwama K., Ye d., Zhang G. Strip Packing vs Bin Packing. Lecture Notes in
Computer Science, vol. 4508, 2007, pp. 358-367

Coffman E.G., Shor P.W. Packing in two dimensions: Asymptotic average-case analysis
of algorithms. Algorithmica, vol. 9, issue 3, 1993, pp. 253-277

Kuzjurin N.N., Pospelov A.l. Probabilistic analysis of different shelf algorithms for
packing rectangles into a strip. Trudy ISP RAN/Proc. ISP RAS, vol. 12, 2007, pp. 17-26
(in Russian)

Kuzyurin N.N., Pospelov A.l. Probabilistic analysis of a new class of strip packing
algorithms. Comput. Math. and Math. Phys., vol. 51, issue 10, 2011, article no. 1817
Trushnikov M.A. On one problem of Koffman-Shor connected to strip packing problem.
Trudy ISP RAN/Proc. ISP RAS, vol. 22, 2012, pp. 456-462 (in Russian). DOI:
10.15514/ISPRAS-2012-22-24

Trushnikov M.A. Probabilistic analysis of a new strip packing algorithm. Trudy ISP
RAN/Proc. ISP RAS, vol. 24, 2013, str. 457-468 (in Russian). DOI: 10.15514/ISPRAS-
2013-24-21

Lazarev D.O., Kuzyrin N.N. An algorithm for Multiple Strip Package and its average
case evaluation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017. pp. 221-228 (in
Russian). DOI: 10.15514/ISPRAS-2017-29(6)-13

Kuzjurin N.N., Grushin D.A., Fomin A. Two-dimensional packing problems and
optimization in distributed computing systems. Trudy ISP RAN/Proc. ISP RAS, vol. 26,
issue 1, 2014, pp. 483-502 (in Russian). DOI: 10.15514/ISPRAS-2014-26(1)-21

Ye D., Han X., Zhang G. Online multiple-strip packing. Theoretical Computer Science,
vol. 412, issue 3, 2011, pp. 233-239

Zhuk S.N. Approximation algorithms for packing rectangles into several strips. Discrete
Mathematics and Applications, vol. 16, issue 1, 2006, pp. 73-85

Zhuk S.N. Analysis of some heuristics of packing rectangles into several strips. Trudy
ISP RAN/Proc. ISP RAS, vol. 6, 2004, pp. 13-26 (in Russian)

Zhuk S.N. Online algorithm for packing rectangles into several strips with guaranteed
accuracy estimates. Trudy ISP RAN/Proc. ISP RAS, vol. 12, 2007, pp. 7-16 (in Russian)
Zhuk S.N. On-line algorithms for packing rectangles into several strips. Discrete
Mathematics and Applications, vol. 17, issue 5, 2007, pp. 517-531

Zhuk S.N. On-line algorithm for scheduling parallel tasks on a group of related clusters.
Trudy ISP RAN/Proc. ISP RAS, vol. 23, 2012, pp. 447-454 (in Russian). DOI:
10.15514/ISPRAS-2012-23-27

230



