H C I I Huctutytr Cucremuoro IlporpaMmmupoBaHus
Poccuiickoii AKageMHH HaAYK
I I ——

ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)

Tpyabl
NucTuryTa CHCTEMHOIO
IIporpammupoBanusa PAH

Proceedings of the
Institute for System
Programming of the RAS

Tom 29, Bbimyck 4

Volume 29, issue 4

Mocksa 2017

ISSN 2079-8156 (Print), ISSN 2220-6426 (Online)
Tpyabl UHCcTUTYTA cuctemHoro nporpammupoBaHust PAH

Proceedings of the Institute for System Programming of the RAS

Tpyast UCII PAH — 510 u3nanue ¢ a1BoitHOM
AQHOHHMMHOMW CUCTEMOM pEelleH3UpOBaHMU,
myOMKyrolee HayqHbIe CTaTbU, OTHOCSIIHECS
KO BCEM 00J1aCTAX CHCTEMHOTO
MIPOTrPaMMHPOBAHUSI, TEXHOIOTHI
MIPOTPaMMHPOBAHUS U BEIMHCIUTEILHOM
TeXHUKH. Lenbio n3aanus sBisieTcs
(hopMHpOBaHHE HAYYHO-HH(POPMALTUOHHOM
CpPEebI B 3TUX OONIACTAX ITyTEM ITyOIUKAIIHN
BBICOKOKAYECTBEHHBIX CTAaTEH B OTKPHITOM
JIOCTYIIE.
M3nanue npeaHa3HaueHO IS HCCIIeioBaTeNeH,
CTYJICHTOB U aCIIUPAHTOB, a TAKXKE IPAKTHKOB.
OHO 0XBAaTHIBACT IIUPOKUIT CIIEKTP TEM,
BKJTIOYAsi, B YACTHOCTH, CIETYIOIIHE:
® OIlepalOHHBIC CHCTEMBI;
e KOMIMIATOPHBIC TEXHOJOTHUH;
e (0a3bl JaHHBIX U HHPOPMAIIHOHHBIC
CHCTEMBI;
e mapajenbHBIC U PacTIpe/eTIeHHbIe
CHCTEMBI;
e aBTOMaTH3MPOBaHHas pa3zpaboTka
IpOTpamMm;
e BepuduKanus, BaTUIANMI
TECTHPOBAHNE;
CTaTHYECKUHA ¥ THHAMAYECKUN aHaIIN3;
3auTa 1 obecredeHre 6e30macHOCTH
T10;
KOMIIBIOTEPHBIE aJITOPUTMBI;
I/ICKyCCTBGHHbIl\/’I HWHTCJIJICKT.
KypHan nzgaercs no 0JHOMY TOMY B TOJ,
IIECTH BBIITYCKOB B KaXJOM TOME.
Tonnep>xuBaeTcst OTKPHITHIN JOCTYM K
COZIEPKAHMIO M3/IaHUs, 0OecTIeunBast
JIOCTYITHOCTh PE3yJIbTAaTOB UCCIIEAOBAHUHN IS
OOIIECTBEHHOCTH U MOJICPIKUBAsT TI100aIbHBII
00MeH 3HaHUSIMU.
Tpynst UCIT PAH pedepupyrorest n/unm
UHJIEKCHUPYIOTCS B:

Proceedings of ISP RAS are a double-
blind peer-reviewed journal publishing
scientific articles in the areas of system
programming, software engineering, and
computer science. The journal's goal is to
develop a respected network of knowledge
in the mentioned above areas by
publishing high quality articles on open
access.

The journal is intended for researchers,
students, and practitioners. It covers a
wide variety of topics including (but not
limited to):

e Operating Systems.

Compiler Technology.

Databases and Information Systems.
Parallel and Distributed Systems.
Software Engineering.

Software Modeling and Design
Tools.

Verification, Validation, and Testing.
Static and Dynamic Analysis.
Software Safety and Security.
Computer Algorithms.

Artificial Intelligence.

The journal is published one volume per
year, six issues in each volume.

Open access to the journal content allows
to provide public access to the research
results and to support global exchange of
knowledge. Proceedings of ISP RAS is
abstracted and/or indexed in:

Go ugle ULRICHS\VEE

scholar

CYBERLENINKR 5> Worldcat
vease OpenDOAR
¢|.|BRAR RU B28%

y e

[
8

ros

VIK004.45

Penxosierus

TnaBHbli pegakTop - Aserrcsan ApyTion Mixanosuy,
ueH-kopp. PAH, a.¢.-m.u., UCIT PAH (Mocksa,
Poccuiickas eneparms)

3aMecTHTeNIb [VIABHOT0 pefakTopa - Kysueios Cepreii
JIMuTpresnd, 1.T.H., mpodpeccop, UCIT PAH (Mocksa,
Poccuiickas eneparms)

Bypaonos Mrops bopucosnd, a.¢.-m.1., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Bopoukos Aujpeii Anaronbesnd, 1.¢.-M.H., npodeccop,
Vuuepcurer Manuecrepa (Mandectep, BennkoOpuranust)
Bupouukaiite Mpuna bonasentyposna, npodeccop, 1.¢.-
M.H., UHCTHTYT crcTeM HHGOpMATHKH UM. akagemuka A.IT.
Epmosa CO PAH (Hosocu6upck, Poccus)

Laiicapsi Cepreii Cypenosn, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas ®eneparus)

Eprymenxo Huna Biammvipossa, npodeccop, A.T.H., TI'Y
(Tomck, Poccuiickas denepars)

Kapnos Jleonn Esrensesny, 1.1.4., UCIT PAH (Mocksa,
Poccuiickas ®eneparms)

Komnnos Urops Bragnvnposnd, K.¢.-M.H., TexHHIeCKHit
ynuBepcuteT Bews (Bena, ABctpust)

Kocaues Anekcanp Cepreesnd, k.¢.-m.H., UCIT PAH
(Mocksa, Poccuiickas deneparius)

Kystopun Hukonaii Hukonaesuy, a.¢.-m.H., UCI1 PAH
(Mocksa, Poccuiickas deneparius)

Jlactosenxuii Anexceit Jleonnaosnd, a.¢.-M.H., Tpodeccop,
Yuusepcurer yomuna (Jly6mun, Upnanans)

Jlomaszosa Mpnna Anexcanjposna, 1.¢.-M.H., mpodeccop,
Harmonansnelit nccnenoBaTenbCcKuii ynusepcuteT «Bricmas
mkosa skoHoMHKH» (Mocksa, Poccuiickas ®enepars)
Hosukos Bopuc Acenosud, a.¢.-M.H., npodeccop, CaHKT-
TlerepOyprekuii rocynapctBeHHslit yuusepeuteT (CaHKT-
IletepOypr, Poccust)

Ilerpenko Anekcanap Koncrantnnosud, x.¢.-m.H., ICIT
PAH (Mocksa, Poccuiickas ®eneparus)

Ilerpenko Anexcanap ®enoposny, a.¢.-M.H.,
HccaenoBarenbekuit HHCTUTYT MoHpeans (MoHpeais,
Kanana)

Cemenos Burammii Anons(osud, a.¢.-M.H., npodeccop,
HCIT PAH (Mockga, Poccuiickas denepanms)

Lovmin Anexcanyp Hukonaesny, 1.¢.-M.H., mpodeccop,
WCIT PAH (Mocksa, Poccuiickas denepanms)

Yepubix Annpeit, A.¢.-M.H., mpodeccop, Hayuno-
uccnenosarensckuii ueHTp CICESE (Dncenana, Humkuss
Kamudopuus, Mekcuka)

[luutman Bukrop 3unossesnd, a.1.4., UCIT PAH (Mocksa,
Poccuiickas eneparms)

Ilycrep Accad, a.¢.-M.H., npodeccop, Texnuon —
W3paunbcknii TexHonornyeckuit mHcTUTYT Technion
(Xaiita, Uzpanns)

Anpec: 109004, r. Mocksa, yi1. A. ComKeHHUIBIHA, TOM
25.

Tenedon: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Caitr: http://www.ispras.ru/proceedings/

Editorial Board

Editor-in-Chief - Arutyun I. Avetisyan, Corresponding
Member of RAS, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Deputy Editor-in-Chief - Sergey D. Kuznetsov, Dr. Sci.
(Eng.), Professor, Institute for System Programming of the
RAS (Moscow, Russian Federation)

Igor B. Burdonov, Dr. Sci. (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Andrei Chernykh, Dr. Sci., Professor, CICESE Research Centre
(Ensenada, Lower California, Mexico)

Sergey S. Gaissaryan, PhD (Phys.—Math.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Leonid E. Karpov, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)

Igor Konnov, PhD (Phys.—Math.), Vienna University of
Technology (Vienna, Austria)

Alexander S. Kossatchev, PhD (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Nikolay N. Kuzyurin, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexey Lastovetsky, Dr. Sci. (Phys.—Math.), Professor, UCD
School of Computer Science and Informatics (Dublin, Ireland)
Irina A. Lomazova, Dr. Sci. (Phys.—Math.), Professor, National
Research University Higher School of Economics (Moscow,
Russian Federation)

Boris A. Novikov, Dr. Sci. (Phys.—Math.), Professor, St.
Petersburg University (St. Petersburg, Russia)

Alexander K. Petrenko, Dr. Sci. (Phys.—Math.), Institute for
System Programming of the RAS (Moscow, Russian
Federation)

Alexandre F. Petrenko, PhD, Computer Research Institute of
Montreal (Montreal, Canada)

Assaf Schuster, Ph.D., Professor, Technion - Israel Institute of
Technology (Haifa, Israel)

Vitaly A. Semenov, Dr. Sci. (Phys.—Math.), Professor, Institute
for System Programming of the RAS (Moscow, Russian
Federation)

Victor Z. Shnitman, Dr. Sci. (Eng.), Institute for System
Programming of the RAS (Moscow, Russian Federation)
Alexander N. Tomilin, Dr. Sci. (Phys.—Math.), Professor,
Institute for System Programming of the RAS (Moscow,
Russian Federation)

Irina B. Virbitskaite, Dr. Sci. (Phys.—Math.), The A.P. Ershov
Institute of Informatics Systems, Siberian Branch of the RAS
(Novosibirsk, Russian Federation)

Andrey Voronkov, Dr. Sci. (Phys.—Math.), Professor,
University of Manchester (Manchester, UK)

Nina V. Yevtushenko, Dr. Sci. (Eng.), Tomsk State University
(Tomsk, Russian Federation)

Address: 25, Alexander Solzhenitsyn st., Moscow, 109004,
Russia.

Tel: +7(495) 912-44-25

E-mail: info-isp@ispras.ru

Web: http://www.ispras.ru/en/proceedings/

© Uncruryt Cuctemuoro IIporpamvuposanus PAH, 2017

http://www.ispras.ru/persons/avetisyan.php
http://www.ispras.ru/en/persons/avetisyan.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/kuznetsov.php
http://www.ispras.ru/persons/burdonov.php
http://www.voronkov.com/
http://pdb.iis.nsk.su/person/232
http://www.ispras.ru/persons/gaissaryan.php
http://persona.tsu.ru/Home/UserProfile/1015
http://www.ispras.ru/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/persons/kossatchev.php
http://www.ispras.ru/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://www.ispras.ru/persons/semenov.php
http://www.ispras.ru/persons/tomilin.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/persons/shnitman.php
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/kuznetsov.php
http://www.ispras.ru/en/persons/burdonov.php
http://usuario.cicese.mx/~chernykh/
http://www.ispras.ru/en/persons/gaissaryan.php
http://www.ispras.ru/en/persons/karpov.php
http://forsyte.at/people/konnov/
http://www.ispras.ru/en/persons/kossatchev.php
http://www.ispras.ru/en/persons/kuzyurin.php
http://hcl.ucd.ie/user/alexey-lastovetsky
https://www.hse.ru/en/staff/ilomazova
http://www.math.spbu.ru/user/boris_novikov/index.shtml
http://panda.ispras.ru/~petrenko/
http://www.crim.ca/en/researchers-directory/alexandre-petrenko
http://assaf.net.technion.ac.il/
http://www.ispras.ru/en/persons/semenov.php
http://www.ispras.ru/en/persons/shnitman.php
http://www.ispras.ru/en/persons/tomilin.php
http://persons.iis.nsk.su/en/person/virbitskaite?_ga=1.176644579.776472438.1438611187
http://www.voronkov.com/
https://persona.tsu.ru/Home/UserProfile/1015

Tpyast Uauctutyta Cuctemuoro IlporpammMmupoBanus PAH

ConepxaHue

ABTOMAaTH3UPOBAHHAsI TEHEPAIIUS TUIIOBBIX KOHTPAKTOB IS si3bIKa Ruby
H.FO. Borocuno, B.C. @OHOAPAMOBcccoceiiiiiiiiiieiiieiii st 7

ABTOMaTH3UPOBAaHHBIN KOMIO3UIIMOHATBHBIN CHHTE3 MOJIeNIeH
pacHpesieNieHHBIX CHCTEM C TIOMOIIBIO TATTEPHOB HHTEpdeiicoB
P.A. Hecmepog, H.A. JIOMAZ08A...............ccoccerciiiiiiiiiiiicis e 21

KonTpakTHbIi MeTO]| crienn(pUKAIUN PEaKTUBHBIX TPEOOBaHUIN
A. Haymues, M. Mayyapa, b. Metiep, 7K.-M. Bpioans, @. I anunve,
C. DOCPCOMB ...ttt 39

Bbrictpoe L1-npeobpazoBanue ["aycca asst criaxuBaHust n300paKeHnH ¢
COXpaHEHHEM T'PaHHUIL
. P. bawxkuposa, l1I. Howuozasa, P.X. Jlamvinos, X. Hoxoma. 55

Crabunuzanus BUACOU300pakeHUs B peXKUME PealbHOIO BPEMEHH C
ncrojb3oBaHueM MEMS-naTunkoB
A.B. Koprunosa, A.A. Kupunenxo, HU. 360eMUHAc..cooeveeiiinnnnnnnns 73

Mojiens cepBrca MO3UIHOHUPOBAHUSI B METPO, OCHOBAHHAS HA TIPABUIIAX U
HEYETKUX MHOKECTBAaX BTOPOI'0 THIIA
A.P. l'umanemounoga, K1O. Je2MAPEE.............cccooevciiiiiiiiiiieiieiieieeain 87

CMeranHas 3a7jaya KUTalCKOTo MoYTaabOHA
M.K. T'opoenk0, C.M. ABOOUAUHcceouiiiieiiiiiiaiesie et 107

Mertpuryeckas 3a1a4a KOMMUBOSDKEPA: 3KCIEPHIMEHTAILHOE UCCIIEI0BaHNE
[lapeTo-onTUMaNbHBIX aJrOPUTMOB
C.M. Ag0outut, E.H. BePECHEBA.ccoceereiiiiiiieiiecsiee e 123

MuHHMU3aIMS aBTOMATOB C TaliMayTaMH U BPEMEHHBIMU OIPaHUICHUSIMH
A.C. Teapoosckuii, H.B. Esmyuenxo, M.JL. IpOMOGcccoouvvrevernnnnn. 139

MeTto aBTOMaTHYECKOTO ocTpoeHus ruopunasix UML-mozeneii Ha ocHOBe
JKypHAJIOB COOBITHII CHCTEM C CEPBHC-OPUEHTHPOBAHHOMN apXUTEKTYpPOH
K.B. J]a6v1008a, C.A. LLIEPUIAKOB............occveiiaieiiiiieiniene s 155

WHCTpyMeHT 1)1 aHAJIM3a TIOBEICHUS BIIOJTHE CTPYKTYPUPOBAHHBIX CUCTEM
MEPEX0/I0B
JLB. Jlsopsinckuil, B.E. MUXQUNOB...........ccccccouiiiiiiiiiiiiiiiiesiis e 175

Tpyast UauctutyTta Cucrtemuoro IlporpammupoBanus PAH

CroxacTHYeCKHEe METObI aHAIN3a KOMITIEKCHBIX TPOrPaMMHO-aapaTHBIX
CHCTEM
A. KaproB, C. 3EIEHOBccuccciiiieiiisiiiee i sttt srae e 191

MeToa MOJCTUPOBAHNS MTAMSTH B TIPEAUKATHBIX aOCTPaKIUSIX C
pasjieleHneM Ha HellepeceKaroIecs 00aacTu
A.P. Bonkog, M.Y. MAHOPOIKUH............cccoceiieiiiiiieiieeseeseesiessiae e sie e 203

Cratuyeckas Bepupukanus KoHQurypauuii sapa Linux
C.B. Kosut, B.C. MYMUIUHc.ocooviiiiiiiiicic it 217

Merozyka napaMeTprU30BaHHON BEPH(HKAIN TIPOTOKOJIOB KOTEPEHTHOCTH MTaMSTH
B.C. BYPEHKOB. ...ttt 231

I'eneparus TeCTOB AJIs ITU(PPOBOIA anmapaTypbl Ha OCHOBE BHICOKOYPOBHEBBIX
MoJIenen
M.M. Yynunxo, A.C. Kamkun, M.C. Jlebedes, C.A. CMONOB..............c.cu.... 247

Bepuduxanus kontposuiepos 10 ruradbutnoro Ethernet
M.B. Ilerpouenxkos, P.E. MymtakoB, 1.A. CTOTIAHTccoverveereereernennn, 257

Co3maHue TECTOBBIX JaHHBIX Ul CHCTEM KOHTPOJISI U MOHUTOPHHIA PHIHKA,
COJIep KaIlIMX BCTPOCHHBIC AJITOPUTMBI MAIIMHHOTO O0YYEHHUS
O. Mockane8a, A. I POMOBAccccveuiiiiiiiiiii e 269

Hcnonb3oBanre MOTYTLHOTO MOJIXO0JIA BO BCTPAUBASMbIX OIEPAIMOHHBIX CHCTEMAX
KA. Mannauues, H.B. Ilakynun, A.B. Xopowunos, /[.B. by3oanos............. 283

OTi1aquuK JUist ONIEPAIMOHHON CUCTEMBI PEaJIbHOTO BPEMEHH: MPOOIIEMBI
MYJIBTUIUIATPOPMEHHOCTH
A.H. Emenenxo, K.A. Mannauueg, H.B. IIGKYIUHocoueviiiiiiiiiinenneenns 295

O6HapyXeHNEe HETOYHO TMMOBTOPSIONIETOCS TEKCTa B TOKYMEHTAITUH
MIPOrPaMMHOI0 00ECIICUECHHUS

JLJ. Kanmees, FO.O. Kocmioxos, /[.B. Jlyyus, /[.B. Ko3nos,

M H. CMUDHOB ...ttt 303

[Iporpamma Jij1st MOHUTOPHHTA OOIIIECTBEHHBIX HAacTpoeHui B Poccun Ha
ocHoBe cooOmienuit n3 Twitter
C U, CMEMAHUH ...ttt ne e snnes 315

Narrabat — mporoTtun cepBrca I Tiepecka3a HOBOCTEH B hopmare
CTUXOTBOPEHUN
U U. Jloneanesa, U.A. I'opuixo, P.O. ABOPCKULcouevuveriiiiiiieiienann 325

Proceedings of the Institute for System Programming RAS

Table of Contents

Automated Type Contracts Generation in Ruby
N. Y. Viuginov, V. S. FONAaratov...........ccccceieiieieiicie e 7

Using Interface Patterns for Compositional Discovery of Distributed
System Models
R.A. NEeSteroV, I.A. LOMAZOVA.......uuuurerurireriririrerirersrsrerersrererererererersrere.. 21

A contract-based method to specify stimulus-response requirements
A. Naumchev, M. Mazzara, B. Meyer, J.-M. Bruel, F. Galinier,

S EDBISOIU. ... e 39
Fast L1 Gauss Transforms for Edge-Aware Image Filtering

D.R. Bashkirova, S. Yoshizawa, R.H. Latypov, H. Yokota..............ccccocue.e. 55
Real-time digital video stabilization using MEMS-sensors

A.V. Kornilova, I.A. Kirilenko, N.I. Zabelinaccccovveiviieeiiie e 73
Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service

AR. Gimaletdinova, K.Y. DegLiareV........ccccceeiuereriverinieiieneseeee e see e 87
The Mixed Chinese Postman Problem

M.K. Gordenko, S.M. AVAOSNINoooieeeeeeeeee e 107
The Metric Travelling Salesman Problem: The Experiment on Pareto-optimal
Algorithms

S.M. Avdoshin, E.N. BEIrESNEVAveeeeeeeeeee et veeee e 123
Minimizing Finite State Machines with time guards and timeouts

A.S. Tvardovskii, N.V. Yevtushenko, M.L. GFrOMOVocovveevveveeesiiieeennns 139
Mining Hybrid UML Models from Event Logs of SOA Systems

K.V. Davydova, S.A. SNershakoVcccoceieiieiiiieie e 155
Tool for Behavioral Analysis of Well-Structured Transition Systems

L.W. Dworzanski, V.E. MiKNayloV.........c.ccccoviveviiieie e 175

Stochastic Methods for Analysis of Complex Hardware-Software Systems
ALA. Karnov, S.V. ZEIENOV ... 191

Proceedings of the Institute for System Programming RAS

Predicate Abstractions Memory Modeling Method with Separation into
Disjoint Regions

A, Volkov, M. MandryKin.........c.ccccoveiieiiieeie e 203
Static Verification of Linux Kernel Configurations

SV, KOZIN, V.S IMULTTIN oottt e e st e s serree e e e 217
A Technique for Parameterized Verification of Cache Coherence Protocols
RV T =10 =] (o SRR 231
Test Generation for Digital Hardware Based on High-Level Models

M.M. Chupilko, A.S. Kamkin, M.S. Lebedev, S.A. Smolovc.cccceuveneee. 247
Verification of 10 Gigabit Ethernet Controllers

M.V. Petrochenkov, R.E. Mushtakov, I.A. Stotlandccccocevveviivineeinen, 257

Creating Test Data for Market Surveillance Systems with Embedded Machine
Learning Algorithms
O. MOSKaIEVA, A. GIrOMOVA........cvveeeiireiee i stieee s steie e sae e e s sbae e e s sbae e e s sbaaeesaans 269

Using modularization in embedded OS
K.A. Mallachiev, N.V. Pakulin, A.V. Khoroshilov,

(B RV =170 F= [0 1Y TR 283
Debugger for Real-Time OS: Challenges of Multiplatform Support
A.N. Emelenko, K.A. Mallachiev, N.V. Pakulin........ccccococomooiiieiiiieeienn, 295

Discovering Near Duplicate Text in Software Documentation
L.D. Kanteev, Yu.O. Kostyukov, D.V. Luciv, D.V. Koznov,
IMLNL SIMIFNOV .. 303

The Program for Public Mood Monitoring through Twitter Content in Russia
S. L SMELANIN ... 315

Narrabat — a Prototype Service for Stylish News Retelling
I.1. Dolgaleva, 1.A. Gorshkov, R.E. YavOrsKiyc.cccocvoiiieniriiinieieciene 325

Automated Type Contracts Generation in
Ruby

LZN. Y. Viuginov <viuginov.nickolay@gmail.com>
2\, S. Fondaratov <fondarat@gmail.com>
1 St. Petersburg State University,
13B Universitetskaya Emb., St. Petersburg, 199034, Russia
2 JetBrains,
7-9-11 Universitetskaya Emb., St. Petersburg, 199034, Russia

Abstract. Elegant syntax of the Ruby language pays back when it comes to finding bugs in
large codebases. Static analysis is hindered by specific capabilities of Ruby, such as defining
methods dynamically and evaluating string expressions. Even in dynamically typed
languages, type information is very useful as it ensures better type safety and more reliable
checking whether the called method is defined for the object or whether the arguments of the
correct types are passed to it. One may annotate the code with YARD (Ruby documentation
tool) to declare the input and output types of methods or even declare methods that are added
dynamically. These annotations improve the capabilities of tooling such as code completion.
This paper reports a new approach to type annotations generation. We trace direct method
calls while the program is running, evaluate types of input and output variables and use this
information to derive implicit type contracts. Each method or function is associated with a
finite-state automaton consisting of all variants of typed signatures for this method. An
effective compression technique is applied to the automaton to reduce the cost of storage and
allows to display the collected information in a human-readable form. The exhaustiveness of
the contract defined by the generated automaton depends on the diversity of the traced
method usages. Therefore, it is also important to be able to merge all the automatons received
from users into one, which is further covered in this paper.

Keywords: Ruby; dynamically typed languages; Ruby VM; YARV; method signature; type
inference; static code analysis

DOI: 10.15514/ISPRAS-2017-29(4)-1

For citation: Viuginov N.Y., Fondaratov V.S. Automated Type Contracts Generation in
Ruby. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 7-20. DOI:
10.15514/ISPRAS-2017-29(4)-1

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20

1. Introduction

Developers suffer from time-consuming investigations when trying to understand
why a particular piece of code does not work as expected. The dynamic nature of
Ruby allows for great possibilities, which has its drawback: the codebase as a whole
becomes entangled and investigations become more difficult compared to statically
typed languages like Java or C++ [1]. Another downside of its dynamic features is a
drastic reduction in static analysis performance due to inability to resolve some
symbols reliably. Consider the dynamic method creation which is often done with
define_method call. Names and bodies of dynamically created methods may be
calculated at runtime [2]. The following code dynamically adds active?, inactive?
and pending? methods to the User class:

class User
ACTIVE = 0@
INACTIVE =
PENDING = 2

1

attr_accessor :status

def self.states(*args)
args.each do |arg|
define_method "#{arg}?" do

self.status == User.const_get(arg.upcase)
end
end
end
states :active, :inactive, :pending

end
One of the possible workarounds to get information about types for such difficult-
to-analyze syntactic constructions is using code documentation tools such as RDoc
or YARD. @'method annotation defines a method object with a given signature.
@param and @return annotations may help to define the actual types, but they
have several drawbacks too:

e the type system used for documenting attributes, parameters and return
values is pretty decent, however, it is not clear how to define relations
between the types. For example, operator []= for array usually returns the
same type as the second arg taking any type so in YARD this will look like
@param value [Object], @return [Object] which is not really helpful,
because all classes in Ruby are inherited from the Object and such
annotation does not give any additional information about the method.

o from usability perspective, such documentation in some way contradicts
the purpose of Ruby to be as short, natural and expressive as possible.

The proposed approach is inspired by the way people tackle this problem manually:
one may run or debug the program to inspect the needed info about the code they
are investigating. This suggests that collecting direct input and output types of all
method dispatches during the program execution with postprocessing and

8

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpAIHs THIIOBBIX KOHTPAKTOB JUIsI si3bika Ruby. Tpyost

HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

structuring of this data may be considered as a way to automate manual
investigations. As a result, it will make up implicit type annotations. As the process
is automated, one can retrieve a lot of information about the executed code in the
whole project.

Since the quality of the result highly depends on the code coverage of the programs
run during the data collection, it is important to be able to merge the result
annotations built for the same methods called from different places, projects and
even users. These annotations also could be stored in a public database to be shared
and reused by different users in order to maximize the coverage of the analyzed
code and hence the quality of the generated contracts.

Two main contract generation stages can be distinguished:

e During the first stage, the information about called methods and their input
and output types is collected throughout the script execution. It is very
important to collect the necessary information as quickly as possible not to
keep users waiting for script completion much longer compared to regular
execution. To achieve this, we implement a native extension which
receives all the necessary information directly from the internal stack of the
virtual machine instead of using the standard APl provided by the
language. This stage is described in Section 3.

e During the second stage, the data obtained in the first stage is structured,
reduced to a finite-state automaton and prepared for further use in code
insight. This storage scheme provides the ability to quickly obtain a regular
expression that is easily perceived by a human. This stage is described in
Section 4.

The generated implicit annotations can be built into the static analysis tools [3] to
improve existing and provide additional checks and code completion suggestions.
This stage is described in Section 5.

2. Related works

In Static Analysis of Dynamic Languages [7], static analysis techniques for
dynamically and statically typed languages are compared. The author notes that the
attributes of dynamically typed languages such as flexibility and expressiveness
limit the availability of tool-support for those languages. The paper addresses the
main problems of analyzing code written in a language with dynamic typing:
particularly, the construction of developer tools is difficult due to the lack of static
type systems, therefore, many bugs are not discovered until run-time. The use of
static analysis, and in particular whole program dataflow analysis, allow static
reasoning about programs written in these languages without changing their nature
or imposing unrealistic restrictions on the programmers.

In addition, the article mentions the technique called Use Analysis. “Use Analysis:
A heuristic for recovering missing dataflow facts, due to missing library code, by

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20

observing how applications objects are used in the application code.” An example of
such a heuristic is the approach to be described in this article.

For Ruby, as for most dynamically typed languages, there are tools for source code
analysis, but they are not capable of statically identifying all errors associated with
type mismatch. Here are some of them:

e Rubocop [4] — A Ruby static code analyzer, based on the community-
driven Ruby style guide, but it does not allow actual error detection.

e Ruby-lint — A tool for detecting syntax errors, such as undeclared
variables, an invalid argument set for calling a method, or unreachable
sections of code.

e Diamondback Ruby [5] — an extension to Ruby that aims to bring the
benefits of static typing to Ruby. However, at the moment, it is impossible
to analyze even the standard Ruby library.

3. Collecting information about method calls

3.1 Calls structure
Method parameters in Ruby have the following structure:

def m(al, a2, ..., aM, # mandatory(req)
bl=(...), ..., bN=(...), # optional (opt)
*c, # rest
di, d2, ..., dL, # post
el:(...), «o., eK:i(...), # keyword
**f, # keyword_rest
&g) # block

An example of calling this method:

m(11, 12, 21, 22, 1, 2, 3, '1', '2', e1: 1, e2: 2, e3: 3) {...}
#al a2 bl b2 ---C---- d1 d2 el e2 f g
TracePoint is an API allowing to hook several Ruby VM events like method calls
and returns and get any data through Binding, an object which encapsulates the
execution context (variables, methods) and retains this context for the future use.
Consider a simple Ruby method declaration and handlers set for :call and :return
events.

10

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpAIHs THIIOBBIX KOHTPAKTOB JUIsI si3bika Ruby. Tpyost
HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

def foo(a, b = 1)
b ="1'
end

TracePoint.trace(:call, :return) do |tp]|
binding = tp.binding
method = tp.defined_class.method(tp.method_id)
p method.parameters
puts tp.event, (binding.local_variables.map do |v|
"#{v}->#{binding.local_variable_get(v).inspect}"
end.join ', ')
end

foo(2)
The execution output will be:

[[:req, :a], [:opt, :b]]
call
a->2, b->1

[[:req, :a], [:opt, :b]]
return
a->2, b->"1"

On each method call, the following information is to be obtained:
e method name
e method receiver class
e arity (names and types of parameters)
e types of arguments and return type, hereinafter “raw type tuple”
e name and version of gem (ruby library) in which the method was declared
e location of method declaration

3.2 Unspecified arguments

Code analysis often handles direct method calls, so in order to calculate the return
type it is important to distinguish which arguments were directly passed to the
method by the user, and which were assigned the default values.

Let the following expression occur during the code analysis: a, b, c = foo,
foo(€1’), foo(1), and the following two contracts be generated: Int - 1Int,
string -» string. If the method cannot be statically analyzed, then we cannot select
a contract to apply to the method call without arguments.

Note that default values are assigned to unspecified optional arguments before the
:call event is triggered. Therefore, with the standard API, it is impossible to
calculate which arguments were passed to the method, and which were not. This
poses a problem because it renders detection of the default value types impossible
and, therefore, disables the calculation of the expected return type of calls with any

11

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20

optional parameters unspecified. However, one can build a native extension for the
Ruby VM[2] and get this information from an internal stack.
Consider a simple Ruby method with an optional parameter and on appropriate
bytecode.
def foo(a, b=42, kwl: 1, kw2:, kw3: 3)

#...
end

foo(1l, kwl: '1', kw2: '2")
== disasm: #<ISeq:<compiled>@<compiled>>============

0000 trace 1
0002 putspecialobject 1
0004 putobject :foo
0006 putiseq foo

0008 opt_send_without_block <callinfo!mid: core#define_method, argc:2,
ARGS_SIMPLE>

0011 pop

0012 trace 1

0014 putself

0015 putobject_OP_INT2FIX_ 0 1 _C_

0016 putstring "1

0018 putstring "2

0020 opt_send_without_block <callinfo!mid:foo, argc:3, kw: [kwl, kw2],
FCALL | KWARG>

0023 leave

== disasm: #<ISeq:foo@<compiled>>===================

The instruction number 0020, which calls the method foo, has information
characterizing the number of passed arguments and the list of passed named
arguments. Now we need to find a bytecode instruction for the current method
dispatch. It is necessary to find the caller control frame and the last executed
instruction in this frame. This instruction will correspond to the call of the method
that we are interested in.

The big disadvantage of this approach is that the calculation of the full execution
context is a time-consuming operation. But later we will only need information
about a small part of it. Namely: types of arguments, types and names of method
parameters. Creating a native extension for the Ruby VM, which will receive
information about the method name directly from YARYV instruction list (Fig. 1),
will help us to receive information about argument types directly from the internal
stack.

12

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpAIHs THIIOBBIX KOHTPAKTOB JUIsI si3bika Ruby. Tpyost
HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

YARV Instruction list

—. trace
‘/ \\ putself
rb_conrol_frame_t putobject 2
. ———— putobject 2
Internal stack pc pt_plus
-t 8&p opt_send simple <callinfo!mid:puts..
2 self leave
type
2 \ /
o _/
self

Fig. 1. YARV’s internal registers.

4. Tranforming raw call data into contracts

A huge amount of raw data received from the Ruby process must be processed and
structured so that it can be easily used and perceived. In our approach, each traced
method is associated with a finite-state automaton. This storage structure allows to
quickly add raw type tuple obtained from the Ruby process. It can be also easily
reduced to a human-readable regular expression.

nil
R

nil -
/

InlegeF\‘\
/ NN
7 il N\
—> #start —String—» B -Array» #end
o
\ Integer P
N\ Py
N oo
N nil” /
S 3 /
Regexp—» 7

E Inleg;/ér
Fig. 2. Example of generating a non-minimized automaton.

In each automaton, there are a single starting vertex, from which the signature
begins to be read and a single terminal vertex, in which all edges corresponding to
the return types enters. Words obtained by concatenating tuples and corresponding
output types are consistently added to the automaton.

13

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Data: callArgs, returnType, automaton, parameterList
Result: automaton
tuple + emptyList
for param : parameterList do
if Jarg : arg € call Args&&arg.get Param == param then
| tuple << arg
else
| tuple << €
end
end
node < automaton.startVertex
for arg : tuple do
type « arg.type
if (node, type) ¢ automaton then
| automaton(node, type) + newNode
end
node + automaton(node, type)
end
automaton(node, returnType) < automaton.termVertex

Algorithm 1. Adding a tuple to the automaton

Then, the minimization algorithm [7] is applied to the automaton, but it is slightly
modified for the automaton of this type (Alg. 2). Note that all the tuples added to the
automaton have the same length, so the resulting automaton has a layered structure
based on the distance from the starting vertex. And all the edges emerging from the
vertices of the i-th layer go to the vertices of i+1-st layer. Note that, after adding a
signature to a minimized automaton, each added vertex can be combined only with
the vertex of its level (Fig. 3).

Theorem 1. Only vertices from the same level can be joined during the minimisation.

Proof. Consider two vertices a and b from levels i and j (i # j). The vertices a and b join
iff their transition functions coincide. All transitions from the vertices of level i lead to
vertices of level i + 1, so transitions from a lead to vertices of level i + 1, and transitions
from vertex b lead to vertices of level j + 1. It follows from the fact that the vertices adjacent
to a and the vertices adjacent to b lie on different levels that the transition functions for

the vertices a and b do not coincide. O
Corollary 1. Let n be the number of layers of the automaton, then the computational
complezxity of the minimization algorithm after adding one tuple to the previously minimized

automaton can be estimated as: O(Y.1 | automaton.levels|i]) or O(automaton.size), which

is better than O(automaton.size x n), as for the automaton in the general case.

14

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpaIHs THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

Data: automaton, nodes
Result: automaton
levels < automaton.levels/ /splitting automaton for layers
for node : nodes, i++ do
for nodeForComparison : levels|i] do
| if node.getTransitions = node ForComparison.getTransitions then
| automaton.joinNodes(node, nodeForComparison);

end
end
end
Algorithm 2. Automaton minimisation
_nil
il o
/ Integer\
/ NN nil
A _nil \—n,\‘\' ~ R il
#start String -O‘ : Array S #start String D : Array
< "Imeger";. ,, N Integer ™
RS)& o Hegexp
i/
Regexp—{)_ 4
“Integer

Fig. 3. Joining vertices

Quite often there are situations where types of two or more arguments of the method
always coincide or the type of the result coincides with the type of one of the
arguments. Consider method equals as an example.

def equals(a, b)

raise StandardError if a.class != b.class

a ==>
end
p equals(1l, 1) # (Integer, Integer) —> TrueClass
p equals(l, 2) # (Integer, Integer) —> FalseClass
p equals(:b, :a) # (Symbol, Symbol) —> FalseClass
p equals(:a, :a) # (Symbol, Symbol) —> TrueClass

While adding the next transition from the vertex to the automaton, let’s compare the
symbol of the transition we want to add with all the previous symbols of the current
tuple. In case there is at least one match, instead of a regular edge with a type
symbol, edge with a bit mask is added. The length of this mask equals to the ordinal
number of the current type within the tuple decreased by 1. i-th bit is 1 iff the i-th
type in the tuple equals to the type to be added (Fig. 4).

15

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Integer—» —Integer

1
Data: tuple, type, typelndex
Result: mask /S‘"“gg’ “S‘”;Q R —
mask = (0 #start \‘ < 00 : #end
for i [1..1‘_1/1')(’1 ndex — 1] do \Svmbol—- Symb{ alseCI(a)gs
if tupleli] == type then 1
| maskli] =1
end Date—» —Date
il

end

Fig. 4. Automaton with counted bit masks

When reading the signature, each following type is compared to the previous
signature types and if a nonzero mask is obtained, one goes through the transition
with the mask received.

for arg : tuple,i + + do
type < arg.lype
mask « calculate _mask(tuple, type, i)
if mask > 0 then
if (node, mask) ¢ autornaton then
| automaton(node, mask) < newNode
end
node « automaton(node, mask)
else
if (node, type) ¢ automaton then
| automaton(node, type) < newNode node < automaton(node, type)
end
node < automaton(node, type)
end
end
automaton(node, returnType) < automaton.termVertex

Algorithm 1'. Adding a tuple to the automaton with masks

Theorem 2. Before the minimization from the vertex cannot be the transition with a type

symbol and the transition with an appropriate mask simultaneously.

Proof. Consider two cases: the transition with the symbol was added before the transition
with the mask and vice versa.

1) If an transition with a symbol was added before the transition with the mask, then
when it was added, a non-zero mask should have been produced. Then instead of the usual
transitions had to be added a transition with a mask.

2) If the transition with a mask was added first, then instead of adding an edge with a

symbol, we should just go through the ezisting transition with mask. O

Corollary 1. After minimization, the automaton with masks remains deterministic, that
is, for every vertex and any type it is impossible to find both conventional and mask edges

corresponding to that type simultaneously.

16

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpAIHs THIIOBBIX KOHTPAKTOB JUIsI si3bika Ruby. Tpyost
HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

Automata received from different users need to be merged. The following algorithm
is used for this:

Data: automaton, additional Automaton
Result: automaton
bf sQueue.push(automaton.getStart N ode, additional Automaton.getStart Node)
while !bfsQueue.emptydo
(oldNode, newNode) = bf sQueue.pop
Sfor transition : newNode.getTransitions do
node = createNewN ode
oldN ode.addTransition(transition, node)
if transition € oldNode.getTransitions then
| nodeToClone = oldNode.goByTransition(transition)
‘ node.getTransitions.add(nodeToClone.getTransitions)
end
nodes = (node, newNode.goByT ransition(transition))
if lused(nodes) then
used.add(nodes)
bfsQueue.push(nodes)
end
end
end
automaton.minimize

Algorithm 3. Automatons merge

In Ruby, Duck Typing [8] is quite heavily used. As a consequence, variables of
various types that implement a set of methods can be passed as arguments to a
method. Hence, many multiple edges corresponding to these classes appear in the
automaton. These multiple edges can be replaced by one edge containing
information about the interface that all these classes satisfy. Then, to jump on this
edge, the next type from the signature must implement this interface. In case this
common interface is empty on the edge, it is enough to write the type Object, since
it is the parent class for all objects.

5. Using of contracts in static analysis algorithms

The contract is used to calculate the type returned when the method is called with a
certain set of arguments. It is worth noting that the types of arguments are not
always uniquely defined. Sometimes there is a set of types to which the variable
may belong. To calculate the type returned by the method, it is necessary to go
successively along the edges of the automaton calculating a set of vertices reachable
by reading some sequence of types. The unspecified optional arguments types are
imitated with a special non-alphabetic character so that the length of a tuple is lower
than the automaton height by 1.

17

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Data: argumentTypes, automaton

Result: returnType

node + automaton.startVertex

index =0

for type : argumentTypes, index + + do

mask = calculate,ask{argumentTypes, type, index)

if mask € node.getTransilions then

‘ node = node.goByTransition(mask)
continue

en

if type € node.getTransitions then

‘ node = node.goByTransition(type)

continue
end

return UNKNOWN_SET OF ARGUMENTS
end
returnType << node.getTransitions.types

Algorithm 4. Output type calculation

The generated contracts complement the type selection system because they allow
to calculate the types returned from methods which were not successfully analyzed
using standard tools. This expands the class of variables for which it is possible to
statically compute a type.

The collected information for the methods makes it possible to significantly
accelerate the existing control flow analysis because the methods for which a
sufficiently representative contract is generated do not require additional analysis.
Contracts allow to extend the applicability of some of the features that are supported
in most modern IDEs. The functions considered are applicable to method calls for
which it was possible to select the class of the object to which they were applied and
for this class there is a contract corresponding to the method with that name and
configuration of parameters. Functions in which contracts are applied:

e Go To Declaration/Find Usages. At the execution time information about
method declaration was collected. This information can be used for
navigation from method call to declaration and vice versa.

e Autocompletion. A list of methods implemented for an object can be
supplemented with methods for which the contract was found.

)
e Incorrect method arguments’ Inspection. Information about the method
parameters can be used to detect incorrect calls.

6. Conclusion

The paper describes the approach to the generation of implicit type contracts. This
approach provides information containing type signatures of methods that cannot be
obtained by static analysis using the source code given it is possible to understand in
which library the method was declared and to resolve the method receiver. This
approach is useful for analyzing programs which heavily utilize dynamic features
like dynamic methods creation or when there are complex syntactic constructions in

18

Berorunos H. 10., ®onnaparos B. C. ABroMaTH3ipoBaHHasi TeHEpAIHs THIIOBBIX KOHTPAKTOB JUIsI si3bika Ruby. Tpyost
HUCII PAH, tom 29, Beim. 4, 2017 1., cp. 7-20.

methods implementations. In addition, this approach can be applied to other
languages with dynamic typing, such as Python or JavaScript.

Several problems remain unsolved, such as Duck Typing and handling an
ambiguous resolve of the argument type in a static analysis.

The problem with duck typing is that, during the execution of the program, it is
impossible to save all the methods implemented for the object. Therefore, it is
difficult to find the largest common interface for a group of classes.

The problem with arguments with types ambiguous according to the static analysis
is that they cannot be read in the automaton.

References

[1]. Brianna M. Ren., J. Toman, T. Stephen Strickland and Jeffrey S. Foster. The ruby type
checker. Available: http://www.cs.umd.edu/~jfoster/papers/oops13.pdf

[2]. blog.codeclimate. Gradual type checking for ruby, 2014. [Online]. Available:
blog.codeclimate.com/blog/2014/05/06/gradual-type-checking-for-ruby/

[3]. O. Shivers. Control flow analysis in scheme. ACM SIGPLAN 1988 conference on
Programming language design and implementation, 1988.

[4]. Bozhidar Batsov. Rubocop, 2017. [Online]. Available: http://batsov.com/rubocop/

[5]. Jeff Foster, Mike Hicks, Mike Furr, David An. Diamond-back ruby guide,
2009.[Online]. Available: http://www.cs.umd.edu/projects/PL/druby/manual/manual.pdf

[6]. Pat Shaughnessy. Ruby Under a Microscope. No Starch Press, 2013.

[7]. Madsen M. Static Analysis of Dynamic Languages. Available:
http://pure.au.dk/ws/files/85299449/Thesis.pdf

[8]. Duck Typing [Online]. Available: http://rubylearning.com/satishtalim/duck_typing.html

ABTOMaTM3MpPOBaHHAA reHepauusa TUNOBbIX
KOHTPaKTOB AnA A3blka Ruby

Y2 H_ FO. Buiozunos <viuginov.nickolay@gmail.com>
2B. C. ®ondapamos <fondarat@gmail.com>
Lcrery,
199034, Poccus, Cankm-Ilemepoype, Ynueepcumemckas nao., 13B
2 JetBrains,
199034, Poccus, Cankm-Ilemepoype, Yuueepcumemckas nao., 7-9-11

AHHOTanus. DICraHTHBIA CHHTaKCUC s3bIka RUDY 3amerHO ycnoxHser mouck omubox B
OompmMX KOJMOBBIX ©Oazax. CraTHUeCKWH aHaNIU3 YCIOXHIETCS CIENHPHISCKIMHI
BO3MOXXHOCTSIMH SI3bIKa, TAKMMH KaK IWHAMHYECKOE CO3[aHHE METOJIOB W HCIIOJIHEHHE
CTPOKOBBIX BRIpa)KeHHUH. Jaske B sI3pIKaX ¢ AMHAMHIECKOH THUNMM3anued HHPOpManus O THIIaX
BaKHA, TaK KaK OHA IIO3BOJIET YIYYIINTh THUIOOE30IIaCHOCTh M IIPOHM3BOJUTH Oolee
HaJE&KHbIE CTaTHYECKHE IIPOBEPKU TOTO, ONpPEIETEH JM METOJ A 00beKTa U IepelaH Jiu
METOZa KOPPEKTHBI HAaOOp apryMeHToB. OJHUM M3 MyTeH pelieHus: mpoOaeMbl SIBISIETCS
ucnonb3oBanrne YARD Horanuit. OHH TO3BOJISIOT 33J0KyMEHTHUPOBATH BXOAHBIE U
BBIXO/IHBIN TUIBI METOJOB MM Ja)kKe JIEKJIApUpOBaTh METOJbI, 100aBsieMble JMHAMUYECKH.

19

http://rubylearning.com/satishtalim/duck_typing.html

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Takue aHHOTaLUM I[O3BOJIOT YIY4YIIUTh AHAIW3 KOJA M aBTOJONOJHEHHE. B crarbe
OIKCHIBACTCS HOBBIM MOAXOJ K TIEHEpalud TUIOBBIX AaHHOTAaUUi. Mbl OTCIIEXKUBAaEM
HETOCPEICTBEHHBIE BBI30BBI METO/Ja BO BPEMS MCIIOIHEHHUS NIPOTPAMMBI M COXPaHSEM THUIIBI
apryMeHTOB M BBIXOAHOHM Tum. Ha ocHoBe coOpaHHON WH(pOpManuu IS KaXKIOro METoAa
CTPOHUTCSI HEsIBHAasl THIOBas aHHoTalus. KakgoMmy aBTOMaTy CONOCTABIAETCS KOHEUHBII
aBTOMAT, COCTABIEHHBI K3 paA3NUUYHBIX THIOBBIX CHIHaTyp Meroga. K aBTomaty
npuUMeHseTcss (QQEKTUBHBI aJTOPUTM MHHHMH3AaLlMH C IIETBbI0 CHH3MTH 3aTparhl Ha
XpaHEHHE U ITO3BOJISIET IIPUBECTH aBTOMAT K BUTY, KOTOPBII MOXET OBITB JIETKO IPEICTaBICH
B BHUJIE PErySIpHOrO BBIpaXKEHHsS. B creHepupoBaHHOM aBTOMATE YYUTHIBAETCS TOJBKO Ta
(YHKIMOHATIBHOCTh METOJa, KOTopas ObUIa ITOKPHITa NPOTPaMMOM, KOTOPYIO HCIOJIHIUI
none3oBaTens. [loaToMy B mMoxo/e NpeayCMOTPEHO O0BEeIMHEHNE aBTOMATOB, OTyIeHHbBIX
y pPa3HBIX TIONb30BaTeNiedl C LENbI0 YBEIMUYCHUS] PENPE3CHTATHBHOCTH M TOKPBITHS
(YHKIIMOHATIBHOCTH METO/A.

KmroueBnie cioBa: Ruby; nunHamuueckn TunusupoBanubie s3bikd; Ruby VM; YARV;
CHTHATypa METO/[a; Haclle[OBaHNE THIIOB; CTATUYECKUI aHaIN3 KOa

DOI: 10.15514/ISPRAS-2017-29(4)-1

J1a uutupoBanus: Berorunos H. 0., ®onnapatos B. C. ABTOMaTu3upoBaHHas reHepanus
THUIIOBBIX KOHTPaKkTOB st si36ika Ruby. Tpyaet UCIT PAH, Towm 29, Beim. 4, 2017 ., ctp. 7-20
(na anrmmiickom s3bike). DOL: 10.15514/ISPRAS-2017-29(4)-1

Cnucok nutepaTtypbl

[1]. Brianna M. Ren., J. Toman, T. Stephen Strickland and Jeffrey S. Foster. The ruby type
checker. JToctymHo o ccwuike: http://www.cs.umd.edu/~jfoster/papers/oops13.pdf

[2]. blog.codeclimate. Gradual type checking for ruby, 2014. [Online]. {ocTymHo Mo
ceouike: blog.codeclimate.com/blog/2014/05/06/gradual-type-checking-for-ruby/

[3]. O. Shivers. Control flow analysis in scheme. ACM SIGPLAN 1988 conference on
Programming language design and implementation, 1988.

[4]. Bozhidar Batsov. Rubocop, 2017. [Online]. JlocTymHO 1O CCBUIKE:
http://batsov.com/rubocop/

[5]. Jeff Foster, Mike Hicks, Mike Furr, David An. Diamond-back ruby guide,
2009.[Online]. HocrynHo o CCBIIKE:
http://www.cs.umd.edu/projects/PL/druby/manual/manual.pdf

[6]. Pat Shaughnessy. Ruby Under a Microscope. No Starch Press, 2013.

[7]. Madsen M. Static Analysis of Dynamic Languages. JOCTyIHO 1O CCBLIKE:
http://pure.au.dk/ws/files/85299449/Thesis.pdf

[8]. Duck Typing [Online]. HocrymHo o CCBLIKE:
http://rubylearning.com/satishtalim/duck_typing.html

20

http://rubylearning.com/satishtalim/duck_typing.html

Using Interface Patterns for Compositional
Discovery of Distributed System Models*

R.A. Nesterov <ranesterov@edu.hse.ru>
I.A. Lomazova <ilomazova@hse.ru>
National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Process mining offers various tools for studying process-aware information
systems. They mainly involve several participants (or agents) managing and executing
operations on the basis of process models. To reveal the actual behavior of agents, we can use
process discovery. However, for large-scale processes, it does not yield models, which help
understand how agents interact since they are independent and their concurrent
implementation can lead to a very sophisticated behavior. To overcome this problem, we
propose interface patterns, which allow getting models of multi-agent processes with a clearly
identified agent behavior and interaction scheme as well. The correctness of patterns is
provided via morphisms. We also conduct a preliminary experiment, results of which are
highly competitive compared to the process discovery without interface patterns.

Keywords: Petri nets; interface patterns; synchronization; composition; morphisms; process
discovery; multi-agent systems; distributed systems.

DOI: 10.15514/ISPRAS-2017-29(4)-2

For citation: Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional
Discovery of Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2

1. Introduction

Process mining is the relatively new direction in studying process-aware
information systems. They include information systems managing and executing
operational processes, which involve people, applications and information resources
through process models [1]. Examples of these systems include workflow
management systems, business process management systems, and enterprise

This work is supported by the Basic Research Program at the National Research University
Higher School of Economics and Russian Foundation for Basic Research, project No.16-01-
00546.

21

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

information systems. The underlying interactions among participants (also called
agents) of process-aware information systems are intrinsically distributed
multiagent systems. An agent acts autonomously, but it can interact with the others
via shared resources, restrictions, and other means. Process mining helps to extract a
model of this system for further study from a record of its implementation called an
event log. However, extracted models are hard for analysis since there might be
complex interactions among process participants the number of those can be
significant.

In this paper, we propose a compositional approach to address this problem. Given
an event log of a distributed system, we can filter it by agents and mine a model of
each agent. Then, agent models can be composed to get a complete model of a
multi-agent distributed system, which might be simulated. Composing agent models
allows us to obtain more structured models compared to models extracted from
complete logs since the behavior of an agent can be clearly identified. We compose
agent models via interface patterns, which describe how they intercommunicate.
This approach was presented at TMPA-2017 [2], the conference proceedings will be
available later. The formal proof of the composition correctness is based on using
net morphisms [3]. Moreover, interface patterns allow us to inherit deadlock-
freeness and proper termination from agents by construction.

We conduct a preliminary experiment on using one interface pattern for mining
multi-agent models. The outcomes are evaluated with the help of conformance
checking quality dimensions [1, 4] and complexity metrics proposed in [5].

This paper is structured as follows. The next section provides an overview of
process discovery and compositional approaches. In Section 3 we introduce basic
terms which are used in the paper. Section 4 shows a general description of the
compositional approach to process discovery. Section 5 briefly introduces how we
compose agent models using interface patterns and net morphisms. In Section 6 we
describe the preliminary experiment and analyze results.

2. Related Work

There exist three types of process mining, namely discovery, conformance, and
enhancement. Process discovery produces a process model out of an event log — a
record of implemented activities. Existing discovery approaches can yield a model
in a variety of notations including Petri nets, heuristic nets, process trees, BPMN,
and EPC. Petri nets are the most widespread process model representations
discovered from event logs. Conformance checking is used to check whether a
discovered model corresponds to an input event log and to identify probable
deviations. The main idea of enhancement is to improve existing processes using
knowledge of actual processes (usually denoted AS-IS) obtained from event logs.
Process discovery offers several methods to be used for constructing models from
event logs. One of the first and the most straightforward discovery approach is a-
algorithm, which identifies ordering relations among activities in logs, but it has
severe usage limitations connected with cycles and the overall quality of obtained
22

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

models [1]. It has several refined versions and improvements, for example [6], but
there are other more sophisticated and efficient discovery algorithms. S. Leemans et
al. [7] has proposed inductive miner allowing to extract process models from logs
containing infrequent or incomplete behavior as well as dealing with activity
lifecycle when there are separate actions of start and finish for each activity. Apart
from that, inductive miner always produces well-structured models in the form of
Petri nets. HeuristicsMiner is another process discovery algorithm proposed by A.
Weijters et al. [8]. It can process event logs with a lot of noise (excessive activities)
and also deals with infrequent process behavior. HeuristicsMiner uses intermediate
casual matrices and produces heuristics net, which can easily be converted into Petri
nets and applied for other notations including EPC, BPMN, and UML. S. van Zelst
et al. [9] proposed the approach to process discovery based on integer linear
programming and theory of regions. Their algorithm can produce Petri nets with
complex control flow patterns, and its recent improvements guarantee the structural
correctness of discovered models. C. Gunther and W. van der Aalst have proposed
adaptive fuzzy mining approach [10] to deal with unstructured processes extracted
from event logs since they can produce different abstractions of processes
distinguishing “important” behavior.

Since state-of-the-art process discovery algorithms can deal with complex process
behavior, the other problem is to obtain models that are appropriate concerning their
structure. A good process model is readable and well-structured, i.e. there is no
redundant elements or unnecessary structural complications. There is a so-called
continuum of processes ranging from highly structured processes (Lasagna models)
to unstructured processes (Spaghetti models) [1]. The problem of obtaining well-
structured models is extensively studied in the literature. Researchers offer different
techniques to improve model structure [11], and to produce already well-structured
process models [12, 13, 14]. In the case of multi-agent and distributed systems using
well-structured models should also allow us to identify agent behavior clearly for
the model understandability improvement.

We suggest discovering models of agents independently and then composing them
together to produce a structured multiagent system model with the clearly visible
behavior of each agent. Several compositional approaches for process discovery
have been proposed. In [15] A. Kalenkova et al. have shown how to obtain a more
readable model from an event log by decomposing extracted transition systems. A
special technique to deal with cancellations in process implementation and to
produce clear and structured process models which can contain cancellations have
been studied in [16]. Also, in [17] authors have proposed a technique for
compositional process discovery based on localizing events using region theory to
improve overall quality of discovered models.

Correct coordination of system components is an error-prone task. Their interaction
can generate complex behavior. The majority of process discovery tools produce
Petri nets, and a large amount of literature has investigated the problem of
composing Petri nets. They can be composed via straightforward merging of places

23

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

and transitions [18], but the composition result will not preserve component
properties. One of the possible ways to achieve inheritance of component behavioral
properties is to use morphisms [19]. Special constructs for composing Petri net
based on morphisms were studied in [3, 20, 21]. The key idea of this approach is
that distributed system components refine an abstract interface describing the
interactions between them. In [22] I. Lomazova has proposed a compositional
approach for a flexible re-engineering of business process by using a system of
interacting workflow nets. There also exists a several techniques for compositional
synthesis of web services [23].

However, in [24] R. Hamadi and B. Benatallah have proposed an algebraic
approach to the regular composition of services. These compositional approaches do
not let specify the explicit order of inner behavior of two interacting components.
This situation is schematically represented in Fig. 1. Having two discovered
component models with always executable actions A and B, we want to require that
they interact in a way that A is implemented before B. This way of
intercommunication is also shown in the form of Petri net.

A

Sinves
Ty T

Modeling components Interaction scheme

Fig.1. Defining relations on inner actions of components

In [2] we have proposed a solution to this problem and two other patterns for
composing two interacting components. The obtained composition inherits
properties, such as deadlock-freeness and proper termination, from components.

In this paper, we show how these patterns can be used for discovering a multi-agent
system model from an event log in a compositional way. Applying compositional
patterns allows us to obtain a more readable model improving time complexity due
to the parallelization of process discovery.

We can assess process models obtained from event logs against four standard
quality dimensions — fitness, precision, generalization, and simplicity [4]. Fitness
identifies how accurately an extracted model can replay a source event log.
Precision indicates a fraction of a behavior allowed by the model but not seen in the
event log. Generalization tries to measure the extent to which the model will be able
to implement the behavior of the process unseen so far in the log. Simplicity focuses
on assessing structural complexity alongside with other graph characteristics — a
number of elements and a structuredness measure [5].

24

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

3. Preliminary Definitions

3.1. Petri Nets
We use Petri nets [18] to represent agent models and an interaction scheme called
interface.
Definition 1: A multiset m over a set S is a function m: S — NuU{0}. Let m and m,
be two multisets, mySm iff VSES: my(s)<m(s). Also, VSES: (m+mg)(s)=m(s)+mo(s)
and (m—mg)(s)=max(0, m(s), my(s)).
Then, an ordinary set is a multiset in which distinct elements occur only once.
Definition 2: A Petri net is a bipartite graph N=(P, T, F, mo, L), where:

1. P={py py ..., pn} — a finite non-empty set of places.

2. T={t, t5 ..., tn} — afinite non-empty set of transitions, PNT=0@.
3. F S(PxT)U(T xP) — a flow relation.

4. mq: P — NU{0} — a multiset over P, initial marking.

5

L: T — AuU{r} —a labeling for transitions, where t is a name for silent
transitions.

Pictorially, places are shown as circles, and transitions are shown as boxes (silent
transitions are depicted by black boxes). A flow relation is depicted by directed arcs
(see Fig. 2).

Let X=PUT. We call a set x={yeX | (y,x)€F} a preset of x and a set x'={yeX |
(x,y)EF} —a postset of x. Also X’="xU X" is a neighborhood of x.

The behavior of Petri nets is defined by the firing rule, which specifies when an
action can occur, and how it modifies the overall state of the system.

A marking m: P — NU{0} enables a transition t, denoted m[t), if ‘t<m. The t firing
at m leads to m’', denoted m[t)m’, where m'=m-"t+t. When Vt€T and VweT*,
m[tw)m'=m[t)m"[w)m, w is then called a firing sequence. We denote a set of all
firing sequences of a net N as FS(N).

O

Fig.2. A Petri net with silent transitions

e

We call a marking m reachable from mg if IweFS(N): mo[tym. A set of all markings
reachable from mq is denoted by [mg). So, [m) is a set of all markings reachable from
m. A net N is safe if VpeP, Ymge[m): m(p)<1.

25

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

A marking my is called final if vpem; : p'=@. A net N is deadlock-free if VteT
aAme[mg): mft) and m#m;. A net N terminates properly if a final marking is
reachable from all reachable states Yme[mp): m¢ €[m).

3.1. Event Logs

Process discovery techniques allow generating process models from event logs
containing information on executed actions. In a simple case, event logs may
contain actions names and a corresponding implementation order. We can augment
this record with a timestamp (when an action occurs) and executor (what agent
implements it).

Definition 3: Let IV be a set of action names and € be a set of agent names. An
activity is a triple (n, e, t), where neV, e€&, and t corresponds to a timestamp. The
set of all activities is denoted by Act. A trace cEAct” is a sequence of activities. An
event log L is a multiset over Act®, Lem(Act™).

Different traces can be combined to form a case corresponding to a process
implementation scenario. XES is a standard representation format adopted by IEEE
[25] for logging events and processing them via process mining tools.

Table 1. A fragment of an event log

Trace ID Action ID Timestamp Executor
Trace 1
ty 2017-03-01T17:23:40 Agent 1
e, 2017-03-01T19:12:05 Agent 2
Trace 2
e, 2017-03-02T21:13:47 Agent 2
ty 2017-03-04T21:14:40 Agent 1

4. Compositional Process Discovery

4.1. General Outline

To support the compositional discovery of models from event logs generated by
multi-agent systems, we assume a record of each action has a corresponding label of
an agent implementing it. The procedure of the compositional synthesis includes
several steps to be implemented:

1. Capturing a complete event log L from multi-agent system operation.

2. Filtering the event log L by agent labels and producing a set of event logs
L. (|Le|=|&]), each trace consists of actions implemented by e only.

26

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

3. Discovering a model for each agent separately from the set of event logs
Le;

4. Defining interface pattern which describes how agents intercommunicate;
5. Composing agent models and producing a multi-agent system model.

The step of defining interface pattern for agent interaction is implemented manually
so far. We rely on an expert view on how agents should intercommunicate.

4.2. Software Overview

A wide range of process discovery tools is implemented within the context of the
open-source project ProM [26] continuously improving nowadays. However, there
also exist many commercial tools using process mining approach to analyze and
improve business process. They include Disco [27], QPR ProcessAnalyzer [28],
mylInvenio [29] to name but a few. Contrary to ProM, they provide more business-
related solutions for process performance analysis and further improvement.

To process event logs we use the advanced ProM plugin GENA [30] which allows
to generate event logs with timestamps and originator labels as well as to augment
logs with artificial events representing noise.

5. Composing Petri Nets via Interface Patterns

This section provides a brief introduction to our approach to Petri net composition
using interfaces and net morphisms.

5.1. Composing Petri Nets via morphisms
The notion of w-morphism on Petri nets was first introduced in [3] for elementary
net systems and can be applied for safe nets.
Definition 4: Let N; = (P;, Ti, F;, m¢', L;) be two safe Petri nets for i=1,2. The -
morphism is a total surjective map ¢: Ny — N, such that:

1. (P(Pl):PZ-

2. VHETL @(t)ET, = o(t) ="o(t) A o(ty) =o(ty) "
3. VHLET: ¢(t)€P, = o(ty) = {o(t)}-
4. Vp;€P1: mo'(py) > 0 = mo*(p(ps)) = Mo'(pa)-

Figure 3 helps to explain requirements 2 and 3 of the definition. i.e. how transitions
of N; can be mapped onto places and transitions of N,.

To use morphisms for Petri net composition, we need to define morphisms from
agent nets towards an interface net, which describes how they intercommunicate.
Then we merge transitions having common labels and images. Figure 4 shows how
two Petri nets are composed via o-morphisms represented as dotted arrows.

27

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

Mapping transition A onto transition A’ Mapping transition A onto place
Fig.3. Transition map options for w-morphism

Interface

: 4
S

Composition

Fig.4. Composing two Petri nets via w-morphism

As it was proved in [19], the use of morphisms allows us to preserve properties of
interacting components in a composed process net. A composition obtained via ®-

28

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

morphisms is deadlock-free and properly terminates iff source component nets and
interface net are deadlock-free and terminate properly as well.

5.2. Compositional Interface Patterns

To facilitate Petri net composition, we use compositional patterns for typical
interface we have proposed in [2]. One of such patterns called the simple causality
is schematically shown in Fig. 1, and Fig. 5 provides its instantiation. A pattern
includes component and interface net which might be merged according to the
morphism composition rules if there is a need to produce a model for
comprehensive simulation.

o ¥

-
STV
-0

ofs

OO

Q
O8O 3@

O FO-B
-

(OH
O

Behaviour of agents Interface

Fig.5. Instantiating simple causality pattern
29

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

It also has to be mentioned that to preserve concurrency in the implementation of
interacting agents we expand interface nets with additional places and transitions
keeping them weakly bisimilar with original interfaces. Consequently, extended
interfaces allow us to obtain composition results with the clearly identified behavior
of each component.

Figure 5(b) shows how we have expanded interface net for this pattern. We use
expanded interfaces only for our inner purposes. The end user does not need to
know the underlying theoretical aspects of our approach.

6. Some Experimental Evaluation

In this section, we describe a preliminary experiment on using the simple causality
pattern for compositional process discovery. To test our approach we use artificial
event logs obtained from the instantiated simple causality pattern. Then we also
assess quality metrics of discovered models and provide a balanced consideration.

6.1. Processing Event Logs

Using GENA and the composition result obtained from the instantiated simple
causality pattern (see Fig. 5) we have generated the event log with 3000 traces.
Then we have filtered the initial log by executors using ProM. The obtained event
logs have the characteristics presented in Table 2. Generation results for Agent A
show bigger values due to cycles.

Table 2. Characteristics of event logs

LogL LogLs LoglLg

Number of traces 3000 3000 3000
Number of events 58466 34466 24000
Events per trace (min) 17 9 8
Events per trace (max) 43 35 8
Events per trace (mean) 19 11 8

6.2. Discovering a System Model from Log L

Figure 6 shows the fragment of the Petri net discovered from the event log L using
Inductive Miner and ProM. The behavior of agents is distinguished by colors.

30

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Fig.6. The fragment of the system model discovered from L

This discovered model is quite well-structured (constructed out of clear blocks) but
it does not allow to identify the behavior of different agents. That is why, it is hard
to yield the complete picture of agent intercommunication scheme.

6.3. Discovering and Composing Models from Logs Lyand Lg

Figure 7 shows the fragment of the composed Petri nets we have discovered from
the agent event logs L and Lg also using Inductive Miner and ProM. It has to be
mentioned that Petri nets discovered by Inductive Miner are always safe. Hence we
can apply the approach based on morphisms to compose separately discovered
models of agent behavior.

OO
(} +Q+ 4.(},“@*.#...

@ _.Q_, - B = -

Fig.7. The fragment of the composed system model discovered from L,and Lg

The merged model allows us to identify the behavior of agents clearly and how they
intercommunicate. Using morphisms guarantees inheritance of properties such as
deadlock-freeness and proper termination of agents by the entire net.

31

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

6.4. Analysis of the Experiment Results

ProM implementation of Inductive miner offers three configuration options:
1. event logs with infrequent behavior;

2. event logs with incomplete behavior;
3. event logs with lifecycle events (start/finish of events);
4. exhaustive k-successor algorithm.

We do not work with incomplete logs or with lifecycle logs for now. So, in our
experiment we have discovered models of system and agents shown in previous
subsections in accordance with options 1 and 4 and compared them using structural
process discovery metrics.

Table 3 provides the comparison of structural characteristics for the directly
discovered and composed system models. We have compared obtained models with
respect to the number of Petri net elements and structure metric which assess the
overall complexity of a model by breaking it into trivial constructs and assigning
weights to each reducing step. Models discovered with infrequent configuration are
denoted as INFR, models discovered with exhaustive configuration are denoted as
EXHS.

The experiment results show the increase in transition numbers because of adding
silent transitions. Compositional patterns obviously decrease a number of arcs,
compared to direct discovery, as long as we simplify agent intercommunication.
Composed models also preserve complex control flows as shown by structuredness
measure. Separately discovered agent models and their composition exhibit more
precise cycle discovery.

Table 3. Structural analysis of system models

Direct Composed
Source INFR EXHS INFR EXHS
Places 28 30 47 35 39
Transitions 27 44 46 40 41
Arcs 68 100 114 89 93
Structuredness 9360 240 496 872 1208

We have also conducted conformance checking for directly discovered and
composed models. As it was mentioned above, there are four standard quality
dimensions, namely fitness, precision, simplicity, and generalization. Simplicity is
analyzed above via structural analysis. We do not estimate generalization since there
are no complex cyclic or concurrent constructs to instantiate the simple causality
pattern. Table 4 shows values obtained for fitness and precision of discovered and
composed system models.

32

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Table 4. Quality analysis of system models

Direct Composed
Source INFR EXHS INFR EXHS
Fitness 1,0000 1,0000 0,9684 1,0000 1,0000
Precision 0,6992 10,3631 0,5508 0,5629 10,6232

Both discovered and composed system models preserve the appropriate level of
fitness, the composition does not block its preservation. What is more important,
using compositional patterns produces models with precision nearer to that of the
source model compared to direct discovery results. Composed models
approximately 30% more precise than discovered ones.

To sum up, we used the simple causality pattern to produce the model of the multi-
agent system. Assessment results showed that the composed models are highly
competitive with the models directly discovered from complete event logs in the
context of their relative structural complexity evaluations and conformance
checking results.

7. Conclusion and Future Work

In this paper, we have proposed the solution to the problem of discovering
structured models for the processes with several participants (agents). The key idea
is to automatically obtain the correct and complete process models from the separate
source models of its components. The interaction between agents is defined by
experts.

To prove the correctness of the composition we adopt the approach based on Petri
net morphisms. We refer to the compositional patterns proposed for the correct
synthesis of models for multi-agent processes. In the context of this work, we
conducted the preliminary experiment on using the simple causality pattern for
constructing the complete model from discovered agent models. The analysis of
experimental results (conformance and complexity) showed that composed models
are highly competitive compared to the models obtained directly. Moreover, our
compositional approach to process discovery allows producing models with the
clearly identified behavior of interacting agents.

We aim to continue developing of compositional patterns for typical interfaces and
providing experimental process discovery implementations for them using also real-
live event logs. Also, we will proceed with complex synchronization patterns with
relations on action sets and their correct combinations.

References

[1]. van der Aalst W.M.P. Process Mining: Discovery, Conformance and Enhancement of
Business Processes, 1st ed. Springer Publishing Company, Incorporated, 2011. DOI:
10.1007/978-3-642-19345-3.

33

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

2.

(3]

[4].

[5].

[6].

[7].

(8].

[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

34

Nesterov R.A., Lomazova |.A. Compositional process model synthesis based on
interface patterns. Communications in Computer and Information Science, 2017.
Bernardinello L., Mangioni E., Pomello L. Local state refinement and composition of
elementary net systems: An approach based on morphisms. Transactions on Petri Nets
and Other Models of Concurrency, 2013, vol. 8, pp. 48-70. DOI: 10.1007/978-3-642-
40465-8_3.

Buijs J.C.A.M., Dongen B., van der Aalst W.M.P. On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. Lecture Notes in Computer
Science, 2012, vol. 7565, pp. 305-322. DOI: 10.1007/978-3-642-33606-5_19.

Lassen K.B., van der Aalst W.M.P. Complexity metrics for workflow nets. Information
and Software Technology, 2009, wvol. 51, issue 3, pp. 610-626. DOI:
10.1016/j.infsof.2008.08.005.

Wen L., van der Aalst W.M.P., Wang J., Sun J. Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery, 2007, vol. 15, issue 2, pp.
145-180. DOI: 10.1007/s10618-007-0065-y.

Leemans S.J.J., Fahland D., van der Aalst W.M.P. Discovering block-structured process
models from event logs containing infrequent behavior. Lecture Notes in Business
Information Processing, 2013, vol. 171, pp. 66-78. DOI: 10.1007/978-3-319-06257-0_6.
Weijters A.J.M.M., van der Aalst W.M.P., de Medeiros A.K.A. Process Mining with the
HeuristicsMiner Algorithm. BETA Working Paper Series, 2006, vol. 166, Einhoven
University of Technology.

van Zelst S.J., van Dongen B.F., van der Aalst W.M.P. ILP-based process discovery
using hybrid regions. CEUR Workshop Proceedings, 2015, vol. 1731, pp. 47-61.
Gunther C.W., van der Aalst W.M.P. Fuzzy mining — adaptive process simplification
based on multi-perspective metrics. Lecture Notes in Computer Science, 2007, vol 4714,
pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.

van der Aalst W.M.P., Gunther C.W. Finding structure in unstructured processes: The
case for process mining. ACSD '07 Proceedings of the Seventh International Conference
on Application of Concurrency to System Design, 2007, pp. 3-12. DOI:
10.1109/ACSD.2007.50

Buijs J.C.A.M. Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. dissertation, Eindhoven University of Technology, 2014.

Smedt J.D., Weerdt J.D., Vanthienen J. Multi-paradigm process mining: Retrieving
better models by combining rules and sequence. Lecture Notes in Computer Science,
2014, vol. 8841, pp. 446-453. DOI: 10.1007/978-3-662-45563-0_26.

de San Pedro J., Cortadella J. Mining Structured Petri Nets For The Visualization Of
Process Behavior. SAC '16 Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 839-846. DOI: 10.1145/2851613.2851645.

Kalenkova A.A., Lomazova |.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. Lecture Notes in Computer
Science, 2014, vol. 8489, pp. 71-90. DOI: 10.1007/978-3-319-07734-5_5

Kalenkova A.A., Lomazova |.A. Discovery of Cancellation Regions within Process
Mining Techniques. Fundamenta Informaticae, 2014, vol. 133, issue 2-3, pp. 197-209.
DOI: 10.3233/F1-2014-1071.

van der Aalst, Kalenkova A., Rubin V., Verbeek E. Process Discovery Using Localized
Events. Lecture Notes in Computer Science, 2015, vol. 9115, pp. 287-307. DOI:
10.1007/978-3-319-19488-2_15.

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

[18]. Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013, 145 p. DOI: 10.1007/978-3-642-33278-4.

[19]. Winskel G. Petri nets, morphisms and compositionality. Lecture Notes in Computer
Science, 1985, vol. 222, pp. 453-477. DOI: 10.1007/BFb0016226.

[20]. Bernardinello L., Monticelli E., Pomello L. On Preserving Structural and Behavioural
Properties by Composing Net Systems on Interfaces. Fundamenta Informaticae, 2007,
vol. 80, issue 1-3, pp. 31-47.

[21]. Bernardinello L., Pomello L., Scaccabarozzi S. Morphisms on Marked Graphs. CEUR
Workshop Proceedings, 2014, vol. 1160, pp. 113-127.

[22]. Lomazova I.A. Interacting Workflow Nets For Workflow Process Reengineering.
Fundamenta Informaticae, 2010, vol. 101, issue 1-2, pp. 59-70. DOI: 10.3233/F1-2010-
275.

[23]. Cardinale Y., Haddad J.E., Manouvrier M., Rukoz M. Web Service Composition Based
On Petri Nets: Review and Contribution. Lecture Notes in Computer Science, vol. 8194,
2012, pp. 83-122. DOI: 10.1007/978-3-642-45263-5_5.

[24]. Hamadi R., Benatallah B. A Petri Net-Based Model For Web Service Composition.
ADC*03 Proceedings of the 14th Australasian database conference, 2003, pp. 191-200.

[25]. XES (eXtensible Event Stream). Available at: http://www.processmining.org/logs/xes,
accessed 10.03.2017.

[26]. van Dongen B.F., de Medeiros A.K.A., Verbeek H.M.W., Weijters A.J.M.M., van der
Aalst W.M.P. The ProM Framework: A New Era in Process Mining Tool Support.
Lecture Notes in Computer Science, 2005, vol. 3536, pp. 444-454. DOI:
10.1007/11494744 _25.

[27]. Gunther C.W., Rozinat A. Disco: Discover your processes. CEUR Workshop
Proceedings, 2012, vol. 940, pp. 40-44.

[28]. Ailenei I.M. Process Mining Tools: A Comparative Analysis. Master’s thesis,
Eindhoven University of Technology, 2011.

[29]. BPM Tool — mylnvenio. Available: https://www.my-invenio.com, accessed 10.03.2017.

[30]. Shugurov I.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. Proceedings
of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering
(SYRCoSE 2014), 2014, pp. 88-95.DOI: 10.15514/SYRCOSE-2014-8-13.

35

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

ABTOMaTU3NPOBaHHbLIA KOMNO3ULIMOHANbHbLIA CUHTE3
Mopernen pacnpeaeneHHbIX CUCTEM C MOMOLLbIO
naTTepHoOB UHTepcencon

P.A. Hecmepos <ranesterov@edu.hse.ru>
H.A. Jlomazosa <ilomazova@hse.ru>
Hayuno-yuebnas nabopamopust npoyeccHo-opueHmupo8anHbix
ungopmayuonnvix cucmem (IIOUC),
Hayuonanvnwiii ucciedosamenvckuil ynusepcumem « Bolcuiast wikoaia 5KOHOMUKUY
101000, Poccus, e. Mockea, yn. Macrhuyxas, 0. 20

AunHotaumsi. CpeacTBa W METOIbI Process MIning mo3BOJSIOT HCCICIOBATh pasIHYHbBIC
ACIEKThI MPOLECCHO-OPHEHTHPOBAHHbBIX HH(GOPMaLOHHBIX ciucTeM. Kak mpaBuio, B paMkax
TaKUX CHCTEM HECKOJBKO HCIIONHHUTENEeH (areHToB) B3aHMMOAEHCTBYIOT APYT C IPYTOM.
TloBeneHne areHTOB, a Takke MEXaHM3MBI UX B3aMMOJECHUCTBHUS OIMCBHIBAIOTCS C ITOMOIIBIO
MoJierieid TporieccoB. JIJisi MOJETUPOBaHUs MPOIIECCOB MBI IPUMEHSEM OOBIKHOBCHHBIC CETH
Ierpu. Aunroput™bl process diSCOVery mo3BOJISIOT BOCCTAHOBHUTh MOJEIH PEaIbHOTO
MOBEJICHUsI areHTOB M3 JKypHaJla COOBITHH cucTeMbl. OJJHAKO B CiIydae MacIITaOHBIX CHCTEM
aHaNM3 B3aUMOJICHCTBHUS KaK MOBE/ICHUS OTACNIBHBIX areHTOB, TaK M BCEi CHCTEMBI B LIEJIOM
3aTpyIHUTENEH, TaK KaK MOTyJaeMble MOAEIH KPYTHOMACIITAOHBIX CHCTEM B OOJBIIHMHCTBE
cllydaeB KpalHE TpOMO3AKHE H IUIOXO 4YMTaeMble. [y pemeHdss 3TOH HpOOJIEMBI MBI
IpeJIaraéM UCIoIb30BaTh TAK HA3bIBAEMBbIC IMATTEPHBI HHTEP(HEHCOB, KOTOPHIE ONUCHIBAIOT,
KaK areHThl B3aMMOAEHCTBYIOT Apyr ¢ apyroM. C HX MOMOINBIO MONHAas MOJAEIb
MYJIBTHAareHTHOW CHCTEMBI MOXKET OBITh MOJy4YeHa IyTeM KOMITO3ULMH OTICIBbHBIX Mozeneit
areHToB. Kpome TOro, Mojenu MyJIbTHAreHTHBIX CHCTEM, ITOCTPOCHHBIC C HMPUMEHEHHEM
naTTepHoB MHTep(deiicoB, MO3BONSET JIETKO HMIACHTH(GUIMPOBATH IIOBEACHHE KaXJOTO
OTAENBHOTO areHTra. B 1emsx oOecreueHus KOPPEKTHOCTH IPUMEHEHUs] IaTTEPHOB
UHTEPQEHCOB MBI MPUMEHSIEM CIEIHAIbHbIE KOHCTPYKIMH Ha ceTax Iletpm — MOpGOHU3MEL
Pesynprarsl SKCIIepUMeHTa MO NMPUMEHEHHWIO TaTTepHa Ul KOMITO3HI[MOHAIBHOTO CHHTE3a
MOZENN MyJIbTHATEHTHONH CHCTEMBI, MPEJCTaBICHHBIE B padoTe, IIOKAa3ald IPHUPOCT
OCHOBHBIX METPUK KadecTBa IO CPABHEHUIO C MOJETAMH, ITOMy9aeMBIMH C HOMOIIBIO
CTaHIApPTHOTO MMOX0a Process discovery.

KiroueBble ciioBa: cetu HeTpI/I; MaTTCPHbI HHTep(beﬁCOB; CUHXpOHMU3alUsA; KOMIIO3UIIUS,
MOpq)I/ISMBI; H3BJICYCHUE NIPOLICCCOB; MYJIbTHAICHTHBIC CUCTEMBI; PaCIPCACIICHHBIC CUCTEMBI.

DOI: 10.15514/ISPRAS-2017-29(4)-2

Jass murupoBanus: Hecrepos P.A., JlomazoBa WM.A. ABTOMaTM3HpOBaHHBIN
KOMIIO3UIMOHATBHBI CHHTE3 MOJeNell paclpeeeHHBIX CHCTEM C MOMOIIBIO ITAaTTEPHOB
unrepdeiicos. Tpyowr UCII PAH, tom 29, Bem. 4, 2017 1., crp. 21-38 (Ha aHriHiicKOM
s3pike). DOI: 10.15514/ISPRAS-2017-29(4)-2

36

Hecrepos P.A., Jloma3osa .A. ABTOMaTH3MPOBaHHbIH KOMIIO3UIIMOHAIBHBII CHHTE3 MOZIENICH pacTpeieIeHHbIX
CHCTEM C IOMOIIBIO TaTTepHOB uHTepdeiicos. Tpyou UCIT PAH, 2017, Tom 29, Bbim. 4, ctp. 21-38.

Cnucok nutepaTtypbl

(1].

(2.

[3].

[4].

(5]

[6].

[71.

(8].

[9].
[10].

[11].

[12].

[13].

[14].

[15].

[16].

van der Aalst W.M.P. Process Mining: Discovery, Conformance and Enhancement of
Business Processes, 1st ed. Springer Publishing Company, Incorporated, 2011. DOI:
10.1007/978-3-642-19345-3.
Nesterov R.A., Lomazova |.A. Compositional process model synthesis based on
interface patterns. Communications in Computer and Information Science, 2017.
Bernardinello L., Mangioni E., Pomello L. Local state refinement and composition of
elementary net systems: An approach based on morphisms. Transactions on Petri Nets
and Other Models of Concurrency, 2013, vol. 8, pp. 48-70. DOI: 10.1007/978-3-642-
40465-8_3.
Buijs J.C.A.M., Dongen B., van der Aalst W.M.P. On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. Lecture Notes in Computer
Science, 2012, vol. 7565, pp. 305-322. DOI: 10.1007/978-3-642-33606-5_19.
Lassen K.B., van der Aalst W.M.P. Complexity metrics for workflow nets. Information
and Software Technology, 2009, wvol. 51, issue 3, pp. 610-626. DOI:
10.1016/j.infsof.2008.08.005.
Wen L., van der Aalst W.M.P., Wang J., Sun J. Mining process models with non-free-
choice constructs. Data Mining and Knowledge Discovery, 2007, vol. 15, issue 2, pp.
145-180. DOI: 10.1007/s10618-007-0065-y.
Leemans S.J.J., Fahland D., van der Aalst W.M.P. Discovering block-structured process
models from event logs containing infrequent behavior. Lecture Notes in Business
Information Processing, 2013, vol. 171, pp. 66—78. DOI: 10.1007/978-3-319-06257-0_6.
Weijters A.J.M.M., van der Aalst W.M.P., de Medeiros A.K.A. Process Mining with the
HeuristicsMiner Algorithm. BETA Working Paper Series, 2006, vol. 166, Einhoven
University of Technology.
van Zelst S.J., van Dongen B.F., van der Aalst W.M.P. ILP-based process discovery
using hybrid regions. CEUR Workshop Proceedings, 2015, vol. 1731, pp. 47-61.
Gunther C.W., van der Aalst W.M.P. Fuzzy mining — adaptive process simplification
based on multi-perspective metrics. Lecture Notes in Computer Science, 2007, vol 4714,
pp. 328-343. DOI: 10.1007/978-3-540-75183-0_24.
van der Aalst W.M.P., Gunther C.W. Finding structure in unstructured processes: The
case for process mining. ACSD '07 Proceedings of the Seventh International Conference
on Application of Concurrency to System Design, 2007, pp. 3-12. DOI:
10.1109/ACSD.2007.50
Buijs J.C.A.M. Flexible Evolutionary Algorithms for Mining Structured Process
Models. Ph.D. dissertation, Eindhoven University of Technology, 2014.
Smedt J.D., Weerdt J.D., Vanthienen J. Multi-paradigm process mining: Retrieving
better models by combining rules and sequence. Lecture Notes in Computer Science,
2014, vol. 8841, pp. 446-453. DOI: 10.1007/978-3-662-45563-0_26.
de San Pedro J., Cortadella J. Mining Structured Petri Nets for the Visualization of
Process Behavior. SAC '16 Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 839-846. DOI: 10.1145/2851613.2851645.
Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. Lecture Notes in Computer
Science, 2014, vol. 8489, pp. 71-90. DOI: 10.1007/978-3-319-07734-5_5.
Kalenkova A.A., Lomazova |.A. Discovery of Cancellation Regions within Process
Mining Techniques. Fundamenta Informaticae, 2014, vol. 133, issue 2-3, pp. 197-209.
DOI: 10.3233/F1-2014-1071.

37

Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models.
Trudy ISP RAN /Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38.

[17].

[18].
[19].

[20].

[21].

[22].

[23].

[24].
[25].

[26].

[27].
[28].

[29].
[30].

38

van der Aalst, Kalenkova A., Rubin V., Verbeek E. Process Discovery Using Localized
Events. Lecture Notes in Computer Science, 2015, vol. 9115, pp. 287-307. DOI:
10.1007/978-3-319-19488-2_15.

Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013, 145 p. DOI: 10.1007/978-3-642-33278-4.

Winskel G. Petri nets, morphisms and compositionality. Lecture Notes in Computer
Science, 1985, vol. 222, pp. 453-477. DOI: 10.1007/BFb0016226.

Bernardinello L., Monticelli E., Pomello L. On Preserving Structural and Behavioural
Properties by Composing Net Systems on Interfaces. Fundamenta Informaticae, 2007,
vol. 80, issue 1-3, pp. 31-47.

Bernardinello L., Pomello L., Scaccabarozzi S. Morphisms on Marked Graphs. CEUR
Workshop Proceedings, 2014, vol. 1160, pp. 113-127.

Lomazova I.A. Interacting Workflow Nets For Workflow Process Reengineering.
Fundamenta Informaticae, 2010, vol. 101, issue 1-2, pp. 59-70. DOI: 10.3233/FI1-2010-
275.

Cardinale Y., Haddad J.E., Manouvrier M., Rukoz M. Web Service Composition Based
On Petri Nets: Review and Contribution. Lecture Notes in Computer Science, vol. 8194,
2012, pp. 83-122. DOI: 10.1007/978-3-642-45263-5_5.

Hamadi R., Benatallah B. A Petri Net-Based Model For Web Service Composition.
ADC*03 Proceedings of the 14th Australasian database conference, 2003, pp. 191-200.
XES (eXtensible Event Stream). Available at: http://www.processmining.org/logs/xes,
accessed 10.03.2017.

van Dongen B.F., de Medeiros A.K.A., Verbeek H.M.W., Weijters A.J.M.M., van der
Aalst W.M.P. The ProM Framework: A New Era in Process Mining Tool Support.
Lecture Notes in Computer Science, 2005, vol. 3536, pp. 444-454. DOI:
10.1007/11494744_25.

Gunther C.W., Rozinat A. Disco: Discover your processes. CEUR Workshop
Proceedings, 2012, vol. 940, pp. 40-44.

Ailenei I.M. Process Mining Tools: A Comparative Analysis. Master’s thesis,
Eindhoven University of Technology, 2011.

BPM Tool — mylnvenio. Available: https://www.my-invenio.com, accessed 10.03.2017.
Shugurov 1.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. Proceedings
of the 8th Spring/Summer Young Researchers Colloguium on Software Engineering
(SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

A contract-based method to specify
stimulus-response requirements

'A. Naumchev <a.naumchev@innopolis.ru>
M. Mazzara <m.mazzara@innopolis.ru>
1238 Meyer <Bertrand.Meyer@inf.ethz.ch>
%J.-M. Bruel <bruel@irit.fr>
*F. Galinier <galinier@irit.fr>
’S. Ebersold <ebersold@irit.fr>
YInnopolis University,
1 Universitetskaya st., Innopolis, 420500, Russian Federation.
2politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano M, Italy.
®Paul Sabatier University,
118 Route de Narbonne, 31062 Toulouse, France.

Abstract. The verification of many practical systems — in particular, embedded systems —
involves processes executing over time, for which it is common to use models based on
temporal logic, in either its linear (LTL) or branching (CTL). Some of today’s most advanced
automatic program verifiers, however, rely on non-temporal theories, particularly Hoare-style
logic. Can we still take advantage of this sophisticated verification technology for more
challenging systems? As a step towards a positive answer, we have defined a translation
scheme from temporal specifications to contract-equipped object-oriented programs,
expressed in Eiffel and hence open for processing by the AutoProof program prover. We have
applied this scheme to a published CTL model of a widely used realistic example, the
“landing gear” system which has been the subject of numerous competing specifications. An
attempt to verify the result in AutoProof failed to prove one temporal property, which on
further inspection seemed to be wrong in the original published model, even though the
published work claimed to have verified an Abstract State Machine implementation of that
model. Correcting the CTL specification to reflect the apparent informal attempt, re-
translating again to contracted Eiffel and re-running the verification leads to success. The
LTL-to-contracted-Eiffel process is still ad hoc, and tailored to generate the kind of scheme
that the target verification tool (AutoProof) can handle best, rather than the simplest or most
elegant scheme. Even with this limitation, the results highlight the need for rigor in the
verification process, and (on the positive side) demonstrate that the highly advanced
mechanized proof technology developed over several decades for the verification of
traditional programs also has the potential of handling the demanding needs of embedded
systems and other demanding contemporary developments.

Keywords: seamless requirements; design by contract; autoproof; eiffel; landing gear system
39

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

DOI: 10.15514/ISPRAS-2017-29(4)-3

For citation: Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A
contract-based method to specify stimulus-response requirements. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 39-54. DOI: 10.15514/ISPRAS-2017-29(4)-3

1. Overview and main results

The present article describes a technique for specification and verification of
stimulus-response requirements using a general-purpose programming language
(Eiffel) and a program prover (AutoProof [1]) based on the principles of Design by
Contract [2].

Real-time, or reactive, systems are often run by a software controller that repeatedly
executes one and the same routine and it is specified to take actions at specific time
intervals or according to external stimuli [3]. This architecture is reasonable when
the software has to react timely to non-deterministic changes in the environment. In
this case the program should react to the external stimuli in small steps, so that in
the event of a new change it responds timely.

Computation tree logics (CTL) [4] represent a frequent choice when it comes to
capturing stimulus-response requirements. Although it may be easier to reason
about requirements using declarative logic like CTL, the reasoning may be of little
value for the software developer who will implement the requirements. Mainstream
programming languages are all imperative, and the translation between declarative
requirements and imperative programs is semi-formal.

Requirements have to be of imperative nature from the beginning. This would
bridge the gap in how customers and developers understand them. For a software
developer it is preferable to reason about the future program without switching to an
additional formalism, notation and tools not connected to the original programming
language and the IDE.

The present article describes a technique to achieve this goal, in particular:

e Introduces the Landing Gear System (LGS) case study and the LGS
baseline requirements (Section 2).

o Generalizes the LGS baseline requirements, maps them to a well-
established taxonomy, and complements the taxonomy (Section 3).

e Provides a general scheme for capturing semantics of the stimulus-
response requirements in the form of imperative program routines with
assertions (Section 4).

e Exercises utility of the approach by applying it to an Abstract State
Machine (ASM) specification of the Landing Gear System case study
(Section 5).

e Concludes the possibility of statically checking a sequential imperative
program directly against a stimulus-response requirement whose semantics

40

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.
is expressed in the same programming language through conditionals,
loops, and assertions (Section 7).
Application of the technique leads to discovery of an error in the published model of
the LGS ASM [5]. The error is not present in the specification the authors have
actually used for proving the properties, but the error has found its way into the
publication.

2. The landing gear system

Landing Gear System was proposed as a benchmark for techniques and tools
dedicated to the verification of behavioral properties of systems [6]. It physically
consists of the landing set, a gear box that stores the gear in the retracted position,
and a door attached to the box (Figure 1). The door and the gear are actuated
independently by a digital controller. The controller reacts to changes in position of
a handle in the cockpit by initiating either gear extension or retraction process. The
task is to program the controller so that it correctly aligns in time the events of
changing the handle’s position and sending commands to the door and the gear
actuators.

3. Stimulus-response requirements

The LGS case study defines a number of requirements, including several for the
normal mode of operation (Figure 2). The requirements communicate a common
meaning of the form: If stimulus holds, then response will eventually hold in the
future. For requirement Ry1bis,
stimulus & "The operation mode is normal and the handle is DOWN" and
response & (stimulus = "The gear is down and the door is closed").
The implication in the definition of response reflects the “and stays DOWN?” part of
the original requirement. In addition to that, requirements Rz: and R,, communicate
something else:

e Once response holds in the presence of stimulus, and stimulus holds

forever, response will hold forever.

3.1 Temporal interpretation of the requirements

The authors of the LGS ASM specification start with a ground model that satisfies a
subset of requirements, and then refine the model to satisfy more requirements. The
present article focuses on their ground model and the corresponding baseline
requirements it covers (Figure 2). The work expresses the baseline requirements as
CTL properties. The CTL interpretation assigns precise meanings to the
requirements by assuming small-step execution semantics of ASM’s. In particular,
for requirements Ri1bis and Rizbis “the future” means “after a finite number of
execution steps”, while for Rz1 and R;; “the future” means “after one execution
step”.

41

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

=

landing-gear
box

’ landing-gear
P retracted

door

landing-gear
extended

Fig. 1. Landing set (source: [6]).

(R11bis) When the command line is working (normal mode), if the landing
gear command handle has been pushed DOWN and stays DOWN,
then eventually the gears will be locked down and the doors will be
seen closed.

(Ry2bis) When the command line is working (normal mode), if the landing
gear command handle has been pushed UP and stays UP, then
eventually the gears will be locked retracted and the doors will be
seen closed.

(R2;)) When the command line is working (normal mode), if the landing
gear command handle remains in the DOWN position, then
retraction sequence is not observed.

(R2;) When the command line is working (normal mode), if the landing
gear command handle remains in the UP position, then outgoing
sequence is not observed.

Fig. 2. Baseline LGS requirements.

The finite number of steps in Ri1bis and Ri2bis may be unacceptably large though
for a system like an LGS of an aircraft. In particular, flights have some expected
durations, and the gears have to react to commands in some limited time frame as
well. The following two major categories of stimulus-response requirements stem
from the speculations above:

e If stimulus holds, then response will hold in not more than k execution
steps.

42

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

Requirements of this form are also called maximal distance requirements
[71.

e If stimulus holds, then response will hold in exactly k execution steps.
Requirements of this form are also called exact distance, or delay
requirements.

These two categories are not enough though for capturing stimulus-response
requirements. For example, if according to Ri1bis the gears are locked down and the
doors seen closed as the result of the handle staying down, we want this state to be
stable if the handle stays down. This leads us to stimulusresponse requirements of
the following form:

e If response holds under stimulus, it will still hold after one execution step
in the presence of that stimulus.
Let us call such requirements response stability requirements.
It makes sense to complement requirements (Ri1bis) and (Ri2bis) with the
corresponding response stability requirements (Figure 3): not only do we want the
LGS to respond to a change in the handle’s position, but we also want it to maintain
the response if the position does not change.

(Ry1rs) If the gears are locked extended and the doors are closed when the
landing gear command handle is DOWN, this state will still hold if
the handle stays DOWN.

(Ryors) If the gears are locked retracted and the doors are closed when the
landing gear command handle is UP, this state will
still hold if the handle stays UP.

Fig. 3. LGS response stability requirements.

4. Translation of stimulus-response requirements

Assuming the presence of an infinite loop from until False loop main end that runs
a reactive system, a temporal stimulus-response requirement (Section 3.1) takes the
form of a routine with an assertion (check end construct in Eiffel). The authors draw
this idea from the notion of a specification driver [8] - a contracted routine that
forms a proof obligation in Hoare logic. AutoProof is a prover of Eiffel programs
that makes it possible to statically check the assertions.

response_holds_within_k_steps
-- If stimulus holds, response will hold within k steps.
local
steps: NATURAL
do

43

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

if (stimulus) then
from
steps := 0
until
response or (steps = k)
loop
main
steps :=steps + 1
end
check response end
end
end

Fig. 4. Representation of a maximal distance requirement. Regardless of the actual reason
for the loop to terminate, the response has to hold if the stimulus held at the entry to the loop.

response_holds_in_k_steps
-- If stimulus holds, response will hold in k steps.

local
steps: NATURAL
do
if (stimulus) then
from
steps :=0
until
response or (steps=k)
loop
main
steps :=steps + 1
end
check (response and (steps = k)) end
end
end

Fig. 5. Representation of an exact distance requirement. Both of the loop exit conditions have
to hold for the first time simultaneously if the stimulus held at the entry to the loop.

44

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

4.1 Maximal distance

In the representation of a maximal distance requirement (Figure 4) the “if stimulus
then” clause captures the presence of the stimulus before the up-to-k-length
execution fragment, and the “check response end” assertion expresses the need for
the response upon completion of the subexecution. The sub-execution may complete
for two possible reasons: either occurrence of the response or consumption of all of
the available k steps. In the both cases the response has to hold.

4.2 Exact distance

Representation of an exact distance requirement (Figure 5) is very similar to that
one of a maximal distance, with the “check (response and (steps = k)) end”
assertion that makes the difference. Regardless of whether the loop terminates
because of “response or steps = k”, the both have to hold upon the termination.

4.3 Response stability

Representation of a response stability requirement (Figure 6) says: whenever
response holds under stimulus in a state, it will still hold in the presence of the same
stimulus in the next state.

response_is_stable_under_stimulus
-- response keeps holding under stimulus.
do
if (stimulus and response) then
main
check (stimulus implies response) end
end
end

Fig. 6. Representation of a response stability requirement. If response holds under stimulus
in some state, the response should hold in the next state in the presence of the same stimulus.

5. Applying the translation scheme to the landing gear example
The article exercises the approach on the LGS ASM specification, which is
operational by the definition and thus is a subject for translation into an imperative
program. For this reason the present section starts with explanation of the rules
according to which the authors converted the original specification into an Eiffel
program.

5.1 Translation of ASM specifications

An ASM specification is a collection of rules taking one of the following three
forms [9]: assignment (Section V-Al), do-in-parallel (Section V-A2), and

45

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

conditional (Section V-A3). If we have general rules for translating these operators
into Eiffel then we will be able to translate an arbitrary ASM into an Eiffel program.
An ASM assignment looks as follows:

f(ty, . t;) i=1t, (1)

The semantics is: update the current content of location A = (f,(ay,..,a;)), where a;are
values referenced by t;, with the value referenced by .

In Eiffel locations are represented with class attributes, so an ASM’s location update
corresponds in Eiffel to an attribute assignment.

An ASM do-in-parallel operation can apply several rules simultaneously in one
step:

Ryll 11 Ry @

In order to emulate a parallel assignment in a synchronous setting, one needs to
assign first to fresh variables and then assign their values to the original ones. For
example, an ASM do-in-parallel statement

a,b := max(a — b,b), min(a — b, b) 3)
in Eiffel would look like:

local
a_intermediate, b_intermediate: INTEGER
do
a_intermediate := max (a-b, b)
b_intermediate := min (a-b, b)
a :=a_intermediate
b :=b_intermediate
end

An attempt to update in parallel identical locations in an ASM corresponds
semantically to a crash. The translation scheme not only preserves but strengthens
this semantics: an Eiffel program with two local variables declared with identical
names will not compile.

Conditional: An ASM conditional if t then R1 else R2 carries the same meaning as
in Eiffel, so the translation is straightforward.

46

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

5.2 An error in the ground model

Translation of the original LGS ASM specification into Eiffel is publicly available
in a GitHub repository [10] The error is not handling the situation when the door is
closing and the handle is pushed down, in which case the ground model will not
meet requirement (R11bis). To catch this error with the SVR method one needs first
to introduce it back by commenting out two lines in the “open_door” routine of the
Eiffel translation:

open_door
do
inspect door_status
when closed_position then
door_status := opening_state
-- when closing_state then
-- door_status := opening_state
and then submit routine r11_bis to verification with AutoProof; the verification will

fail. We have contacted an author of the article that contains the erroneous ASM
specification, and he admitted the presence of the error.

5.3 Requirements
The two classes include the translations of the baseline requirements plus the
response stability requirements introduced in the present article. We do not discuss
all of them here: requirements (R11bis) and (Ri2bis), (R21) and (Rz2), (Ri1rs) and
(R12rs) are pairwise similar, which is why we prefer to pick one from each pair.
Translation of requirement rl11_bis (Figure 7) is an application of the
response_holds_within_k_steps pattern (Figure 4), where:
e stimulus equates to:
is_normal_mode and (handle_status = is_handle_down)
e response equates to:
(not (is_normal_mode and (handle_status = is_handle_down))) or
((gear_status = is_gear_extended) and (door_status = is_door_closed))
The idea behind the response is that there may be two reasons for the gear not to
extend and the door not to close:
e Anabnormal situation that leads to quitting the normal mode.
e The crew changes their mind and pushes the handle up.

rll bis

-- If (is_normal_mode and (handle_status = is_handle_down)) hold
and remain,

-~ ((gear_status = is_gear _extended) and (door status =

is_door_closed)) will hold within 10 steps.
47

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

48

local
steps: NATURAL
do
if (is_normal_mode and (handle_status = is_handle_down)) then
from
steps:=0
until

(not (is_normal_mode and (handle_status = is_handle_down)))
or ((gear_status = is_gear_extended) and

(door_status = is_door_closed)) or (steps = 10)
loop

main

steps :=steps + 1
end

check (not (is_normal_mode and (handle_status =
is_handle_down))) or
((gear_status = is_gear_extended) and (door_status =
is_door_closed)) end
end
end

Fig. 7. Translation of the “r11 bis” requirement.

r21

-- If (is_normal_mode and (handle_status = is_handle_up)) holds and
remains,

-- (gear_status=is_gear_extending) will hold within 1 step.
local
steps: NATURAL
do
if (is_normal_mode and (handle_status = is_handle_up)) then
from
steps:=0
until
(not (is_normal_mode and (handle_status = is_handle_up))) or
(gear_status = is_gear_extending) or
(steps =1)
loop
main
steps :=steps + 1

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

end

check (not (is_normal_mode and (handle_status
is_handle_up))) or

(gear_status = is_gear_extending) end

end
end
Fig. 8. Translation of the “r21” requirement.
ril rs
-~ ((gear_status = is_gear_extended) and (door_status =

is_door_closed)) keeps holding under

-- (is_normal_mode and (handle_status = is_handle_down))
do
if ((is_normal_mode and (handle_status = is_handle_down)) and
((gear_status = is_gear_extended) and (door_status =
is_door_closed))) then
main
check ((is_normal_mode and (handle_status = is_handle_down))
implies
((gear_status = is_gear_extended) and (door_status =
is_door_closed))) end
end
end

Fig. 9. Translation of the “rll rs” requirement.

6. Related work

Modeling of real-time computation and related requirements is a well-investigated
matter [12]. Representation of real-time requirements, expressed in general or
specific form, is a challenging task that has been attacked by the use of several
formalisms both in sequential and concurrent settings, and in a broad set of
application domains. The difficulty (or impossibility) to fully represents general
real-time requirements other than in natural language, or making use of excessively
complicated formalisms (unsuitable for software developers), has been recognized.
In [13] the domain of real-time reconfiguration of system is discussed, emphasizing
the necessity of adequate formalisms. The problem of modeling real time in the
context of services orchestration in Business Process, and in presence of abnormal
behavior has been examined in [14] and [15] by means, respectively, of process
algebra and temporal logic. Modeling of protocols also requires real-time aspects to
be represented [16]. Event-B has also been used as a vector for real-time extension
[17] in order to handle embedded systems requirements.

49

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

In all these studies, the necessity emerged of focusing on specific typology of
requirements using ad-hoc formalisms and techniques, and making use of
abstractions. The notion of “real-time” is often abstracted as number of steps, a
metric commonly used. In this paper we follow the same approach, inheriting both
strength (simplicity of the model and effectiveness for applicative purposes) and
limitations (temporal logic and time automata themselves miss to capture a precise
notion of real-time).

7. conclusions and future work

Software developers reason in an imperative/operational manner. This claim is
supported both by anecdotal experience and by empirical evidence [18].
Requirements expressed in imperative/operational fashion would therefore results of
easier comprehensions for developers and would simplify the process of negotiation
behind requirements elicitation. In the method described in this paper, requirements
are expressed in a formalism (or language) that seamlessly stay the same along the
whole process, without the need of switching between different instruments or
mental paradigms. At the same time, the linguistic tool used to define them also
allows for automatic verification of correctness.

The meaning of correctness here remains subject to the assumption that
requirements engineers and stakeholders agree on a list of desiderata that is indeed
the intended one. Assuming a non-faulty process of intention transferring (and this
assumption is common to any other approach too), requirements are now more
easily manageable by software engineerings all the way from elicitation to
verification.

The result of elicitation process is a set of requirements in natural language. The full
realization of the presented method would imply an automatic (or semi-automatic)
translation from natural language into a structured representation that, although
completely intuitive for software developers, it is possibly not easy to manage for
average stakeholders. The first part of this process, i.e., the translation from natural
language into the current representation (and back) is under development. A tool
automatically translates semi-structured natural language into the Hoare-triple-based
representation [19], allowing also the opposite direction, i.e. back to natural
language [20], so that software engineers would be able to negotiate back
requirements with stakeholders using a format they would comprehend. The role of
the requirement engineers would then consist in concluding the elicitation phase
with a set of requirements in semi-structured natural language, which the tool would
be able to process in an entirely automatic manner.

This paper supports the idea of seamless development describing a method
supported by a formalism that stay the same along the whole process, from
requirements to deployment. Alternative approaches have also been experimented
which make use of formalism-based toolkits, where ad hoc notations are adopted for
each development phase [21].

50

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

References

(1].

[2].
[3].

[41.
[5].

[6].

[71.
[8].

[9].
[10].
[11].
[12].

[13].

[14].

[15].

[16].

[17].

J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active
functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,
2015.

B. Meyer, Touch of Class: learning to program well with objects and contracts.
Springer, 2009.

1. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, pp. 154-169. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003.

E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” Logics of programs, pp. 52—71, 1982.

P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the
landing gear system case study,” in International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pp. 36-51, Springer, 2014.

F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1-18, Springer,
2014.

R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255— 299, 1990.

A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in
2016 10th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 160-167, July 2016.

Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77-111, 2000.

A. Naumchev, “Lgs asm ground model in eiffel”
https://github.com/anaumchev/Igs_ground_model, 2017.

N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through
semantic collaboration,” in FM 2014: Formal Methods, pp. 514-530, Springer, 2014.

H. Yamada, “Real-time computation and recursive functions not real-time computable,”
IRE Transactions on Electronic Computers, vol. EC-11, pp. 753-760, Dec 1962.

M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic
reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND ’10, (Washington, DC, USA), pp.
173-181, IEEE Computer Society, 2010.

M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287—
302, 2005.

L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows
with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, Vienna, Austria, 2931 August, 2014, pp. 29-40, 2014.

M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-
calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21-46, 2000.

A. Tliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting
event-b modelling with real time verification,” in Proceedings of the First International

s

51

https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches, FormSERA 12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber,” M. Weidlich, and S. Zugal,
Declarative versus Imperative Process Modeling Languages: The Issue of
Understandability. Springer Berlin Heidelberg, 2009.

[19]. A. Bormotova, “Translation of natural language into hoare triples.”
https://github.com/An-Dole/ Semantic-mapping.
[20]. V. Skukov, “Translation of hoare triples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal
Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,
2013, pp. 3642, 2013.

KoHTpakTHbIN MeToq cneyndukauum peakTMBHbIX
TpebGoBaHUn

4. Haymues <a.naumchev@innopolis.ru>
M. Mayyapa <m.mazzara@innopolis.ru>
1235 Meiiep <Bertrand.Meyer@inf.ethz.ch>
$)K.-M. Bpioanw <bruel @irit.fr>
3@. Ianunve <galinier@irit.fr>
3C. B6epcony <ebersold@irit.fr>
1S/Hueepcumem Hnnononuc,
420500, Poccuiickas @edepayus, 2. Uunononuc, yin. Yuusepcumemckas, 0. 1.
2Munanckuii mexuuyeckuii ynusepcumen,
20133, Umanus, 2. Munan, Piazza Leonardo da Vinci, 32.
3Y}Lmeepcumem Tynyszoi,
31062, ®@panyus, 2. Tynysa, Route de Narbonne, 118.

AnHoTamms. Bepudukanys MHOTMX NPHKIAAHBIX CHCTEM — B YaCTHOCTH, BCTPOCHHBIX, -
BKJIFOYAeT B ce0sl MPOLIECCHI, HCIOMHAIOUINECS BO BPEMEHH, U MOJIEIMPOBAHHUS KOTOPBIX
OOBIYHO HCIIONB3yeTCsi BpeMeHHasi yoruka, mmuedHas (LTL) wmm BerBsmasics (CTL).
Hanbonee pa3BuTBIE aBTOMATHYECKHE JOKa3aTeIM IPOTpaMM, OJHAKO, OCHOBAaHBI Ha
HEBPEMEHHbIX TEOPHSIX: HalpHMep, Ha Joruke Xoapa. Bo3MOXHO I Bce e MpUMEHEHHe
9TOI pa3BUTOH TEXHOJOTMM BepuduKamuK K Oojee CIOKHBIM cucteMam? B kadecTBe mara
Ha MyTH K TOJIOKUTEIBHOMY OTBETY, MBI pa3paboTain cxemy rnepeBojaa noaMuoxectsa LTL
crienuduKayii B 00bEKTHO-OPHEHTHPOBAHHbIE TIPOrPaMMbI ¢ KOHTpakTamu Ha si3bike Eiffel,
KOTOpBIE SIBIAIOTCS €CTECTBEHHBIMH LEJSAMH Ui Jokasarens mporpamm AutoProof. Mer
HNPUMEHHIIM 3Ty CXeMy K OIyOJMKOBAaHHOI BPEMEHHOW MOJENH LIMPOKO HCIOJIB3YEMOTo
PEATMCTUYHOTO TIpUMepa, ABHALMOHHOW CHCTEMBI KOHTPOJIS IIACCH, SIBJISIOLICHCS CBOETO
poma DOTaJOHHOW 3ajayeldl IS CpaBHEHHS INPUMEHHMOCTH Da3HYHBIX METO/IOB
cnenuukanun. Bepudukanus nepeBeneHHON cnenudukanuun ¢ momomipio AutoProof
oOHapyxwuna omUOKy B OJHOM U3 BPEMEHHbIX CBOWCTB. YTIyOJEeHHOE M3ydeHHE AaHHON
OUIMOKM TPUBEJIO K OOHApYXEHHIO OLIMOKM B OIMYOJIMKOBAaHHOW aOCTPaKTHOI MarlinHe
cocrosiauii (ASM), KoTOpasi peain3yeT MEepeBeICHHYI0 MOJENb, aBTOPhI MMyOIHMKAalUH, B
CBOIO odYepenb, 3asBUIM 00 ycmemHod Bepudukaiuu. KoppekTHpoBKa HMCXOIHON

52

https://github.com/An-Dole/Semantic-mapping
https://github.com/An-Dole/Semantic-mapping
https://github.com/flosca/hybrid

Haymues A., Mamuapa M., Meiiep b., Bptoans XK.-M., T'anurbe ®., 96epcons C. KoHTpakTHBIH MeTOJT crienupHKaIiii
peakTuBHBIX TpeboBanuit. Tpyoet UCII PAH, Tom 29, Bbim. 4, 2017 1., ctp. 39-54.

cneuudukanuu U nepeBon pesyiabrara B Eiffel ¢ konTpakramm ¢ mociemyromeit
BepubUKaLeil IPUBEIN K yCIEIHOMY pe3ynbrary. IIponecc nepeBona u3 LTL B Eiffel Bce
elle HAXOAMTCA B 3a4aTOYHOM COCTOSSHMHM M ONTHMH3HMPOBAaH JJI HCIOIb3YEMOTo
uHCTpyMeHTa Bepudukaimu (AutoProof), mostomy cxema nepeBojia He BBITJISAUT MPOCTON U
JJeTaHTHON. Jlake ¢ y4yeToM yKa3aHHBIX OTPAaHMYEHUM IIOJIyUYEHHbIE pEe3yJbTaThl
JEMOHCTPUPYIOT MOTEHIIMANl TEXHOJIOTHH aBTOMAaTHYECKOTO J0KAa3aTelbCTBA TPaJUIIHOHHBIX
MpOrpaMM B YacTH €€ IPIMEHUMOCTH K CTIeU(HUIHBIM IIPOOIEMaM BCTPOSHHBIX CHCTEM.

KioueBbie ciioBa: GeclioBHbIC TpeOOBaHUS; MPOCKTHPOBAHHE MO KOHTpakTy; autoproof;
d¥ierns; cucTeMa KOHTPOJIS IacCH

DOI: 10.15514/ISPRAS-2017-29(4)-3

Jna nurupoBanusi: Haymues A., Manuapa M., Meiiep b., bproans XK.-M., I'anunse @.,
D6epconp C. KoHTpakTHBIM METON CHeMU(HUKAINA PEaKTUBHBIX TpeboBanuil. Tpyoer UCII
PAH, Tom 29, Boim. 4, 2017 1., ctp. 39-54 (Ha anrmuiickom s3eike). DOL: 10.15514/ISPRAS-
2017-29(4)-3

Cnucok nutepatypbl

[1]. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof: Auto-active
functional verification of object-oriented programs,” arXiv preprint arXiv:1501.03063,
2015.

[2]. B. Meyer, Touch of Class: learning to program well with objects and contracts.
Springer, 2009.

[3]. I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining the Specification of a Control
System from That of Its Environment, pp. 154-169. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003.

[4]. E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” Logics of programs, pp. 52—71, 1982.

[5]. P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling and analyzing using asms: the
landing gear system case study,” in International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pp. 36-51, Springer, 2014.

[6]. F. Boniol and V. Wiels, “The landing gear system case study,” in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 1-18, Springer,
2014.

[7]. R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-time
systems, vol. 2, no. 4, pp. 255— 299, 1990.

[8]. A. Naumchev and B. Meyer, “Complete contracts through specification drivers,” in
2016 10th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 160-167, July 2016.

[9]. Y. Gurevich, “Sequential abstract-state machines capture sequential algorithms,” ACM
Transactions on Computational Logic (TOCL), vol. 1, no. 1, pp. 77-111, 2000.

[10]. A. Naumchev, “Lgs asm ground model in eiffel..”
https://github.com/anaumchev/Igs_ground_model, 2017.

53

https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model

Naumchev A., Mazzara M., Meyer B., Bruel J.-M., Galinier F., Ebersold S. A contract-based method to specify
stimulus-response requirements. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 39-54.

[11]. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible invariants through
semantic collaboration,” in FM 2014: Formal Methods, pp. 514-530, Springer, 2014.

[12]. H. Yamada, “Real-time computation and recursive functions not real-time computable,”
IRE Transactions on Electronic Computers, vol. EC-11, pp. 753-760, Dec 1962.

[13]. M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dynamic
reconfiguration of dependable real time systems,” in Proceedings of the 2010 Third
International Conference on Dependability, DEPEND 10, (Washington, DC, USA), pp.
173-181, IEEE Computer Society, 2010.

[14]. M. Mazzara, “Timing issues in web services composition,” in Formal Techniques for
Computer Systems and Business Processes, European Performance Engineering
Workshop, EPEW 2005 and International Workshop on Web Services and Formal
Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, pp. 287—
302, 2005.

[15]. L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL semantics of business workflows
with recovery,” in ICSOFTPT 2014 - Proceedings of the 9th International Conference on
Software Paradigm Trends, Vienna, Austria, 2931 August, 2014, pp. 29-40, 2014.

[16]. M. Berger and K. Honda, “The two-phase commitment protocol in an extended pi-
calculus,” Electr. Notes Theor. Comput. Sci., vol. 39, no. 1, pp. 21-46, 2000.

[17]. A. Tliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala, “Augmenting
event-b modelling with real time verification,” in Proceedings of the First International
Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches, FormSERA *12, 2012.

[18]. D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber,” M. Weidlich, and S. Zugal,
Declarative versus Imperative Process Modeling Languages: The Issue of
Understandability. Springer Berlin Heidelberg, 2009.

s

[19]. A. Bormotova, “Translation of natural language into hoare triples.”
https://github.com/An-Dole/ Semantic-mapping.
[20]. V. Skukov, “Translation of hoare triples into natural language.”

https://github.com/flosca/hybrid.

[21]. R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson, and M. Mazzara, “Towards a
formalism-based toolkit for automotive applications,” in 1st FME Workshop on Formal
Methods in Software Engineering, FormaliSE 2013, San Francisco, CA, USA, May 25,
2013, pp. 36-42, 2013.

54

https://github.com/An-Dole/Semantic-mapping
https://github.com/An-Dole/Semantic-mapping
https://github.com/flosca/hybrid

Fast L' Gauss Transforms for Edge-Aware
Image Filtering

2Dina Bashkirova <dina.bashkirova@riken.jp>
'Shin Yoshizawa <shin@riken.jp>

’Roustam Latypov <roustam.latypov@kpfu.ru>
'Hideo Yokota <hyokota@riken.jp>
'Image Processing Research Team,

RIKEN Center for Advanced Photonics, RIKEN,

2-1, Hirosawa, Wako, Saitama, 351-0198, Japan

%Institute of Computational Mathematics and Information Technologies,
Kazan Federal University,
35 Kremlyovskaya, Kazan, Russia, 420008

Abstract. Gaussian convolution and its discrete analogue, Gauss transform, have many
science and engineering applications, such as mathematical statistics, thermodynamics and
machine learning, and are widely applied to computer vision and image processing tasks. Due
to its computational expense (quadratic and exponential complexities with respect to the
number of points and dimensionality, respectively) and rapid spreading of high quality data
(bit depth/dynamic range), accurate approximation has become important in practice
compared with conventional fast methods, such as recursive or box kernel methods. In this
paper, we propose a novel approximation method for fast Gaussian convolution of two-
dimensional uniform point sets, such as 2D images. Our method employs L1 distance metric
for Gaussian function and domain splitting approach to achieve fast computation (linear
computational complexity) while preserving high accuracy. Our numerical experiments show
the advantages over conventional methods in terms of speed and precision. We also introduce
a novel and effective joint image filtering approach based on the proposed method, and
demonstrate its capability on edge-aware smoothing and detail enhancement. The
experiments show that filters based on the proposed L1 Gauss transform give higher quality
of the result and are faster than the original filters that use box kernel for Gaussian
convolution approximation.

Keywords: Gaussian smoothing, Laplace distribution, fast approximation algorithms.
DOI: 10.15514/ISPRAS-2017-29(4)-4

For citation: Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss
Transforms for Edge-Aware Filtering. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 55-72. DOI: 10.15514/ISPRAS-2017-29(4)-4

55

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

1. Introduction

Gaussian convolution is a core tool in mathematics and many related research areas,
such as probability theory, physics, and signal processing. Gauss transform is a
discrete analogue to the Gaussian convolution, and has been widely used for many
applications including kernel density estimation [1] and image filtering [2]. Despite
its reliable performance and solid theoretical foundations, Gauss transform in its
exact form along with other kernel-based methods has a drawback — it is very
computationally expensive (has quadratic computational complexity w.r.t. the
number of points) and hard to scale to higher dimensions. Which is why there have
been many attempts to overcome these problems by creating approximation
algorithms, such as fast Gauss transform [3], dualtree fast Gauss transforms [4], fast
KDE [5], and Gaussian kd-trees [6]. Also, box kernel averaging [7] and recursive
filtering [8] have been popular in computer graphics and image processing because
of their simplicity, see the surveys [9], [10] for numerical comparisons of these
approximation methods.

Since high bit depth (also dynamic range) images have become popular in both digital
entertainment and scientific/engineering applications, it is very important to acquire
high approximation precision and to reduce artefacts caused by drastic truncation
employed in many conventional methods focused on computational speed. One of the
highly accurate methods is called fast L* Gauss transform approximation [11] based on
using L* distance instead of conventional L? Euclidean metric. This L* metric preserves
most of the properties of the L? Gaussian, and is separable, hence it allows to perform
computations along each dimension separately, which is very beneficial in terms of
computational complexity. Also, L* Gaussian has only one peak in Fourier domain at
the coordinate origin, and therefore its convolution does not have some undesirable
artefacts that box kernels and truncation methods usually have. However, this
algorithm works only on one-dimensional (1D) point sets, although it can be extended
to uniformly distributed points in higher dimensions by performing it separately in
each dimension. In order to be able to acquire Gauss transform for non-uniformly
distributed two-dimensional points and to further generalize it to higher dimensional
cases, we need to extend existing method [11] to the 2D uniform case.

In this paper we propose a novel approximation method for fast Gauss two-
dimensional (2D) image transform. Our method is based on extending the fast L*
Gauss transform approximation on uniformly distributed 2D points that allows to
perform Gaussian convolution quickly while preserving high accuracy. We
demonstrate that efficiency of the proposed method in terms of computational
complexity, numerical timing, and approximation precision.

We also successfully applied our method in the novel filtering approach based on
combining the approximated L' Gauss transformations into the so-called guided
filter [12] (joint image filtering via ridge regression). Our approach reduces
computational costs while providing higher quality results compared to the
conventional one. We show the application to edge-aware smoothing and image
detail enhancement.

56

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

2. Fast L1 Gauss Transform

In this section, we briefly describe the 1D domain splitting algorithm [11] employed
for fast L* Gauss transforms.

Consider the ordered point set X = {;}Y |, 2; € R, 2; >x,;_y, Vi = 2, N. Each
point z; has a corresponding value I; € R, e.g. pixel intensity in case of images.
The L* Gauss transform for each point in set X is given by

xr) = ZG(J‘?? — :II.E)Ij. G(T) — EXp(—%). (1)

where G(x), X € R, is a L' Gaussian function (also called Laplace distribution in
statistics) with its standard deviation . It is convenient to decompose L' norm by
splitting its domain by using the point x; such that

oy —] = lzj — @] = vy — @ ifay <@y <ay,
J ' |.I?i7.171‘7‘{1'j7.’(?1| if.T‘ES.TjSI,;.

2

Thus, Gauss transform (1) using the equatlon (2) becomes

J(z;) =1+ G(z ZG(TFTI)
1 N
' ﬁzc(*)f N

Such representation (3) allows to reduce the amount of computational operations,
since values G(x; — 1), ﬁ and the sums X1 LG(z: —a1) and
Zf_l m can be precomputed in linear time. However, using the equation (3)
may imply some numerical issues, such as overflow, if the distance between 1 and
x;, L € {i,7} isrelatively large. To avoid such issues, this algorithm introduced
certain representative points (poles) {ax € R} instead of using the single point 1,
where the distance between «j and z; is smaller than the length that causes the
numerical instability. Hence the equation (3) becomes more complex form, a highly
accurate truncation can be applied where G(ay — ;) is numerically equal to zero,
see [11] for further technical details.

Although this algorithm can be used in case of multidimensional images by
applying it separately in each dimension, this separable implementation approach is
not applicable to nonuniformly distributed high-dimensional point sets. Therefore,
we present a novel and natural extension of the domain splitting concept on 2D
cases (images) in the following sections.

57

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

3. Two-Dimensional Algorithm

For a given 2D point set X = {x; }¥ |, x; = (4, ;) € R?, L' distance between two
points in R? is given by |x; —x;| = [2; —xi|+[y; —yil, thus the Gauss transform (1)
is represented by the formula:

N
|z — il + |y; — vl
J(x;) = Zcxp(f z 5 1 M

i=
Domain splitting (2) for 2D points is given by

laj — 21| = |2 — o[+ |y — | = |y —wn| ifxi€ Dy
|2; — @] = |oj — a1 + |y — w1l — |yi —wn| ifx; € Dy
|zj — w1| = @i — 1| + |y — | — ly; —wn| if xi € Dy
|xz'_$l|_txj_ml|+|yz'_y1|_‘yj_yl‘ if x; € Dy,
see Fig. 1a for geometric illustration of the domains.

|l — x| + |y — vil =

D, . D

Dy D? Ds Dy

(a) Single pole x; case (b) Multipole {a} case
Fig. 1. lllustration of 2D domain splliting.

Using the above decomposition, Gauss transform is represented similar to (3):

J(x5) = 1)) + Fla,) F(y;) Z muxan
x; €D, (j)
F(ugx; PO 10+) ;UF(
Z I mz)
x;€D4(5) (4)
where F(z;) = G(z; — :c1) and F(yj) G(y; — yl)
Precomputation and storage of values = F—“J—) and 71) require O(4N) operations

and O(4N) space, and all the subsequent sums F(z;) F(y;). ?Efg{ can be iteratively
computed in O(N) operations. Gauss transform for all points using the formula (4)
requires O(10N) as opposed to employing the separable implementation of equation
58

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

(3) for O(6N) operations. Since computing the Gauss transform using the equation
(4) is numerically troublesome, it is reasonable to divide the space into smaller
groups and perform computations separately, as it was proposed in [11]. Let us
introduce a novel 2D multipole approach for solving this problem.
Consider a set of poles {ax}M ., a = (ag,br) € R2. The distance between
points using poles oy is given by

where

Xi = Xj|

Dy = {xilz: € D¥,y; € DV}, Dz = {xilz: € D,
Dy = {x;|x; € D3,y; € DY}, D4 = {x|x; € DY,
Ds = {xi|x; € D3, y; € DY}, D = {x;|z; € Dj,

D7 = {x;|z; € DY,y € D':}Dg = {x;|z; € Dj.

|xi —ag| — |z; — ak| + |yi — bk| — [y
lzj — ag| = @ — ag| + |y — bl = |y;
lzi — ag| + |25 — ar] + [yi — bl = y;
|zi — ak| — |zj — ak| + y; — bx| — yi
[z — ak| — |v; — ag] + [y — bl — v

lei — ak| + |z; — ak] + |y; — be| — |vi
|w; —ag| — |o; — a| + |y — bi] + |y;
|5 — ak| — |z — ak| + |yi — bie| + |y;

Uzi — ak| + |5 — ar] + lyi — bel + |y

Dy = {xi|x; € D3, y; € Di},

—l’);.-,‘ if x; € Dy
—bg| ifx; € Dy
— by ifx; € Dy
— by if x; € Dy
—by| ifx; € Dy
— ()A:‘ if x; € Dg
— by ifx; € Dy
—bg| ifx; € Dy

— f)k‘ if x; € Dy,

yi € DY},
y; € DY},
y; € DY},

vi € Di},

DY = {zjlap <z <zxjorxy <y <ap},
D3 = A{wilax <zj <apora; <xj <agl,
Dy = Azl <ap <zjor zy <ap < i},
DY = Ayilbr <wyi <yjory; <y <bi},
Dy = Ayilbk <yj <wiory <y; <bil,
DY {wilys < bx <yj; or y; < b < wi},

see Fig. 1b for geometric illustration of the domains with their poles. The point X;
is assigned for one representative pole defined by
ak(x;) = max{aglay < ;b <y},

which is the closest pole to x; that has absolute values of coordinate smaller than

Xj.

For each point x;, the multipole L' Gauss transform is given by the equation (5),

59

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

_ 1 \ (y;)
o) =%+ () 9(”’)L<ﬂ 56w GEew 2, Slegl + G2 Z;, Gl G0 -

FY A Y B Y oy Y Dl Y EL (&)
apeDy agpeDy ap€Dy oDy ap D6
A(k+1)—1 Alk+1)-1 g(_!) v\(k+l) 1
A =0)0) 3 GGl Bi=G@)w) 3 gk (Z Gle)Gy!
xi=A(k) x:=A(k) * xi=A(k)
Alk+1)—1 A(k41)—1
i _ 6t G(x:) i _ Glaj)
D} = 6(z)6 () X‘Z:,m O 1% XZW GG (w1
where g(;) = Gz; —ax). Gly;) = Gly; — be),
and A(-) is an index function defined by
Ak) = min (xjlar < 2z; < agyq and by <y < bpga).
1<j<N

For the sake of simplicity, we assume that the numbers of poles in 2D are same M.
Following [11], M and the poles {« } are given by

{ar)} = (b} = {0,1,2, ,A([ju —1)}w

w=max(|x; — x| |y —ynl|), M =

(6)

w
[Lpa 10g(MAX)]
where [-] is the ceiling function, MAX is the maximum value of precision (e.g.,
double floating point: DBL_MAX in C programming language), and ¢ is a user-
specified parameter (0.5 is employed in our numerical experiments). The above pole
selection scheme leads to max(G(ars1 —ak), G(brky1 — b)) < MAX Which
theoretically guarantees numerical stability in our method.
When the distance between poles is determined by the equation (6) and G (ar, —x;)
becomes numerically zero if |ax —x;| >Z% - we can efficiently truncate Gauss
transform by approximating the values:

ZA‘L% Z A ZBiz Z Bi,

arp€Dg ar€u(Dg) ar€Dy ar€p(D7)
J o J J J
E Ci =~ E cy, E Dy ~ E Dy,
areDsg ap€p(Ds) apeDsg ap Ep(D3g)
J J
Y B~ Y E]|
ap€Dsg apcp(Dg)

where p(D.) = {x;i € D | or(x;) — ar(xi)| < iz}

In other words, instead of computing terms Aj, B, C{,Di.E] across all the
corresponding point sets, we consider only the neighbouring points, which allows to
avoid nested loop structures in our implementation and speed up the computational
process.

As in the 1D algorithm [11], the terms can be iteratively computed in linear time.
Assume that an image consists of vV x v/N pixels and the number of poles along
each dimension is M, total complexity of our method is O(16~N +2¥X 14,) which

60

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

is a little bit slower than the separable implementation employed in [11] that
requires O(12N +2v/N + M) operations.

N

(@) Inputimage 1 (b) Input image 2

Fig. 2. Input images.

4. Numerical Experiments

We held all the experiments on Intel Core i7-6600U 2.60 GHz dual core computer
with 16GB RAM and a 64-bit operating system. We compared the multipole version
of our algorithm with box kernel (Box) using moving average method [7], the 1D
domain splitting (YY14) with separable implementations [11], and Fast Discrete
Cosine Transform (FDCT) via the FFT package [13] well-known for its efficiency.
To evaluate the performance of the methods mentioned above we used randomly
generated 2D point sets with 10 different sizes from 1282 to 5120? and 10 various
values of ¢ = 5,10,...,50. The radius for the Box method was chosen equal to ¢. The
timing results (see Fig. 5) show that our method is slightly slower than the 1D
domain splitting (YY14) despite its theoretical complexity is much larger. It is
worth noticing that the implementation of our method can be further improved by
using GPU-based or parallel computing techniques.

However, the accuracy evaluation results (see Table 1) show that our method
achieves best approximation quality among the discussed methods. We evaluate the
precision using E,., and PSNR measures. Consider /¢ is the exact result of 71!
Gauss transform, [® is the approximation achieved by a given algorithm, and
d; = |If — I?|. Emax is calculated using formula

E = max d;.
max 151SN T

We also use peak signal-to-noise ratio (PSNR) [2] to measure the performance of

our algorithm according to the equation
N

PSNR = —10log(} *(

i=1
We performed linear image smoothing by the following normalized convolutions
for each color channel:

(.il'

I I ¥
max (I, [:‘})):

61

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

JGx—y)y)dy J(x;)
] G(x—y)dy Z:V G(xj —x;)
where the denominator is also obtained by our method convolving ! Gaussian
with the image whose intensity is equal to one everywhere.
Fig. 3 illustrates the smoothing results using naive implementation (Exact), our

method, Box kernel, and FDCT algorithms. The gradient magnitude VI of
smoothed images on Figs. 4 and 6 show that, in contrast to FDCT and box kernel,
our method does not produce some undesirable artifacts and is extremely close to
the exact implementation.

Table 1. Precision and speed evaluation results (speed measured in Mpix/sec).

Our YY14 FDCT | Box

Emax 1.8x10° 1 3.8x10° W0 0.44 | 3.73

PSNR 291.05 281.81 58.98 | 41.45

Speed 7.19 9.76 3.37 | 8.58

62

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

(a) Exact (b) Our
-
(c) Box (d) FDCT

Fig. 3. Results of smoothing (¢ = 20), where the input image is given by Fig.2a.

63

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

) FDCT

(e) Exact (f) Our

v ira»”

L i
(9) Box (h) FDCT
Fig. 4: Visualisation of | M| for comparison of artifacts (¢ = 20).

64

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

10 I

—&— Qur YY14 4= Box == FDCT

" / &

Time, sec
3

A

S
e

o% l'd/ﬁzl

10 15 20 25
Image sixe, Mpix

(4]

Fig. 5: Timing with respect to image size (averaged by o).
- R - - R

jl i+ | lﬂl i+ |

- - ol -
(a) Exact (b) Our
’ ¥
I b
(a) Exact (b) Our (c) FDCT

Fig. 6: Visualisation of | M| for comparison of artifacts of FDCT (¢ = 20), where the input
image is given by Fig.2b.

5. Edge-Aware Filtering
The proposed algorithm for Gauss transform approach can be applied in various
computer vision tasks. We present one of the possible applications of our method by
introducing the novel approach for improving the so-called guided filter [12].

65

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

Guided filter is categorized into a joint image filtering technique consisting of two
input images where one of them is called guidance image, and reflects guidance
colors into the other input. One of the most popular joint image filters is the joint
bilateral filter [14] which averages the neighbouring colors using the weights that
depend on the guidance image. Guided filter is an approach for joint image filtering
that allows to overcome a problem with the undesirable gradient reversal artifacts
that joint bilateral filter suffers from. Besides edge-aware filtering, it has various
image processing applications such as matting, flash-noflash synthesis, HDR-
compression, and haze removal.
Consider a point set X = {x;}¥,, x; = (z;,%) € R%, a guidance image
g = g(x) € R, aninput image I(x;) € R, adesired output image H(x;) € R, and an
image region Q(x) centered at x. The guided filter is defined as the following
linear transformation:
H(y) =ag(y) + b,y € Q(x),
where a.b € R are the coefficients constant in ©(x) that depend on the input
image I. Such representation is very useful for image processing tasks, since it
preserves the gradient extrema VH = aVyg, and hence the edges of the guidance
image. The coefficients a and b are obtained using the linear ridge regression model
[15]:
K(a,b) = Y W(x—y)((agly) +b—I(y))* — ea®).
yeQ(x)

where W(x—y) is the weight that determines the importance of the point y in Q(x)
and € is the regularization parameter. One can obtain values a and & by minimizing
K(a,b): ;%K(u.b) =0 and 7‘;\%1\'((1, b)=0. This leads to the following
representation:

fUg) - fI)f(9) : :

= T = flgE+e b= f(I)—af(g) (7
Here f(«) is an averaging function. Since a point y is included in many overlapping
regions ©(x) and values « and b for y are different for each region, the final
coefficients are found by averaging over all possible values of y:
H(x) = f(a)g(x) + f(b). (8)

Guided filtering of color images involves inversion of 3 x 3 coefficient matrix in
order to solve the equation (7) (see [12] for further details). If we set I = g, then
the guided filter preserves salient edges while smoothing the flat regions (edge-
aware filtering). In the simplest case of I = ¢ and I being is a grayscale image,
computing guided filter involves performing 4 smoothing operations
(e.g. f(I), f(I%), [(a), F(b)). and it takes 33 smoothing operations for a color image if
I # g. Which is why the choice of the smoothing operator f(x) is crucial, since it
determines the overall speed and quality of filtering. Authors of the guided filter
[12] suggested employing classic 72 Gauss transform or box kernel method but

66

Bamkuposa JI.P., Momm3aea I11., Jatsmos P.X., Hokora X. Brictpoe L1-npeo6pasosanue Taycca auis criiakupaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

prefer the latter due to its simplicity and speed despite the fact that box kernel
produces undesired artifacts discussed above.
We introduce the new approach for computing guided filtering where our L' Gauss
transform algorithm is employed for f(x) instead of the box kernel method. As it
was shown before, our algorithm gives a much higher quality of smoothing, and this
allows us to eliminate smoothing of f(«a) and f(b) in the equation (8):

H(x) =ag(x)+b 9
Thus, using our algorithm involves 2 operations of f(x) compared to 4 operations in
the original method if I = ¢ (grayscale case), and 21 operations compared to 33
operations if I # g and both of them are color images.
We examined edge-aware filtering on color images, where the number of f(*) is
equal to 21 for the box kernel method and 10 for our approach (9 operations for
smoothing of the coefficients and one operation for normalization). As seen on the
Figs. 7 and 9, our approach with the reduced amount of smoothing operations f(x)
gives quality of edge-aware filtering higher than [12] with the box kernel method,
and is faster (0.24 and 0.28 sec for Figs. 9a and 9d respectively).
We examine the differences of equations (8) and (9) in terms of filtering quality on
Figs. 9 and 10, which show us that the box kernel method causes artifacts similar to
linear filtering case.
We also applied our approach for the detail enhancement filter defined by:

D(x) = I(x)+ 7(1(x) — H(x)),

where 7 is the enhancement parameter. The experiments show that applying our
approach for detail enhancement filtering gives high quality results (see Fig. 8).

Fig.10: Edge-aware filtering results (6=8, £=0.04). a: input image, b-d: visualization of
gradients | 'H| of edge-aware filtering via our approach, eq. (9) and box kernel using egs.
(9) and (8) respectively.

6. Conclusion

In this paper" we presented a novel and fast approximation method for L* Gauss 2D
image transforms. Series of numerical experiments have shown that our method is
generally more accurate than the conventional methods and faster than the widely
used FFT. We also demonstrated capability of the proposed method in image
smoothing application where the conventional box kernel averaging and FFT both
suffer from undesirable artifacts. Despite our method is slightly slower than the
separable implementations of 1D algorithm [11], this approach can be efficiently
used for non-uniformly distributed points.

! It is an extension of our previous work [16]. The main difference from [16] is the novel
approach to joint image filtering and its numerical experiments.
67

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

We have also proposed a novel approach for improving the guided filtering [12] via
our L' Gauss transform and showed its advantages in terms of quality and speed
over [12].

Our method is applicable only to uniformly distributed structures, such as images.
Hence our future work includes extending the proposed method to higher-
dimensional nonuniform cases which can be done for example by using treelike
structures. We also would like to investigate possible applications of the proposed
method to various machine learning and image processing tasks, such as regression,
segmentation, and registration.

(b) L*GT (#f: 10

(@) Input (c) Box (#f: 21)

Fig. 7: Edge-aware filtering results (6=8, ¢=0.0016).

(b) Edge-aware filtering (c) Detail énhne

ih

ment

Fig. 8: Our results of edge-aware filtering and detail enhancement (6=8, ¢=0.04, t=3).

68

Baurkuposa J[.P., Mommazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeoGpasopanne [aycca mist CriaxnBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

(@) L'GT (#f: 10) (b) Box (#: 9) (©) LGT (#f: 22) (d) Box (#f: 21)
V% \ ’/ \ v/ \ / \
CER o Bt w61 Gk
/ || 7 \ ‘1\
() | TH| L:GT of (a) (f) | PH| Box of (b) © |H|L'GTof ¢) (h) | 7H]| Box of (d)

Fig. 9: Edge-aware filtering results (6=8, £=0.0016). a: L' Gauss transform with eq. (9), b:
using box kernel with eq. (9), ¢: L' Gauss transform with eq. (8), d: box kernel with eq. (8).
e-h: visualization of | 'H| of the corresponding images.

(a) Input (b) |H| Our (#f: 10) (c) | H| Box (#f: 9) (d) |[/H| Box (#f: 21)
Acknowledgements

We would like to thank the anonymous reviewers of this paper for their valuable

comments. This work was supported in part by Grants-in-Aid for Scientific
Research of Japan (15H05954 and 16K15019).

References

[1]. A. Elgammal, R. Duraiswami, and L. Davis, “Efficient kernel density estimation using
the fast Gauss transform with applications to color modeling and tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 25, no. 11,
pp. 1499-1504, 2003.

69

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

2.

[3].
[41.
[5].

[6].

[7].
8.

[a].

[10].

[11].

[12].

[13].
[14].
[15].

[16].

70

S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal
processing approach,” in Proc. of European Conference on Computer Vision (ECCV).
Springer, 2006, pp. 568-580.

L. Greengard and J. Strain, “The fast Gauss transform,” SIAM Journal on Scientific and
Statistical Computing, vol. 12, no. 1, pp. 79-94, 1991.

D. Lee, A. Gray, and A. Moore, “Dual-tree fast Gauss transforms,” Advances in Neural
Information Processing Systems (NIPS), vol. 18, pp. 747—754, 2006.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, “Improved fast Gauss transform
and efficient kernel density estimation.” in Proc. of International Conference on
Computer Vision (ICCV), vol. 1, 2003, pp. 464-471.

A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian kd-trees for fast high-
dimensional filtering,” in ACM Transactions on Graphics (TOG), vol. 28, no. 3, ACM,
20009.

E. Dougherty, Digital Image Processing Methods. CRC Press, 1994.

R. Deriche, “Fast algorithms for low-level vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 12, no. 1, pp. 78-87, 1990.

D. Lang, M. Klaas, and N. de Freitas, “Empirical testing of fast kernel density
estimation algorithms,” University of British Columbia, Technical Report UBC TR-
2005-03, 2005.

P. Getreuer, “A survey of Gaussian convolution algorithms,” Image Process. On Line,
vol. 3, pp. 276-300, 2013.

S. Yoshizawa and H. Yokota, “Fast L' Gaussian convolution via domain splitting,” in
Proc. of IEEE International Conference on Image Processing (ICIP). IEEE, 2014, pp.
2908-2912.

He, Kaiming, Jian Sun, and Xiaoou Tang. "Guided image filtering", IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 35, no. 6, pp. 1397-1409,
2013.

T. Ooura, General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package.
www.kurims.kyoto-u.ac.jp/~ooura/fft.html, 2006.

Kopf, Johannes, et al. "Joint bilateral upsampling.” ACM Transactions on Graphics
(TOG), vol. 26. no. 3. ACM, 2007.

Tikhonov, Andrey. "Solution of incorrectly formulated problems and the regularization
method." Soviet Meth. Dokl. 1965, Vol. 163, No. 3.

D. Bashkirova, S. Yoshizawa, R. Latypov and H. Yokota. “Fast L1 Gauss 2D Image
Transforms”, in Proc. of Spring/Summer Young Researchers' Colloquium on Software
Engineering (SYRCoSE), Institute for System Programming, RAS, pp. 145-149, 2017.
Available at http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf, accessed
June 10, 2017.

Baukuposa J[.P., Mourmazaga I11., Jlatsmos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca st CriaxHBaHus
n300paxeHuit ¢ coxpanenuem rpauutl. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 55-72.

BbicTpoe L1-npeobpa3oBaHue Naycca ana crnaXxuBaHUA
M300paxxeHun ¢ coxpaHeHneM rpaHuy,

Y2/ luna Bawkuposa <dina.bashkirova@riken.jp>
Ylun Howuoszasa <shin@riken.jp>

2Pycmam Jlamwinos <roustam.latypov@kpfu.ru>
Xuoeo Hoxoma <hyokota@riken.jp>

Image Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN
2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
2Hncmumym epluciumensHoti MameMamuxu u uHOPMAYUOHHBIX MEXHONO2UI,
Kasanckuu (Ilpusonsicckuii) @edepanvhulii Yuusepcumem,
420008 Poccus, 2. Kazanv, Kpemnesckas 35

Annotamus. [IpeoOpazoBanne ["aycca, Takke Kak M €ro AWCKPETHBI aHAJOT, SBISETCS
BOKHEHIINM MHCTPYMEHTOM BO MHOXKECTBE MaTEMAaTHYECKHX IHCLMIUIMH M HAXOIHUT CBOE
IpUMEHEHHEe BO MHOTHMX HAay4YHBIX M HHXXEHEPHBIX OOJIACTSIX, TAKMX KaK MaTeMaTHYecKas
CTaTHCTUKA U TEOPHs BEPOSTHOCTEH, (pr3nka, MaTeMaTHIECKOe MOJEINPOBAHNE, MAIIHHHOE
oOydenne u o0paboTka H300pakeHHH W Tpouyde. BBUAY BBICOKOH BBIYHUCIUTEIHHON
CIIOXHOCTH TpeoOpasoBaHus ['aycca (KBagpaTHUHAs CIIOXKHOCTh OTHOCHTENIFHO KOJTMYIECTBA
TOYEK ¥ OKCIHOHCHIMAIbHAs — OTHOCHTEJIBHO pPa3MEPHOCTH TOYEK), HEOOXOIMMBI
3¢ (G eKTHBHBIC U OBICTPBIC METOBI €0 AMMPOKCHUMAIINH, 00IaIatoNie OOIbIICH TOYHOCTHIO
10 CPAaBHEHHMIO C CYLIECTBYIOLIMMH HBIHE METOJIaMH, TaKUMH Kak brictpoe [IpeoOpazoBanne
Oypre WM OKOHHOE mpeoOpa3oBaHWe. B JaHHON cTaThbe NpeIOKEH HOBBI METO]
anmpoKcuManuu mpeobpazosanus [aycca i paBHOMEPHO pPAaCHpeeleHHbII MHOXKECTB
TOUEK (HampHuMep, IBYMEPHBIX M300paKeHH i), OCHOBAHHBIH Ha HCIIONb30BaHMH L2 MeTpuKH
U MeTo/la pasfesicHHs] JOMEHOB. Takod IOIX0J TO3BOJISIET 3HAYUTENBHO COKPAaTHTh
KOJIMYECTBO BBIYUCIHUTENBHBIX OMEpalii IyTeM BBIIOJHEHUS IIPEIBApPUTEIBHBIX
BBIUMCIIEHUH, U CHU3UTh BBIUMCIUTENBHYIO CIOXHOCTh METO/a /10 JUHEWHOU. Pesynprarsl
psla YHCICHHBIX SKCHEPHMEHTOB IIOKA3ald, YTO Pa3pabOTaHHBIN aNTOPUTM IIO3BOJISET
HONY4YHUTh OoJiee BBICOKYIO TOYHOCTH aNMPOKCHMANUK 0€3 IMOTepU CKOPOCTU BBIUHCICHHS B
CPaBHEHHH CO CTaHAAPTHBIMH MeTojaMmu. Tarke B KadecTBe NpHMepa INPHMEHEHUs
IpelaraeMoro airopuTMa Obula pa3pa0oTaHa HOBas CXeMa CMEXHOW (HUIbTpaluu
m306pakeHus. BBIIO MOKa3aHo, 4TO HOBEIA (GUILTP Ha ocHOBe GhicTporo L mpeoGpasosannus
laycca MO3BOJSIET MONYYHTHh PE3YyNbTaT Ooyiee BBICOKOTO KadyecTBa IPH COMOCTaBUMOMN
CKOPOCTH BBIYHCIICHUSI M IIPU 3TOM HM30€KaTh IOSIBJICHHs HEXeJaTeJbHBIX apTe(akToB B
pe3ynbrare 00paboTKH, TakuX Kak 3¢ dexT opeona.

KnwueBsie caoBa: ¢unetp [aycca, pacmpenenenue Jlammaca, OBICTPBIA METOJ
AnNpOKCUMALIUH

DOI: 10.15514/ISPRAS-2017-29(4)-4

Jlnst wurupoBanus: banrknposa JI.P., Mommaszasa I11., Jlatsmos P.X., Hokora X. Beicrpoe
L1-npeoGpazoBanue ["aycca miist criakuBaHUs H300pakeHUN C COXpaHEHHUEM IpaHuIl. Tpyovl
HCII PAH, tom 29, Boin. 4, 2017 1., ctp. 55-72 (ua anrmuiickom). DOI: 10.15514/ISPRAS-
2017-29(4)-4

71

Bashkirova D.R., Yoshizawa S., Latypov R.H., Yokota H. Fast L1 Gauss Transforms for Edge-Aware Filtering. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 55-72.

Cnucok nutepaTtypbl

(1].

[2].

13].
[41.
[5].

[6].

[7].
[8].

[9].

[10].

[11].

[12].

[13].
[14].
[15].

[16].

72

A. Elgammal, R. Duraiswami, and L. Davis, “Efficient kernel density estimation using
the fast Gauss transform with applications to color modeling and tracking,” |IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 25, no. 11,
pp. 1499-1504, 2003.

S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal
processing approach,” in Proc. of European Conference on Computer Vision (ECCV).
Springer, 2006, pp. 568-580.

L. Greengard and J. Strain, “The fast Gauss transform,” SIAM Journal on Scientific and
Statistical Computing, vol. 12, no. 1, pp. 79-94, 1991.

D. Lee, A. Gray, and A. Moore, “Dual-tree fast Gauss transforms,” Advances in Neural
Information Processing Systems (NIPS), vol. 18, pp. 747—754, 2006.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, “Improved fast Gauss transform
and efficient kernel density estimation.” in Proc. of International Conference on
Computer Vision (ICCV), vol. 1, 2003, pp. 464-471.

A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian kd-trees for fast high-
dimensional filtering,” in ACM Transactions on Graphics (TOG), vol. 28, no. 3, ACM,
2009.

E. Dougherty, Digital Image Processing Methods. CRC Press, 1994.

R. Deriche, “Fast algorithms for low-level vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 12, no. 1, pp. 78-87, 1990.

D. Lang, M. Klaas, and N. de Freitas, “Empirical testing of fast kernel density
estimation algorithms,” University of British Columbia, Technical Report UBC TR-
2005-03, 2005.

P. Getreuer, “A survey of Gaussian convolution algorithms,” Image Process. On Line,
vol. 3, pp. 276-300, 2013.

S. Yoshizawa and H. Yokota, “Fast L* Gaussian convolution via domain splitting,” in
Proc. of IEEE International Conference on Image Processing (ICIP). IEEE, 2014, pp.
2908-2912.

He, Kaiming, Jian Sun, and Xiaoou Tang. "Guided image filtering." IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 35, no. 6, pp. 1397-1409,
2013.

T. Ooura, General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package.
www.kurims.kyoto-u.ac.jp/~ooura/fft.ntml, 2006.

Kopf, Johannes, et al. "Joint bilateral upsampling." ACM Transactions on Graphics
(TOG), vol. 26. no. 3. ACM, 2007.

TuxoHos, A. H. "O HekOppeKTHBIX 3a/jauax JIMHEHHO! anreOpbl U yCTOWYHBOM METOJE
ux pemenns." JJAH CCCP, 1965, 163.3.

D. Bashkirova, S. Yoshizawa, R. Latypov and H. Yokota. “Fast L1 Gauss 2D Image
Transforms”, in Proc. of Spring/Summer Young Researchers' Colloguium on Software
Engineering (SYRCoSE), Institute for System Programming, RAS, 2017, pp. 145-149.
JoctynHo mo cceuike http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf,
nata obpamenus 10.06.2017.

Real-time digital video stabilization using
MEMS-sensors

A.V. Kornilova <kornilova.anastasiia@gmail.com>
I.A. Kirilenko <y.kirilenko@spbu.ru>
N.l. Zabelina <zabelina.nattaly@gmail.com>
Saint Petersburg State University, Software Engineering
28 Universitetskiy prospect, Petergof, Sankt-Peterburg, 198504, Russia

Abstract. This article describes our ongoing research on real-time digital video stabilization
using MEMS-sensors. The authors propose to use the described method for stabilizing the
video that is transmitted to the mobile robot operator who controls the vehicle remotely, as well
as increasing the precision of video-based navigation for subminiature autonomous models. The
article describes the general mathematical models needed to implement the video stabilization
module based on the MEMS sensors readings. These models includes the camera motion model,
frame transformation model and rolling-shutter model. The existing approaches to stabilization
using sensors data were analyzed and considered from the point of view of the application in a
real-time mode. This article considers the main problems that came up during the experiments
that were not resolved in the previous research papers. Such problems include: calibration of the
camera and sensors, synchronization of the camera and sensors, increasing the accuracy of
determining the camera position from sensors data. The authors offer possible solutions to these
problems that would help improve quality of the work of existing algorithms, such as a system
for parallel synchronized recording of video and sensor data based on the Android operating
system. As the main result, the authors represent a framework for implementing video
stabilization algorithms based on MEMS sensors readings.

Keywords: video stabilization; MEMS sensors; real-time system; digital signal processing;
computer vision; rolling shutter.

DOI: 10.15514/ISPRAS-2017-29(4)-5

Jns uuruposanus: Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video
stabilization using MEMS-sensors. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp.
73-86. DOI: 10.15514/ISPRAS-2017-29(4)-5

1. Introduction

Modern cameras’ matrices allow to take high-quality pictures that are comparable to
professional photographs. However, the quality of video that they are able to record

73

mailto:y.kirilenko@spbu.ru

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

leaves much to be desired and lately it has grown into a problem that needs to be
resolved. If modern devices could improve quality of video recording in real time it
would not only enable owners of smartphones and action cameras to stream more
beautiful and visually appealing video, but would also solve more significant
problems. For instance, in case of remotely controlled mobile robots and drones
(quadcopters) that perform area monitoring, the low quality of video drastically
decreases the precision of control and also leads to greater fatigue of the vehicle
operator.

In most cases, you need to get rid of camera shake to solve the problem of poor
video quality. It can be achieved either by fixing camera in one place (alternatively,
by cancelling out its movement using specially designed mechanisms) or by
transforming the frames digitally in such a way so that the video becomes jitterless.
If you choose the first option, you will need special external devices, such as
SteadyCam, GyroStick, gimbal (for drones), or specially designed lenses and
matrices similar to those available in professional cameras. This approach is not
only extremely costly, but also not always applicable. For example, it is impossible
to install an external stabilizer on smaller flying vehicles.

Fig. 1. Image transformation for trajectory smooth

If you opt for the second way, or digital stabilization, you will face the challenge of
camera motion estimation and image warping (Fig. 1). Video editing software
developers have already advanced significantly in this area. Products like Adobe
Premiere, Deshaker, Movavi are all already able to stabilize videos digitally. Similar
functionality is also available on YouTube that uses the algorithm proposed in the

74

Kopuunosa A.B., Kupuiienko f.A., 3a6emina H.W. Crabuiusaius Buieon300paxeHus B PeKUMe PealbHOr0 BpeMEHH
¢ ucnons3oBanneM MEMS-narunkos. Tpyout UCIT PAH, Tom 29, Bbim. 4, 2017 1., ctp. 73-86.

work [1]. The main disadvantage of these algorithms [2], [3], [4], [5] is the amount
of calculations needed to determine the camera motion. This makes this method
inapplicable for real-time video stabilization. Besides that, these algorithms only use
the data available in the images themselves, which makes them unreliable in case
the shot has poor lighting or features large moving objects.

Alternatively, you can estimate the camera motion during the recording by using the
information from MEMS (MicroElectroMechanical Systems) motion sensors,
including angular rate sensors (gyroscope), accelerometer and magnetometer. This
method requires less processing power to determine camera positioning and,
consequently, is more energy-efficient, which makes it suitable for real-time video
stabilization. For instance, a common gyroscope consumes only 2-5 mW of power.
At the same time, the CPU consumes several hundreds of milliwatts while analyzing
frames.

This approach is applied more and more in recent years, as MEMS sensors are
becoming widespread on different platforms, especially on smartphones. For
instance, Google Pixel, introduced in October 2016, completely lacks mechanical
stabilization and uses only gyroscope-based stabilization algorithm. IPhone 7 also
uses MEMS sensors for video stabilization but employs camera lenses and matrices
for this purpose at the same time.

Mobile applications that offer similar functionality are just now coming up on the
market and they are only able to perform video stabilization during post-processing.
Some of the most prominent ones are: Instagram Hyperlapse, Microsoft Hyperlapse.
Gallus is especially noteworthy, because, unlike others, it utilizes data from MEMS
Sensors.

This article considers different methods of real-time digital video stabilization that
utilize MEMS sensors. Given that this research area is located at the junction of
computer vision and digital signal processing, a lot of additional tasks arise, that are
worth researching both separately and altogether. The main difficulties, when it
comes to creating an application that allows to stabilize videos in real time, are the
synchronization of frames and sensor data and the creation of a lightweight
stabilization algorithm.

Authors review different existing algorithms and approaches as well as describe the
problems that surfaced when these methods were implemented. During this
research, we have encountered the following challenges: synchronization of frames
and sensor reading, efficient frame transformation and increasing the accuracy of
camera positioning. This article solves the found problems and offers more stable
and universal implementation of the described algorithm.

In the second section of the article, we review the existing approaches to digital
video stabilization that utilize MEMS-sensors, analyze whether these algorithms are
suitable for use in real time and also list the mathematical models. In the third
section, we describe the methods that improve positioning accuracy by using filters
and combining readings from different sensors. In the fourth section, we analyze
how to efficiently transform frames during camera rotation. In the fifth section, we

75

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

consider the problem of synchronizing frames and sensor readings and use Android
OS as an example. There we also review existing methods of automatic camera and
sensor parameters calibration. In the sixth section, we list the main results of the
ongoing research.

2. Video stabilization
Video stabilization process can be divided into 3 independent stages:
e estimating camera motion using MEMS sensors;

e calculating the desired camera motion in accordance to some logic (for
instance, trajectory smoothing);

e transforming the frame to match camera motion to the desired one.
In order to perform video stabilization in real time, we need to find a solution to
each of the above listed tasks that would be satisfactory in terms of quality and
performance.
The second stage is the most crucial. When smoothing trajectory, it’s important to
not only consider jitter as noise, but also to take into account that camera needs to
move similarly to the way eye moves naturally. In the beginning of this section, we
list the mathematical models and terms that are used and describe the existing
algorithms. Then we analyze their advantages and disadvantages, and also propose
various improvements.
Authors pay special attention to the two remaining stages, that can be improved
significantly, yet still were not touched on in previous papers.
In this section, we suppose that all camera and sensor parameters are known, as well
as that sensor readings and camera shots are synchronized in time. The
abovementioned problems will be thoroughly discussed in the section dedicated to
the parametrization of the stabilization system.

2.1 Mathematical models

Let’s take a look at how frame is transformed when camera is rotated. We’ll assume
that x is the coordinates of a point on a projective plane, and X is the coordinates of
a point in space (Fig. 2). Also, for each particular camera, let’s assume that it has
the matrix K with the following parameters: (o_x, 0_y) is the optical center of the
camera and f is its focal length. We’ll get the following formulas for the projective
transformation [6]:

76

Kopuunosa A.B., Kupunenko SI.A., 3a6emna H.W. Ctabun3anus BUICON300paKECHHS B PEKUME PEabHOTO BPEMEHH
¢ ucnons3oBanneM MEMS-narunkos. Tpyout UCIT PAH, Tom 29, Bbim. 4, 2017 1., ctp. 73-86.

r=KX
1 0 —o,
K= 0 1 —o
00 f

Fig. 2. Projective transformation

Let’s fix the global coordinate system and assume, that in moment t the camera is
rotated against it, using the rotation matrix R(t) (Fig. 3). Then projective
transformation will look this way:

<>
r=KR(t)X

Fig. 3. Location of a point in frames during camera rotation

Let’s assume, that X; u x; are both projections of the same point X in space, but they
are located in frames i u j respectively, meaning:

T; = KR(ti)X
.’L’j - I{R(tj)X

By transforming these expressions, we establish the following connection between
projections of the same point in different moments of time:

Ty = KR(tj)RT(ti)KilIi

Thus, let’s define the matrix of image transformation between moments in time t; u
t, as:

VV(t] ,tg) = KR(f])RT(tQ)Kil
xj = W(tj, ti)w;

77

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

We want to include an additional parameter to the above-described mathematical
model of camera and its rotations. It’s defined by the camera shutter and solves the
problem of blurring when recording fast moving objects. Rolling shutter is a visual
distortion that happens, because when the shutter is released, each row of the frame
is shot at a different moment in time (Fig. 4-5).

Fig. 4-5. Object movement and Rolling-shutter effect during capturing the moving object

When shutter scans the scene vertically, the moment in time at which each point of
frame is shot, is directly dependent on the row it is located in. Thus, if we assume
that i is the number of the frame and y is the row of that frame, then the moment at
which it was shot can be calculated this way:
, Y
t(z, =t +isT
(y) =ti+ts5
where t; is the moment when frame number i was shot, t; is the time it takes to shot a
single frame, h is the height of the frame. This can be used to make the general
model more precise, when calculating the image transformation matrix.

2.2 Stabilization algorithms

Among the solutions discussed in the scientific society, two are especially worth
noting, and we will describe them in this section.

2.3 Algorithm with Gaussian filter

Algorithm described in the article [7] in 2011, is based on Gaussian filter. Camera
positioning is calculated by integrating the readings of a MEMS gyroscope for each
frame. Then the sequence of camera movements is smoothed by utilizing the
Gaussian filter (Fig. 6), and the frames are sequenced using the new motion model.
Gaussian filter can be customized by changing the window size (how many discrete
points it effects) and the size of the core (how strong the smoothing is). By altering
these parameters one can either get rid of local jitter or significant movements.

The use of Gaussian filter is very effective during post-processing, but is not always
applicable for real-time stabilization. During post-processing movement can be
analyzed completely from start to finish, which allows to increase the size of the
window of the filter and smooth the movement stronger. During real-time
stabilization, processing buffer needs to include 10-15 frames, which results in a
significant delay of 0,3-0,5 seconds.

78

Kopuunosa A.B., Kupunenko SI.A., 3a6emna H.W. Ctabun3anus BUICON300paKECHHS B PEKUME PEabHOTO BPEMEHH
¢ ucnons3oBanneM MEMS-narunkos. Tpyout UCIT PAH, Tom 29, Bbim. 4, 2017 1., ctp. 73-86.

The source code of the prototype was presented in Matlab, but the article states that
algorithm was tested on an iPhone 4. During open realization, the algorithm features
narrowed camera rotation parameters. Namely, only horizontal camera rotation is
taken into account, which does not always reflect the movement of a shaking
camera.

3 T T T T T

original
= filtered

0 1000 2000 3000 4000 5000 6000
Fig. 6. Trajectory smoothing using the Gaussian filter

2.4 Algorithm utilizing nonlinear filter

Algorithm described in the article [8] in 2014 utilizes a more complex nonlinear
filter to smooth camera movement.

In the offered method, the definition of a virtual camera is given. Two concentric
zones are selected on the frame — the inner region and the outer region (Fig. 7).
Then the rectangle zone is selected in the inner region. Positioning of a virtual
camera is determined by the position of this rectangle.

For each new frame, a new position of the abovementioned rectangle is calculated.
If it lies within the inner zone, the camera orientation remains the same. If any part
of the rectangle lies outside the inner region then the virtual camera’s angular
velocity is updated by using spherical linear interpolation to bring it closer the
physical camera’s velocity. Authors note that this algorithm works rather well, but
when rectangle hits the edge of the inner zone sudden changes can be expected.

The article offers a way how to make this method suitable for real time video
stabilization. If a buffer has k frames, than the camera is supposed to move during
these frames with the same velocity it did before. If the rectangle crosses the inner
zone, then the spherical interpolation is used to bring the virtual camera velocity
closer to the velocity of the physical camera.

Besides significantly decreasing the buffer size, this method has one more
advantage. It does not take into account the absolute positioning of the camera, as it
only uses the velocity of the camera. Therefore, due to the absence of integration,
the error is not accumulated.

79

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

Sadly, the authors of the article did not offer a repository with source code of the
program, realizing this algorithm. Therefore, it was impossible to repeat the
experiment at the time. We plan to realize this approach in the nearest future.

Padding Outer (movement) region

Inner (static) region

Crop polygon

Input frame

Fig. 7. Inner and outer stabilization zones

3. Determining the positioning

When we were constructing the above-described model, it was assumed that the
sensor readings are continuous and accurate. In reality, however, as in all physical
devices, MEMS sensors have noise. If the algorithm requires integrating the
gyroscope readings, the error caused by the noise will only increase. To solve this
problem we will combine the readings of two or more different MEMS sensors, for
instance gyroscope and accelerometer. This will allow to eliminate significant
errors. The following filters offer similar functionality:
e Complementary filter;
e Madgwick filter [9] — filter that utilizes the gradient descent and allows the
use of magnetometer;
e Mahony filter [10];
e Extended Kalman filter — the most successful realization is presented in the
work [11].
It is important to mention that the processing complexity of the offered algorithms
needs to be minimized for real-time video stabilization. The algorithms are listed in
the increasing order of complexity. It is worth noting, that the use of quaternions for
estimating positioning and integrating is significantly less complex than other
positioning methods like Euler angles or rotation matrices [12].

4. Frame transfomation

After it was determined how much the frame positioning should change, projective
transformation should be performed. Realization of the OpenCV library offers this
functionality via warpTransoform and perspectiveTransform functions. The first

80

Kopuunosa A.B., Kupunenko SI.A., 3a6emna H.W. Ctabun3anus BUICON300paKECHHS B PEKUME PEabHOTO BPEMEHH
¢ ucronb3oBanueM MEMS-natunkoB. Tpyowst UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 73-86.

option performs projective transformation for the whole image, while the second
one allows to determine the position of particular points on the frame after
transformation.

Using the second function allows us to realize the following algorithm. We choose
several points on the frame, a 10x10 grid, for instance. After that a projective
transformation is performed for each point, and their new positions are calculated
(Fig. 8). The values in the other spots are calculated using interpolation.

By varying the size of the grid, it is possible to find the balance between quality of
the image after the rotation and speed of processing of the new frame. While
experimenting with 1920x1080 frames, it was determined that the best results are
achieved with 10x10 grids.

Fig. 8. Image warping

5. Camera calibrations and synchronization

Camera model and the stabilization algorithms, described above, are based on
certain assumptions that are not always true in reality. First, it is assumed that
sensor readings are a continuous function and are synchronized with frames.
Second, we assume that all the necessary parameters for the mathematical model,
such as: optical center, focal length and shutter release time are known.

In this section we describe these issues in more detail and offer different solution to
the problems.

5.1 Calibrating the unknown camera and sensor parameters

In order for stabilization algorithms to work correctly, we need to have detailed
information about camera’s and MEMS sensors’ parameters. Namely, the optical
center, focal length, location of the MEMS sensor coordinate axes in relation to the
camera’s coordinate axes and shutter release time (rolling shutter). Assuming all
pixels are square, we’ll set the optical center at (0, 0).

81

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

In case of all sensors, a gyroscope in particular, the main unknown parameter is the
bias — almost constant skew of angular velocities against the exact measurements.
Smartphones sensors are calibrated automatically, while in case of some embedded
systems, you need to monitor this parameter closely, as the bias can result in error
during integration. To determine the bias, we need to find the mean deviation of
angular velocities against the null, when the camera is stable.

The calibration and synchronization problems are solved in the article [13], where
the process of online calibration using the extended Kalman filter is described in full
detail. Also, in the article [14] the minimization method including determining of
the cost function is offered to calibrate the parameters listed above. The full review
of camera parameters calibration methods is available in the article [15].

Currently, authors select camera parameters manually for the models used to test
algorithms. Automatic calibrations will be realized only after successful
experiments with the algorithms.

5.2 Synchronization of a camera and sensors

First, it is important to understand that MEMS sensor readings are discrete.
Therefore, even if you know the exact time each frame was taken, it would be
impossible to determine the current positioning of the camera. However, since
signal’s frequency of the MEMS sensor is between 100 and 200 Hz and the frame
rate is 30 fps, we can use simple interpolation to get a relatively accurate estimation.
Unlike embedded systems, that offer hardware synchronization of frames and
MEMS sensor reading, operating systems of smartphones sometimes do not offer
this functionality. Authors encountered this problem on Android when prototyping
the application for simultaneous recording of video and data from sensors.

It turned out, that the main API of the camera, available on each phone does not
provide the event scheme for processing single frames. Therefore it was impossible
to use software to determine the place of each frame in the time series of sensor
readings (Fig. 9). The possible solution to this problem is using the mathematical
methods to match two time series with different degrees of discretization: frequent —
sensor reading and rare — video frames. The use of displacement of features as
metric is suggested.

Starting with level 21 Android API, a new API for Camera2 was introduced. It
features the event driven programming that would allow to determine the taking of a
frame by using the event handler OnlmageAvailableListener. Even if this
improvement can’t be used to determine the exact timestamp of a frame, it will help
to estimate the place of the frame on the time series of sensor readings. Therefore,
this approximation can be used for realizing the mathematical method for matching
series.

82

Kopuunosa A.B., Kupunenko SI.A., 3a6emna H.W. Ctabun3anus BUICON300paKECHHS B PEKUME PEabHOTO BPEMEHH
¢ ucnons3oBanneM MEMS-narunkos. Tpyout UCIT PAH, Tom 29, Bbim. 4, 2017 1., ctp. 73-86.

angular velocities
A

o N

U.)-I U)2 UJ3 U.)4 UJ5 U.)6 U.)7

...... l l l l ‘l l l l :

I current frame

next frame I

Fig. 9. Matching the time series of frames and gyroscope

6. Current results

Currently, authors have implemented the prototype of the algorithm utilizing the
Gaussian filter on Python, that cover the model of 3-dimensional camera rotation.
Provided the synchronized sensor readings and frames, as well as intrinsic camera
parameters, this algorithm shows great results during post-processing.
Synchronization of sensor readings and camera is performed by an application,
described in the corresponding section. Based on this, we plan to execute this
algorithm in real-time mode in the nearest future. To decrease latency we will use
the optimal filters, that are described in the section dedicated to them, as well as
piece-by-piece frame transformation.

To make the software video stabilization module cross-platform, we plan to test the
suggested methods of real-time calibration of intrinsic camera parameters and
implement them.

7. Conclusion

At this moment, there are many different approaches to digital video stabilization,
but not all of them require too much processing power to be used in real time use.
Methods utilizing MEMS sensors are worth noting as they allow to save processing
resources. Scientific community offers several stabilization algorithms utilizing
these sensors. They show great results during post-processing and several
prototypes for real-time processing are available.

Despite the possibilities and the need for real-time digital stabilization, its
implementation is hard from a technical standpoint, because the video sensor and
MEMS sensors need to be coordinated. Besides that, a lot of work still needs to be
done to optimize these algorithms for work in real-time.

Many additional challenges and problems described by the authors, show that there
is a lot of room for improvement in existing solutions, namely in the way algorithms
work. All algorithms that we studied employ a quite primitive mathematical model,
which makes it viable to continue research in this area using more advanced
mathematics.

83

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

Authors set their next goal as using the work they have already done to build a full-
fledged software module for real-time digital video stabilization and increase its
ability to function on different platforms.

8. Acknowledgment
Funding for this work was provided by JetBrains Research.

References

[1]. Grundmann M., Kwatra V. and Essa I. Auto-directed video stabilization with robust L1
optimal camera paths, CVPR 2011, Providence, RI, 2011, pp. 225-232.
DOI: 10.1109/CVPR.2011.5995525.

[2]. Y. Matsushita, E. Ofek, Weina Ge, Xiaoou Tang and Heung-Yeung Shum. Full-frame
video stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 7, pp. 1150-1163, July 2006.

[3]. Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin and Aseem Agarwala. Subspace
Video Stabilization. ACM Transactions on Graphics (presented at SIGGRAPH 2011).
Vol. 30, Issue 1, 2011: 4:1-4:10.

[4]. Y.S. Wang, F. Liu, P. S. Hsu and T. Y. Lee. Spatially and Temporally Optimized Video
Stabilization. IEEE Transactions on Visualization and Computer Graphics, vol. 19, no.
8, pp. 1354-1361,Aug .2013. DOI: 10.1109/TVCG.2013.11.

[5]. S. Liu, L. Yuan, P. Tan, and J. Sun. Bundled camera paths for video stabilization. ACM
Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings. VVolume
32 Issue 4, July 2013 . Article No. 78. DOI: 10.1145/2461912.2461995.

[6]. R. Szeliski. Computer Vision: Algorithms and Applications. 2010.

[7]. A. Karpenko. Digital Video Stabilization and Rolling Shutter Correction using
Gyroscopes. Stanford Tech Report CTSR 2011-03. Stanford University.

[8]. Bell, S., Troccoli, A. J. & Pulli, K. (2014). A Non-Linear Filter for Gyroscope-Based
Video Stabilization.. In D. J. Fleet, T. Pajdla, B. Schiele & T. Tuytelaars (eds.), ECCV
(4) (p./pp. 294-308), : Springer. ISBN: 978-3-319-10592-5.

[9]. S. Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor
arrays. Report x-io and University of Bristol (UK), 2010.

[10]. R. Mahony, T. Hamel, J. M. Pflimlin. Complementary filter design on the special
orthogonal group SO(3). Proceedings of the 44th IEEE Conference on Decision and
Control, 2005, pp. 1477-1484. DOI: 10.1109/CDC.2005.1582367.

[11]. Rong Zhu, Dong Sun, Zhaoying Zhou, Dingqgu Wang, A linear fusion algorithm for
attitude determination using low cost MEMS-based sensors, Measurement, VVolume 40,
Issue 3, 2007, Pages 322-328, ISSN 0263-2241.

[12]. J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors,
2006.

[13]. C. Jia and B. L. Evans. Online Camera-Gyroscope Autocalibration for Cell Phones.
IEEE Transactions on Image Processing, vol. 23, no. 12, pp. 5070-5081, Dec. 2014.
DOI: 10.1109/TIP.2014.2360120.

[14]. H. Ovrén and P. E. Forssén. Gyroscope-based video stabilisation with auto-calibration.

84

2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
2015, pp. 2090-2097. DOI: 10.1109/ICRA.2015.7139474.

Kopuunosa A.B., Kupunenko SI.A., 3a6emna H.W. Ctabun3anus BUICON300paKECHHS B PEKUME PEabHOTO BPEMEHH
¢ ucnons3oBanneM MEMS-narunkos. Tpyout UCIT PAH, Tom 29, Bbim. 4, 2017 1., ctp. 73-86.

[15]. Wang Qi, Fu Li and Liu Zhenzhong. Review on camera calibration. 2010 Chinese
Control and Decision Conference, Xuzhou, 2010, pp. 3354-3358.
DOI: 10.1109/CCDC.2010.5498574.

Crtabunusauusa BuaeonsobpaxeHus B peXxmme peanbHOro
BpeMeHU ¢ ucnonb3oBaHnem MEMS-gaTyukoB

A.B. Kopnunosa <kornilova.anastasiia@gmail.com>
A.A. Kupunenxo <y .Kirilenko@spbu.ru>
H.U. 3a6enuna <zabelina.nattaly@gmail.com>
Canxm-Ilemepbypeckuil 20cyoapcmeeHHblil YHugepcumen,
Kagheopa cucmemmnozo npoepammuposanust
198504, Poccus, . Cankm-Ilemepbype, . [lemepeogh, Ynueepcumemckuii
npocnexm, 28

AnHoTanmsA. JlaHHas CTaThs ONHKCHIBAET TEKYIIME HCCIENOBaHUS 1O LUPPOBOU
CTaOWIIM3alUH BHACOU300pPAXKECHHS B PEXKHME PEaTbHOTO BPEMEHH C HCIIOIb30BAHHEM
MEMS npardukoB. ABTOpHl IpPEANOJIaral0T MUCIOJNB30BaHUE JAHHOTO MeToAa Al
CTa0WIM3ali BUJICOM300paKEHHs, IepeaBaeMoro OIeparopy JUCTaHIIMOHHO
YIPaBISIEMBIX MOOWMIBHBIX POOOTOB, B YaCTHOCTH, IS YJIYYIICHHS Ka4ecTBA YIPaBICHHS
MaJIbIMU JICTaTeIbHBIMH alllapaTaMy ¥ CHIDKEHHS YCTaJIOCTH omeparopa. B cratee BBomsATCS
OCHOBHBIE MAaTeMaTH4eCKHe MOMAENN W TOHATUS HEOOXOAWMMBIE ISl peaau3aluu
OPOrPaMMHOTO MOy I(pOBOil cTabumM3aluu ¢ UCMOJb30BaHHeM mokazanuit MEMS
JataukoB. K Takum MomemsiM HeoOXOAMMO OTHECTH: MOJETb BPAIICHUS KaMepbl, MOJAENIb
TpaHcopMaIu Kaapa u Moaens rolling shutter addexra. Takxke B cTaTbe paccMaTpUBaIOTCS
CYIIECTBYIOIINE MOIAXOJbI K CTAOMIM3AIMK BUICOM300paKCHHS ¢ HUCTob3oBanneM MEMS
JIaTYNKOB M JaeTCsl OLIEHKA MX MPUMEHUMOCTH B PEXUME pealbHoro Bpemenu. Kpome Toro,
OCBEIIAIOTCS MPOOJIEMbl, BO3HHUKAIONIME MPU BOCHPOU3BECHUH PE3YJIBTATOB MPEABIAYIIHX
paboT M HepaspelleHHble B NaHHBIX CTaThiX. K Takum npobiemaM cieayer OTHECTH:
CHHXPOHM3AIMIO TIOKAa3aHWH JaTYMKOB M KaJApoB, KaIMOPOBKY KaMepsl M JaTYHKOB,
MOBBIIIICHUE TOYHOCTH OMNPEIENCHHs BpAalIeHHus KaMepsl, d(QEeKTHBHYIO TpaHCc(HOpPMAIUIo
Kajipa TPH TOBOPOTE. ABTOPHI NPEATAraloT BO3MOXKHBIE PEIICHMS JAHHBIX MpoOieM, B
YaCTHOCTH, OJHHUM M3 PE3YNIbTAaTOB SBIETCS CHCTEMa MapaiebHOH CHHXPOHH3HPOBAHHOM
3amucH KaJpoB M MOKAa3aHWH JAaTYMKOB ABM)KCHHS — THPOCKOIA M aKcelepoMerpa — Ha
6a3se omepairoHHo# cucreMsl Android. B kauecTBe OCHOBHOTO pe3ysibTaTa MpeICTaBIseTCs
(GpeiiMBOPK AJI TECTUPOBAHMS AITOPUTMOB 10 CTAOMIM3AIMN BUACON300pAXKEHYS, a TAKKe
peanu3anys anropuTMa CTaOWIM3allMM C HUCMOJb30BaHMEeM QuibTpa [aycca s
CIUIQ)KUBaHUS TPAGKTOPUH JIBI)KEHUS KAMEPhI B paMKaXx JIaHHOTO (peliMBOpKa.

Keywords: crabummsaunus Bugeo; MEMS-naTuuky; CHCTEMBbl PEalbHOTO BPEMEHH;
mudpoBast 00paboTka CHTHAIOB; KOMIIBIOTEpHOE 3peHue; rolling shutter

DOI: 10.15514/ISPRAS-2017-29(4)-5

s nuruposanusi: Kopuwiosa A.B., Kupunenko f.A., 3ab6enuna H.M. Crabunmsanus
BUICOM300pAKEHUSI B PEKHUME PEaIbHOrO BPEMEHHU ¢ ucroiib3oBaHueM MEMS-nartunkoB.

85

mailto:y.kirilenko@spbu.ru

Kornilova A.V., Kirilenko I.A., Zabelina N.I. Real-time digital video stabilization using MEMS-sensors. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 73-86.

Tpyowr UCII PAH, tom 29, Bem. 4, 2017 r., crp. 73-86. DOI: 10.15514/ISPRAS-2017-
29(4)-5

Cnucok nutepaTtypbl

[1]. Grundmann M., Kwatra V. and Essa I. Auto-directed video stabilization with robust L1
optimal camera paths, CVPR 2011, Providence, RI, 2011, pp. 225-232.
DOI: 10.1109/CVPR.2011.5995525.

[2]. Y. Matsushita, E. Ofek, Weina Ge, Xiaoou Tang and Heung-Yeung Shum. Full-frame
video stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 7, pp. 1150-1163, July 2006.

[3]. Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin and Aseem Agarwala. Subspace
Video Stabilization. ACM Transactions on Graphics (presented at SIGGRAPH 2011).
Vol. 30, Issue 1, 2011: 4:1-4:10.

[4]. Y.S. Wang, F. Liu, P. S. Hsu and T. Y. Lee. Spatially and Temporally Optimized Video
Stabilization. IEEE Transactions on Visualization and Computer Graphics, vol. 19, no.
8, pp. 1354-1361, Aug .2013. DOI: 10.1109/TVCG.2013.11.

[5]. S. Liu, L. Yuan, P. Tan, and J. Sun. Bundled camera paths for video stabilization. ACM
Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings. Volume
32 Issue 4, July 2013. Article No. 78. DOI: 10.1145/2461912.2461995.

[6]. R. Szeliski. Computer Vision: Algorithms and Applications. 2010.

[7]. A. Karpenko. Digital Video Stabilization and Rolling Shutter Correction using
Gyroscopes. Stanford Tech Report CTSR 2011-03. Stanford University.

[8]. Bell, S., Troccoli, A. J. & Pulli, K. (2014). A Non-Linear Filter for Gyroscope-Based
Video Stabilization.. In D. J. Fleet, T. Pajdla, B. Schiele & T. Tuytelaars (eds.), ECCV
(4) (p./pp. 294-308), : Springer. ISBN: 978-3-319-10592-5.

[9]. S. Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor
arrays. Report x-io and University of Bristol (UK), 2010.

[10]. R. Mahony, T. Hamel, J. M. Pflimlin. Complementary filter design on the special
orthogonal group SO(3). Proceedings of the 44th IEEE Conference on Decision and
Control, 2005, pp. 1477-1484. DOI: 10.1109/CDC.2005.1582367.

[11]. Rong Zhu, Dong Sun, Zhaoying Zhou, Dingqu Wang, A linear fusion algorithm for
attitude determination using low cost MEMS-based sensors, Measurement, VVolume 40,
Issue 3, 2007, Pages 322-328, ISSN 0263-2241.

[12]. J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors,
2006.

[13]. C. Jia and B. L. Evans. Online Camera-Gyroscope Autocalibration for Cell Phones.
IEEE Transactions on Image Processing, vol. 23, no. 12, pp. 5070-5081, Dec. 2014.
DOI: 10.1109/TIP.2014.2360120.

[14]. H. Ovrén and P. E. Forssén. Gyroscope-based video stabilisation with auto-calibration.
2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
2015, pp. 2090-2097. DOI: 10.1109/ICRA.2015.7139474.

[15]. Wang Qi, Fu Li and Liu Zhenzhong. Review on camera calibration. 2010 Chinese
Control and Decision Conference, Xuzhou, 2010, pp. 3354-3358.
DOI: 10.1109/CCDC.2010.5498574.

86

Type-2 Fuzzy Rule-Based Model of Urban
Metro Positioning Service

A.R. Gimaletdinova <argimaletdinova@edu.hse.ru>
K.Y. Degtiarev <kdegtiarev@hse.ru>
National Research University Higher School of Economics (HSE),
3, Kochnovsky Proezd, Moscow, 125319, Russian Federation

Abstract. In the last few years there has been a growing interest in route building oriented
mobile applications with the following features of navigation and sending timely notifications
about arrival. Despite the large body of existing knowledge on navigational services, there
has been an important issue relative to positioning accuracy. The paper discusses a possible
solution to comparison problem, which is linked to the determination of the closeness to
destination metro station through finding a difference between user’s current coordinates and
fixed-point coordinates. With this end in view, fuzzy logic approach is used to develop
Routes Recommender System (RRS) that utilizes linguistic variables to express the vague and
uncertain term ‘closeness to...”. The paper provides detailed explanation of each variable
considered in the fuzzy inference system (FIS), set of fuzzy rules in line with graphical
representation of system’s output. Based on Mamdani model, we propose a set of test cases to
check maintainability of the model and provide a description about received results. At a later
time, an Android-based mobile application aimed at public transport route building will be
developed whose notification system will be based on our model’s implementation presented.
It should be emphasized that the paper examines potentials of the modeling approach based
on interval type-2 fuzzy sets (IT2FS) that attract much attention these days in various
research studies and conventional Mamdani fuzzy inference system (MFIS) as applied to real
and rather topical problem. The significance of developing such models may be of a high
demand for appropriate representation of factors that are inherently vague and uncertain.
Hence, this study may also contribute to future research on similar topics.

Keywords: positioning service; mobile applications; fuzzy modeling; GPS; WiFi; cellular
networks; public transport; interval type-2 fuzzy sets; fuzzy inference system; fuzzy matching
of coordinates; uncertainty; fuzziness

DOI: 10.15514/ISPRAS-2017-29(4)-6

For citation: Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of
Urban Metro Positioning Service. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp.
87-106. DOI: 10.15514/ISPRAS-2017-29(4)-6

87

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

1. Introduction

Over the past decade positioning techniques have become common in almost all
branches of industry. In particular, nowadays vast majority of phone models are
provided with GPS-module that can be enabled in different cases. Positioning
feature is rather common to mobile applications supporting navigational services,
and the latter can be used by people in urban transport. The purpose of the paper is
to exploit the potentialities of fuzzy logic regarding recommender system with the
navigational service. Such service may solve the problem of frequently encountered
disorientation of passengers in unfamiliar terrain and allow to pave routes between
stations of interest (case of urban transportation system). The potential application
may notify a passenger about forthcoming arrival, when he/she is situated closely to
the end station. The main purpose in the present context is to determine a deviation
between current and end points (stations). Consequently, it leads to the serious
problem, since we cannot precisely assert whether a user is close to the end station
or not. It occurs because there is a need to estimate the smallest difference (delta)
between current and end-point coordinates and then set rule(-s) to classify user's
location.

The issue of applying fuzzy logic to positioning, tracking and transportation attracts
attention of researchers. Selected publications have focused on indoor positioning.
For example, Chen C.-Y., Yung J., et al. [1] studied indoor positioning technique
based on received signal strength and fuzzy approach; they showed experimentally
that such method has better performance as compared to geometric triangulation
method [2] — actually, the same objective was pursued in the research by Teuber A.
and Eisfelller B. [2]. The fuzzy system to control train automatic stop, with the
emphasis on stop accuracy, was developed by Yasunobu S., Miyamoto S. and Ihara
H. in [3]. It is evident that the practical application of fuzzy logic to positioning or
transportation subject matter cannot be considered as exclusive one, however, the
issue of positioning in metro should be studied in detail.

As it was mentioned above, the study is devoted to indoor positioning within the
metro transportation system. We make an attempt to develop a fuzzy model of
metro stops allowing to send timely destination notifications to passenger. It is clear
that we do not know exact minimum and maximum distances between stations or
the moment when the application should send a reminder. Uncertainty has many
faces and forms of manifestation. As stated by George J. Klir and Mark Wierman,
“uncertainty involved in any problem-solving situation is a result of some
information deficiency; ... information may be incomplete, fragmentary, not fully
reliable, vague, contradictory, or deficient in some other way” [4]. Hence, when we
do not know or cannot obtain exact values/parameters of some phenomena (e.g.
distances between points, the location of some moment on a time scale), we need to
deviate from type-1 fuzzy sets as a general framework to handle vagueness (for
more information see seminal papers “Fuzzy Sets” (1965) and “The Concept of a
Linguistic Variable and Its Application to Approximate Reasoning — 1" (1975) by L.
Zadeh) to more general type-2 fuzzy sets that allow to reflect the uncertainty in

88

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

adequate, more thorough manner, or, put it precisely, to model it. In the work
interval type-2 fuzzy sets (IT2FS) are used; to ensure computational efficiency, the
preference is given mainly to piecewise linear functions (trapezoidal shape) as upper
and lower membership functions of IT2FS.

The rest of the paper is organized as follows: the second section explains the main
problem that the paper is devoted to. Section 3 provides definition of linguistic
variable (LV) and describes those variables and their linguistic values represented in
the form of type-2 membership functions that are used in the inference process
(Mamdani's fuzzy model); explanations on domains (universal sets) for each
variable are also adduced in this section. The following section 4 makes emphasis on
fuzzy rules that serve as a basis for fuzzy system (model developed), covers short
comments on type-reduction defuzzification methods used in the study; results of
experiments with the system under different values of input variables are presented
in both tabular and graphical forms. The last, 5" section of the paper concludes
explicitly mentioning the ways of further elaborating upon the subject.

2. Problem definition and general comments

One of the main issues we have to deal with is to find a user’s position. Current
position obtained should be compared with fixed station’s coordinates (e.g. end-
point of the route or interchange point to other line) — it will allow to say where is a
user now. If he/she is close to one of the points, the application should signal to him
about it, thus the understanding and definition of the word “close” becomes
essential. The factor of closeness is treated unequally by different people, and a
nearby object for one person can be far away for another one. It means that
estimation of closeness relates to certain difficulties and, as a consequence, we
cannot associate crisp numbers as a basis for possible values of the variable “close”.
Therefore, the only way to describe closeness at a first approximation is to set a
numerical interval of its possible values and to use it at further processing steps.

We may assume that in the beginning the application gets start and end points of the
route (input data), then it ensures passenger tracking using one of the positioning

Table 1. Approximate accuracy for different positional techniques [6, 7]

Ne Technique Min accuracy | Medium accuracy | Maximum accuracy

(m) (m) (m)

GPS 2 11 20

WiFi 10 80 150

Cellular 100 800 1500

Average 37.3 297 557

Average for Ne2 and

No3* 55 440 825

* The last row is calculated without GPS characteristics (signal in metro is bad)

89

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

technologies (GPS, WiFi, Cellular Networks) and compares his/her current location
with the one of key points. According to [5] and practical everyday experience, GPS
has poor accuracy indoors, including metro, therefore, we do not consider GPS
positioning accuracy to calculations shown in Table 1. As already mentioned before,
we will use numeric interval to represent difference between fixed and current
coordinates.

Received data concerning current position can be inaccurate, because positioning
techniques used in the phone do not guarantee 'ideal’ precision of geographical
coordinates supplied because of various objective reasons (e.g. tracking indoors or
underground, inferior quality of signal from provider, etc.). Thus, it makes sense to
emphasize another overt source of fuzziness, which relates to fuzzy (vague)
matching of coordinates — latitude and longitude indicators will be analyzed
separately.

3. Fuzzy logic model: definition of linguistic variables and their
values

Firstly, we should select input-output variables for fuzzy system and provide
necessary explanations. All significant internal and external factors, in which
uncertainty shows itself, must be analyzed; this is an important stage in development
of the model. Internal factors signify that certain issues depend solely on application
itself (its realization), and some tuning steps can lead to better results. On the
contrary, external factors indicate that there is obvious reality that is not dependent
on realization per se — these are the factors that most people are familiar with, viz.
bad quality of signal from provider, poor WiFi coverage, etc.

type-1 fuzzy
output set

k.

crisp inputs > fuzzifier 8 rules deffuzifier crisp output

| f

1. Difference between

i [fixed and current type reducer
 [points)

i 2. Latitude accuracy | inference

' 3. Longitude
| [accuracy type-2 fuzzy
"-.‘_1ype-2 fuzzy input sets output set

Fig. 1. Fuzzy model with names of linguistic variables in use

In order to explain internal factors, it is necessary to detect variables at the level of
passenger’s tracking; the central operation here is obtaining a current position. Once
it is done the difference between fixed point coordinates and current point must be

90

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

determined — we call this difference (i.e. variable) “Difference between fixed and
current points (delta)”.

If we use WiFi and Cellular Networks, it means that the application is going to get
coordinates with different accuracy, even at the same place without any movements.
We have to admit that the factor of fuzziness definitely becomes apparent in the
problem of coordinate matching, and the accuracy will depend on chosen
positioning method (see Table 1). We will combine two techniques mentioned
above, and because of that Table 1 contains cells with calculated average accuracy.
In the paper, we take into account possible accuracy of latitude and longitude — let’s
name these variables as “Latitude accuracy” and “Longitude accuracy”. The output
of fuzzy system will represent position respective to metro station. All these
variables as inputs and output of rule-based system to be used are shown in Fig. 1.
Variables mentioned above in the text are linguistic variables, i.e. their values are
words (or, phrases) of natural language; formally, these values are fuzzy sets, and
they are represented by membership functions. In general, a linguistic variable is

defined as a tuple (L,, T(L,),U,G,M), where L_ is the name of the variable (e.g.
L, ="Latitude accuracy"), T(L,) is the set of labels of variable’s L linguistic
values |;,..,I, (term-set of L ;e.g. I; ="insignificant’, etc.). The names (labels) are
generated using syntactic rule G, the meaning M(l,) is associated with each value

l.i=1n, from T(L,); M(L) is a fuzzy set (respective membership function)
defined on a universe of discourse (domain) U. The latter must be defined for all

input and output variables introduced earlier. Thus, every variable is characterized
by its own set of acceptable values and membership functions for each such value

|i,i:1,_n.

3.1 Linguistic variable “delta” and its values

Earlier we were talking about the difference between fixed and current points (so-
called delta). What does it really mean? The value that expresses the difference falls

into the interval [0,a], where real-valued a>0 (deviation is analyzed in absolute

magnitude); its left bound (0) means that passenger’s coordinates are similar (better
to say, close) to some fixed point. We assume that the application should notify a
passenger outright before a given destination, when he/she is at the station that
precedes terminal station of the route, or at some later moment. Consequently, we
consider the average distance between two stations, and a passenger should have
enough time to alight from the railway (metro) carriage without effort.

To calculate the biggest difference between coordinates, we should estimate the
average distance between any two stations in the metro and double it, because at this
moment it will be not an urgent question to notify a passenger about the arrival as
he/she still has to go two or more stations more. Following [8, 9], the mean distance

91

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

between stations in Moscow metro is equal approximately to 1,780 meters. Hence, a
value signifies the biggest possible difference, i.e. 40,075,000 meters (the length of
Earth’s equator) = 360° (circle grade measure).

1,780-2-360° _

1780x2= ~
40,075,000

0.032° (1)

Therefore, values of delta are limited to the interval [0,0.032] (in degrees) that

relates to domain (universal set) U, over which linguistic variable LY ="delta" is

defined. Yet, why do we talk about linguistic variable in that case? In the everyday
life people prefer to use words or phrases of the natural language as a habitual terms
(values) for description of phenomena they are dealing with in their diverse
activities. In case of delta variable such attached to it terms as 'big’, 'small’, etc., on
one hand, form a solid ground for communication within the professional medium
allowing almost uniform apprehension of the meaning of these values. On the other
hand, their inherent uncertainty has to be adequately modeled when used in
computational methods. In particular, we may introduce 2 linguistic terms ‘small’ and
‘bigger’ (difference between coordinates) as applied to the variable delta. Since type-
1 membership functions (T1MF) are precise, i.e. the degree of belongingness p(x)

of each generic element x to corresponding fuzzy set is a crisp number, TIMF
cannot represent the typical uncertainty intrinsic to estimates p(x) (tilde sign
emphasizes the fact that these degrees are not reducible to ordinary numbers).

10
08
06
04

02

Small difference (<< delta)
Bigger difference

00

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Fig. 2. Difference between fixed and current points (values of "delta")

Linguistic values can be represented in the form of interval type-2 fuzzy sets
(IT2FS); the latter are characterized by Lower (L) and Upper (U) membership
functions that bound the area called footprint of uncertainty (FOU). The shape of this

region allows to express the uncertainty in u(x) estimates obtained, providing
“additional degrees of freedom ... to handle MF uncertainties” [10]. For each X€ U,

92

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

where U is a universe of discourse under consideration, all points in the range
[u(")(x),u(u)(x)] may have equal unitary weights, i.e. secondary membership
function defined on this interval is constant one. For practical reasons, such IT2FS
seem to be convenient enough, accurate from the standpoint of giving proper weigh
to uncertainty represented and most easily understood by stakeholders. Henceforth,

just this kind of T2FS is used in the model with the direction of attention toward
piecewise-linear type (trapezoidal case) of L and U membership functions.

Firstly, it is needed to define trapezoidal MF in terms of L and U functions’
parameters for each linguistic value (term) — all calculations are done in accordance

with (1). We assume that L ="delta" is associated with the term-set

T(LY) ={I,,1,} ={'small difference',"bigger difference'} with 2 elements (Fig.2). The

upper function (U) for the term ‘'small difference’ of the variable delta can be
characterized by parameter’s set A(0,0), B(0,1), C(0.008,1) and D(0.016,0); the x-
coordinate of the point C is the average of x-coordinates of parameters B (B,) and

D (D,), the latter is the distance between any 2 stations. In much the same way, for

the lower function (L) corresponding parameters are A(0,0), B(0,1), C(0.004,1) and
D(0.008,0). The 4-tuple of the upper function (U) that represents the linguistic term
'bigger difference' of delta is A(0.012,0), B(0.022,1), C(0.032,1) and D(0.032,0),

where A, :(D(XL'Sma"') + DV'sma) /2 =0.012", both x-coordinate C, and D, are set
to maximum difference 0.032 (1), the value of B, is calculated as a mean of two

neighboring points (A, +C,)/2=0.022". It’s worth noting that not-yet-application

will receive latitude and longitude coordinates as input data, so values are bound to
degrees, but not meters. For the lower function (L) set of its parameters takes the
form A(0.024,0), B(0.028,1), C(0.032,1), D(0.032,0); again, the value that relates to
maximum difference appears here, the B, value is obtained much as shown above,
and A, equals to the sum of A’™%*") and the width of the left tail constituting an
approximate half of the distance between stations (890 m) converted to degrees.

3.2 Linguistic variable “latitude/longitude accuracy” and its
values (terms)
L® ="latitude/longitude accuracy" is the next variable to consider in the paper. As

the telephone receives positioning information due to a correction to be made for the
accuracy, it must be taken into account in calculation of difference between fixed

and current points. The variable LE,Z) is defined on the interval [O,b] , Where b>0

is the maximum of average accuracy as shown in the last row of Table 1. The not-
yet-application doesn’t allow to use GPS in metro, so we consider combined usage

93

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

of WiFi and Cellular Networks. All calculations shown below are based on values
summarized in Table 1, and they are performed in line with (1), i.e.

440 m ~ 0.00395°; 825 m ~0.007°
55 m ~0.00049°; mean of min and medium

. (2)
(55+440 m) ~ 0.00444
1.0
08
06
>
04
0.2
Insignificant difference
: Close to latitude

0

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Fig. 3. Values of variables "latitude/longitude accuracy” (same graph)

10
08
06
>
04
0.2
At station
Near the station
0.0
0 100 200 300 400 500

Fig. 4. Two values of the linguistic variable "location”

Thus, the universe, on which variable L'” is defined, results in U = [0,0.007] (2).

The upper function (U) for the term ‘insignificant difference’ of the variable LE,Z) can

be characterized by parameter’s set A(0,0), B(0,1), C(0.00245,1) and D(0.0049,0);
C, is calculated as the arithmetic mean of B, and D, , which is the minimal average

accuracy shown in Table 1. As for the lower function (same linguistic term is
considered), the values of its parameters are A(0,0), B(0,0), C(0.00222,1) and

94

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

D(0.00444,0). First two parameters reflect perfect accuracy at the position; C, is
obtained as before, while D, value corresponds to (2). Linguistic values 'close to

latitude/longitude’ should be viewed separately, because for each component of
coordinate’s pair factor of inaccuracy (its measurement) sounds alike, but still
differently. Their presence leads to more stable model (Fig. 1) and helps to improve
the results attained. The upper function (U) is determined by parameters
A(0.00467,0), B(0.00548,1), C(0.007,1) and D(0.007,0), i.e.

A, = (D(XL'"‘“Q"“ff) 4 pLV'insi i))/2 =0.00467", B, is an arithmetic mean of A, and

C, . For the lower function (L) parameters are specified as follows: A(0.00584,0),
B(0.00642,1), C(0.007,1) and D(0.007,0), where

A, = (AL B 10,007) /2= 000584, B, is calculated much as it is done in

the case of upper function (U), both C, and D, are equated with the value of 0.007°

that stands for minimum accuracy (or, maximum inaccuracy) — corresponding values
are shown in Fig. 3. In the case concerned, only non-negative values of accuracy are
considered; if calculations lead to negative result, we use its modulus.

3.3 Linguistic variable “location” and its values (terms)

The variable L(V3) ="location" is the next matter under discussion — actually, it
expresses the location, as it arises from variable’s name, of a passenger due to
indications related to previously mentioned variables. The variable is represented
graphically in Fig. 4. We introduce two values (fuzzy sets) of LE,3) , hamely, they are

‘at station’, i.e. main region that must be reached to notify a user about the arrival,
and 'near the station'. The standard length of Moscow metro’ platform is appr. 155
meters (8 train carriages), the longest station is “Vorobyovy Gory” — its length is

about 282 meters [11]. The universe of discourse U the variable L(V3) is defined on

can be denoted as [O,C] , where the right bound c equals to the double length of the
longest platform in the metro. For the upper function (U) as a constituent of IT2MF
representing value 'at station', we set the following parameters: A(0,0), B(0,0),
C(141,1) and D(282,0), where C, is a half of the longest station (282 m) in the
Moscow’s metro. The parameters of the lower function (L) of IT2MF are A(0,0),
B(0,0), C(77.5,1) and D(155,0) with C, calculated as the arithmetic mean of B, and
D, coordinates. We suggest to model the linguistic value 'near the station' with the

IT2MF, whose upper function (U) is characterized by A(218.5,0), B(391.25,1),
C(564,1) and D(564,0); the wvalue of A is obtained as

X

(D‘XL'at station’) p(U'at station’))/2 =2185 (in meters), B, is the mean of A, and C, x-

95

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

coordinates, both C,_ and D, are equal to 564 meters (double length of the longest

platform). Similarly, parameters of the lower function (L) are A(373.5,0),
B(468.75,1), C(564,1) and D(564,0), where A, (x-coordinate of the first parameter)

equals to AV 4155 - 3735 that takes into account the length of the standard

metro train, i.e. the latter will have direct influence on the spread of the left tail of
the membership function. As before, coordinate B, is the average of A, and C,

(468.75 meters), and non-negative values are considered.

Rather detailed description of linguistic variables and their values is important for
deeper understanding of fuzzy logic system (its model), the use of interval type-2
membership functions to represent uncertainty inherent in verbal values introduced
and with the regard for specific character of possible implementation of the system
in the code. To a large extent, the definition of a very small number of linguistic
variables’ values pursues two plain objects — namely, (1) to obtain the initial “non-
overloaded” (in terms of number of values and fuzzy rules) variant of the system to
perform experiments with and to lay a ground for further analysis, tuning parameters
and rule base, revealing drawbacks, etc., and (2) to examine the general idea of
using type-2 fuzzy sets in recommendation services that are actively advancing as it
applies to enormous market of mobile devices.

4. Rules of the fuzzy model (Inference System) and experiments
conducted

The core of the fuzzy inference system (FIS) as shown in Fig. 1 is a set of linguistic
values represented in the form of fuzzy sets, If-Then rules having a generic form "1f
{antecedent} Then {consequent}” and fuzzy reasoning scheme; the latter just
operate on a given rules along with specified inputs to derive system’s outputs or
conclusions. The experts’ understanding of the phenomenon under study and their
knowledge of the domain field provide a basis for formation of the primary version

of rule-base, in which linguistic variables L% ="latitude/longitude accuracy" and
LE,Z) ="delta" are used in antecedent part of fuzzy rules (input of the system),

whereas L(V3) ="location" operates as system’s output (its terms form consequent

part of rules). The evident transparency of the rule-base in general is substantiated
here by a specific fact of simplicity and lucidity of both linguistic values submitted
for consideration and existing relations between them. To the opinion of authors,
such situation can be viewed as an advantage in terms of efforts needed to design
the rule-base. However, it does not mean that the subsequent fine-tuning of rules as
well as values of variables will not be needed — most likely, this stage is
unavoidable in practice regardless of the system at hand. At the moment, the rules
can be represented in the following form:

96

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

If delta is 'small difference’ and latitude accuracy is
Rulel insignificant difference’ and longitude accuracy is ‘insignificant
difference’ Then location is 'at station’

If delta is 'small difference’ and latitude accuracy is ‘close to
Rule 2 latitude’ and longitude accuracy is ‘insignificant difference’
Then location is 'near the station’

If delta is 'small difference’ and latitude

accuracy is 'insignificant difference’ and longitude
accuracy is 'close to longitude’ Then location is 'near the
station’

If delta is 'small difference’ and latitude accuracy is ‘close to
Rule 4 latitude’ and longitude accuracy is 'close to
longitude’ Then location is 'near the station’

If delta is 'bigger difference’ and latitude

accuracy is 'insignificant difference’ and longitude

accuracy is 'insignificant difference’ Then location is 'near the
station’

If delta is 'bigger difference’ and latitude accuracy is 'close to
Rule 6 latitude’ and longitude accuracy is ‘insignificant
difference’ Then location is 'near the station’

If delta is 'bigger difference’ and latitude

accuracy is 'insignificant difference’ and longitude
accuracy is 'close to longitude’ Then location is 'near the
station’

If delta is 'bigger difference’ and latitude accuracy is 'close to

Rule 8 latitude’ and longitude accuracy is 'close to longitude’ Then
location is 'near the station’

Rule 3

Rule 5

Rule 7

4.1 Test 1 (difference between fixed and current points (delta))

The first carried out experiment is related to checking the difference between fixed
and current points (i.e. linguistic variable "delta”) under the constant
latitude/longitude accuracies equal to 0.00074 (step of delta’s change is taken as
0.0032, number of steps equals to 10). IT2MF is an assortment of type-1
membership functions embedded between upper (U) and lower (L) functions. Each
of these embedded functions (type-1) can be defuzzified, viz. converted to crisp
number that represents generically corresponding fuzzy set (its membership
function). The most commonly used method of defuzzification is called centroid
[10]. The processing of type-2 fuzzy systems provides for the use of type reduction
procedure (TRp) that can be seen as an expanded form of type-1 defuzzification

97

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

resorting to Extension principle [12]. Each of rules Rule i, i =1,8, “fires” and leads
to obtaining output type-2 fuzzy set under a given input data. The union of these
output sets and calculation of the centroid of resultant set is the essence of the
centroid type reduction. Both theoretical framework and development of type
reduction’s use in type-2 fuzzy systems were presented in publications by Karnik
N.N. and Mendel J.M. [13, 14]. As applied to IT2FS (secondary membership
function in that case is constant), TRp becomes simpler in comparison with
generalized type-2 sets — the results of experiment (see the data above) using centroid
type reduction (CTR) defuzzification as summarized in Table 2.

Table 2. CTR defuzzification Table 3. CoSTR defuzzification
Difference between Difference between
Ne fixed and current Location Ne fixed and current Location
points (delta) points (delta)
1 0.0032 84.398 1 0.0032 84.398
2 0.0064 94.312 2 0.0064 84.398
3 0.0096 139.576 3 0.0096 84.398
4 0.0128 282.000 4 0.0128 275.180
5 0.016 392.995 5 0.016 460.487
6 0.0192 392.995 6 0.0192 460.487
7 0.0224 392.995 7 0.0224 460.487
8 0.0256 448.347 8 0.0256 460.487
9 0.0288 460.487 9 0.0288 460.487
10 0.032 460.487 10 0.032 460.487

On the other hand, another TRp called center-of-sets type reducing approach (CoSTR
— it is a family of defuzzification methods proposed up to now) can be used to
substitute the consequent parts of rule-base by singletons at the centroid of
corresponding fuzzy sets (Then-part of rules). Subsequent step is connected with
obtaining the centroid of type-1 fuzzy set constituted by aforementioned singletons
[10]. Calculated values that refer to test data (section IV, item’s A preamble) are
accumulated in Table 3.

It can be noticed that for a particular set of test data centroid TRp demonstrates
better (i.e. smoother) approximation of the moderately growing exponential trend.
Relative angularity (in Fig.5 it is not so strongly pronounced in comparison with
Fig.6 case) relates to the use of piecewise linear (trapezoidal) functions representing
fuzzy sets, certain (potential) drawbacks ascribed to rule-base design issues and
small number of linguistic terms defined for each variable under consideration.
However, even under these circumstances, results of centroid TRp indicate that it is
more sensitive to accuracy changes (fine-tuning) than the second TRp. The second
graph (Fig.6) visualizes marked broken line consisting of 2 constant levels, and one

98

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

of those is rather lengthy. To a variable degree, both lines are increasing, and
centroid TRp is preferable, since it considers specificity of all functions’ values.

Centroid Type-Reduction

700
600
500
400
300
200
100

=]

Location (meters)

CRPC - i - Y S . <4
R SN
Difference between fixed and current

points (delta)

Fig. 5. Centroid type reduction method for “delta” variable

Center-of-Sets Type-Reduction

800

100
0

Location(meters)
[I L Ty = N |
(=]
[=IN=J =Ny =)
f-
%
£ 3
G2
-
s
3
by
Ed
“

) o s 9!
Sy R G Ly S o
p ks ! P]
FFF TS FEE S

Difference between fixed and current
points (delta)

Fig. 6. Center-of-sets type reduction method for “delta” variable

4.2 Test 2 (latitude/longitude accuracy)

The second test relates to checking the latitude/longitude accuracy under constant
difference between fixed and current points (delta) equals to 0.0032 (longitude
accuracy is 0.00074 OR latitude accuracy is 0.00074, the number of steps is set to
10). Results are shown by Tables 4 and 5.

Here, situation retains characteristic features observed in Fig.5 and 6, i.e. centroid
TRp also demonstrates better “behavior”. The line (Fig.7) grows monotonously
being smooth enough, except for x-coordinates falling into the real range [0.00518,

99

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

0.00666] (approx.). Lines shown in both graphs (Fig.7,8) follow the exponential
trend (the less latitude/longitude accuracy, the less location accuracy observed).

Table 4. CTR defuzzification Table 5. CoSTR defuzzification
N Longli_tztdi;u::cfjracy Location N Longli_ti:ji;u;cecijracy Location
1 0.00074 84.398 1 0.00074 84.398
2 0.00148 84.398 2 0.00148 84.398
3 0.00222 84.398 3 0.00222 84.398
4 0.00296 90.831 4 0.00296 84.398
5 0.0037 99.770 5 0.0037 84.398
6 0.00444 139.576 6 0.00444 84.398
7 0.00518 392.995 7 0.00518 460.487
8 0.00592 438.650 8 0.00592 460.487
9 0.00666 460.487 9 0.00666 460.487
10 0.0074 460.487 10 0.0074 460.487

Centroid Type-Reduction
600

Lo Ln
= o o
Lo T e R

= o
[e

Location (meters)
=

RIS
¥

D N
N
Q@Q-Q Q@Q-

RO
R o N 8 N
S FEE S
Q- Q@Qﬂ QQ‘%QQ«? I\N

Latitude/longitude accuracy

Fig. 7. CTR defuzzification for “latitude/longitude accuracy” variables

100

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

Fig. 8. CoSTR defuzzification for “latitude/longitude accuracy” variables

Center-of-Sets Type-Reduction
600

LUV S
o o O
o OO

Location(meters)
= b2
= O
[e R e

,\u S ﬂk P o ,\b«

S @@@@

Q- () Q Q- BTN RN
Latitude/longitude accuracy

It should be explicitly mentioned that we have additionally tested rules using two
defuzzification methods already mentioned before, namely, (1) centroid TRp and (2)
center-of-sets TRp (approaches).

4.3 Test 3 (checking rules used in the model)
Table 6. CTR defuzzification results

No Rule Difference bet\(veen fixed and Latitude Longitude Location
current points (delta) accuracy accuracy
1 la 0.0032 0.00074 0.00444 139.576
2 1b 0.0064 0.00222 0.0037 99.770
3 lc 0.0096 0.00296 0.00296 139.576
4 1d 0.0128 0.0037 0.00222 282.0
5 le 0.016 0.00444 0.00074 392.995
6 2a 0.0032 0.00518 0.00074 392.995
7 2b 0.0064 0.00444 0.00222 139.576
8-22 2¢-5b 0.0096 0.00592 0.00296 392.995
23 5c 0.0256 0.00296 0.00296 446.153
24 5d 0.0288 0.0037 0.00222 441.641
25-29 5e-6d 0.032 0.00444 0.00074 392.995
30 6e 0.032 0.00666 0.00074 460.487
31-40 7a-8e 0.0192 0.00074 0.00666 392.995

Each rule was “fed” with 5 (five) test cases, thus each of Tables 6 and 7 covers
40 =8x5 cases in total. Tests per rule are numbered in ascending order starting
with [n]a and ending with [n]d, where [n] is the rule’s number (index). For example,

101

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

Rule 3 corresponds to sequence of labelings 3a, 3b, 3c, 3d and 3e used in Tables 6
and 7. Test data were generated according to intervals of each variable’s domain
(the same approach as in tests 1 and 2). Step of "delta” changes is 0.0032, while step
for the latitude and longitude variables equals to 0.00074. Input values are mixed to
ensure wider coverage and variety. The last column presents location according to
test values and calculation method (TRp) selected. Last column’s cells with light-
grey shading determine 'At station’ (< 282 meters) value (set), while other values
show location near some station (linguistic value 'Near the station’). Both tables are
wittingly shortened, because of recurrent location results.

Table 7. CoSTR defuzzification results

No Rule Difference bet_/veen fixed and Latitude Longitude Location
current points (delta) accuracy accuracy
1 la 0.0032 0.00074 0.00444 84.398
2 1b 0.0064 0.00222 0.0037 84.398
3 1c 0.0096 0.00296 0.00296 84.398
4 1d 0.0128 0.0037 0.00222 275.180
5 le 0.016 0.00444 0.00074 460.487
6 2a 0.0032 0.00518 0.00074 460.487
7 2b 0.0064 0.00444 0.00222 84.398
8-40 2¢-8d 0.0096 0.00592 0.00296 460.487

A defuzzification method computes the range of possible location values according
to input data provided, and the last column of tables shows a mean value of interval
bounds, e.g. 139.576 is a mean of [0, 279.152] real-valued range obtained through
defuzzification procedure.

5. Conclusion

The paper examined potentials of the modeling approach based on interval type-2
fuzzy sets (IT2FS) and conventional Mamdani fuzzy inference system (MFIS) as
applied to real and topical problem related to passengers tracking in urban metro
(positioning service by the example of Moscow city). Appeal and significance of
developing and further analysis of such models may be of a high demand for
appropriate representation of those factors that are inherently vague and uncertain.
The aspects that provide for eventuality to discuss models with broad sections of
stakeholders owing to model’s transparency, abilities to tune their parameters and to
carry out experiments (test runs) play a sound role in theory and from practical
standpoint. Empirical studies had shown that design issues concerned with linguistic
variables and their labelled values (or, terms) influence significantly fuzzy model’s
output. Test cases presented in the paper corroborate both the applicability and
relevance of fuzzy logic-based approach to various problems emerging in the field

102

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

of navigational services, passenger tracking based on positional technologies. As it
was mentioned in section IV, the model that makes use of IT2FS and MFIS leads at
the end to resultant intervals that can be calculated in genuine mobile applications
without appreciable extra costs with the object of determining the distance to notify
users about their arrival (approach) to station. Hence, the developed fuzzy
(prototype) model helps to estimate exemplary limits for values of each variable
examined. Due to promising test results (for the time being we can talk about model
prototype only) and its potential practical applicability, the model (Fig.1) will be
implemented in the Android-based mobile program aimed at building routes and
notifying users about their destination.

From the standpoint of further theoretical research and topic evolvement, diverse
types of membership functions together with fine tuning of their parameters as well
as alternative type reduction defuzzification (TRDf) methods should be considered
more thoroughly. Besides, by way of illustration GPS technique may beat its own
path in IT2FS-based models as applied to ground transportation.

References

[1]. Chen C-Y., Yang J.-P., Tseng G.-J., Wu Y .-H. and Hwang R.-C. An Indoor Positioning
Technique Based on Fuzzy Logic, in Proc. International Multi Conference of Engineers
and Computer Scientists (IMECS), 2010, pp. 854-857.

[2]. Teuber A. and Eissfeller B. WLAN Indoor Positioning Based on Euclidean Distances
and Fuzzy Logic, in Proc. Workshop on Positioning, Navigation and Communication
(WPNC), 2006, pp. 159-168.

[3]. Yasunobu S., Miyamoto S. and lhara H. A Fuzzy Control for Train Automatic Stop
Control. Transactions of the Society of Instrument and Control Engineers, 2002, vol. E-
2(1), pp. 1-9.

[4]. Klir GJ. and Wierman M. Uncertainty Formalizations. In: Uncertainty-Based
Information. Elements of Generalized Information Theory, ser. Studies in Fuzziness and
Soft Computing (#15), 2™ ed., Physica Verlag, Germany, 1999, 168 p.

[5]. Arigela L., Veerendra P., Anvesh S. and Hanuman K. Mobile Phone Tracking &
Positioning Techniques. Int. Journal of Innovative Research in Science, Engineering and
Technology, 2012, vol.2, pp. 906-913.

[6]. Gps.gov, “Official U.S. Government Information About the GPS and Related Topics,
GPS Accuracy”, 2017. [Online resource]. Available:
http://www.gps.gov/systems/gps/performance/accuracy/ [Accessed 27-Feb-2017].

[7]. Zeimpekis V., Kourouthanassis P. E. and Giaglis G. M., Mobile and Wireless
Positioning Technologies, in UNESCO Encyclopedia of Life Support Systems (EOLSS),
vol. 6.108, EOLSS Publishers, France, 2007, [http://www.eolss.net].

[8]. Mosmetro.ru, “Metropoliten v tsifrakh”, 2017. [Online resource]. Available:
http://mosmetro.ru/press/metropoliten-v-tsifrakh/ [Accessed 28-Jan-2017] (in Russian).

[9]. Nashemetro.ru, “Metro v tsifrakh.”, 2017. [Online]. Auvailable:
http://nashemetro.ru/facts.shtml [Accessed 13-Jan-2017] (in Russian).

[10]. Mendel J.M., Hagras H., Tan W.-W., et al. Introduction to Type-2 Fuzzy Logic Control.
Theory and Applications (IEEE Press Series on Computational Intelligence), Wiley-
IEEE Press, Piscataway, 2014, 376 p.

103

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

[11].
[12].
[13].

[14].

104

En.wikipedia.org, “Moscow Metro”, 2017. [Online resource]. Available:
https://en.wikipedia.org/wiki/Moscow_Metro [Accessed 25-Jan-2017].

Mendel J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions, Prentice Hall PTR, Englewood Cliffs, 2001, 576 p.

Karnik N.N., Mendel J.M. Type-2 Fuzzy Logic Systems: Type-Reduction, in Proc.
IEEE Int. Conference on Systems, Man, and Cybernetics, 1998, pp. 2046-2051.

Mendel J.M. Interval Type-2 Fuzzy Logic Systems and Perceptual Computers: Their
Similarities and Differences. In: Sadeghian A., Mendel J., Tahayori H. (eds) Advances
in Type-2 Fuzzy Sets and Systems. Studies in Fuzziness and Soft Computing, vol. 301.
Springer, New York, 2013, pp. 3-18, doi: 10.1007/978-1-4614-6666-6_1.

T'umaneraunosa A.P., Jlertsipes K.}O. Mozenb cepBuca no3MIMOHUPOBAHKS B METPO, OCHOBAHHAs! HA NIpaBHIaX U
HEUYETKHX MHOXECTBaxX BToporo tuna. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., cTp. 87-106.

Mogenb cepBuca NO3ULMOHUPOBAHUSA B METPO,
OCHOBaHHas Ha NpaBuriax U HeYeTKMX MHOXecTBax
BTOpOro Tuna

A.P. l'umanemounosa <argimaletdinova@edu.hse.ru>
K.1O. Jlecmapes <kdegtiarev@hse.ru>
HayuonanvHuiii uccnedosamenvckutl yRugepcumen
«Bwvicwas wkona OKOHOMUKUY,

125319, Poccusa, Mocksa, Kounosckuil npoe3o, 0. 3

AHHOTanms. 3a IOCIEIHNE HECKOJIBKO JIET BO3HHK 3HAUUTENBHBIH MHTEpeC K MOOMIBEHBIM
HPHJIOKEHUSM, OPUCHTUPOBAHHBIM Ha IIOCTPOEHUE MapLIPYTOB MOJb30BaTeNeil Ta/UKETOB; B
TaKNX MPUIOKEHUAX HAPAAY C BayKHON (yHKIHMEil HaBUrallMK TAKOKe BO3MOYKHO OTIIPaBJICHUE
CBOEBPEMEHHBIX OIOBEIICHUH O MPUOBITHH K 3aJaHHOMY MECTy Ha3sHaueHHs. HecMorpst Ha
Oonbmioil 00beM WMeromedcs HHGOpPManuu O cCrenu(uKe HABUTAMOHHBIX CEPBHCOB,
AKTyaJbHBIM OCTaeTCsl BOIPOC OTHOCHTEIBHO TOYHOCTH IIO3WIMOHUPOBaHMSA. B maHHON
CTaThe PacCMaTPHUBACTCSI BOSMOYKHBIH ITOIX0]] K PEIICHHUIO IPOOIEMBI CPaBHEHHS, CBI3aHHOTO
C ompezencHHeM OJM30CTH II0Jb30BaTeNsi K KOHEYHOW CTaHIMM €ro MapuipyTa B METpO.
Takasi 61M30CTh ONpEAEISIETCS MyTeM IOJICUeTa Pa3HUIBI B KOOPAMHATAX MEXKIY TEKyIeh
mo3unue maccaxmpa W (ukcupoBaHHOH ToukoH. C wmempio co3maHusa CHCTeMBI
Pexomenparnmii Mapmpyros (CPM) Obuta mpuMEHEH anmmapar HEYEeTKOW JIOTHKH, KOTOPBIH
UCIIONB3YeT JIMHTBUCTHYECKUE IIEPEMEHHBIC IUIsI BBIPKEHHS HWMEIONIEHCs HEYEeTKOCTH
(HeompeesIeHHOCTH) B MOHMMAHHH/BOCIIPHATHH BEPOAIBHOTO MOHATHUS «OJIM30CTh K ...». B
pabote 1moApoOHO OOBACHAETCA KaXkJas NMepeMEHHas, HCIOJIb3yeMas B CHCTEME HEUETKOro
BoiBoza (ari. FIS), a Taxke npesncrasisiercss Habop Heuetkux npasust ECJIU-TO mozenu.
Jnst mpoBepkH CTaOWIIBHOCTH MOJieH (TTOKa UMEET CMBICI TOBOPUTH O MPOTOTHIIE MOJEIH
KaK TIepBOM IIare Ha MyTH JaIbHEHIIel ee mpopabOTKH U H3MEHEHNs), OCHOBAHHO Ha CXeMe
JIOTHYECKOTO BbIBOJa MaM/IaHH, PacCMaTPUBAIOTCSI HECKOJIBKO TECTOBBIX HKCHEPUMEHTOB C
MOJIEITBIO, OTIUCHIBAIOTCS MOJTy4aeMble pe3yabTaThl. B nanpHeiiinem, miaHupyercs pa3padoTka
MoOmwibHOTO ANdroid-mpHiIoKeHus, HAIIEIEHHOTO HA MOCTPOSHHE MapIIPYTOB TOPOJCKOTO
00LIECTBEHHOTO TPAHCIIOPTA C BO3MOXHOCTBIO HCIIOJIb30BaHUsI IPEACTABICHHOW MOJIEINH IIPH
peanu3anuy (YHKIUM MO OTIPABICHUIO CBOEBPEMEHHBIX OINOBEIICHUI O MPUOIMKEHHUH K
NMYHKTY HasHaueHus1. ClieyeT OTMETUTh, YTO aKIEHT JeTaeTCsl Ha UCIIOIb30BaHUU B MOJCIU
WHTEPBaJbHBIX HEUETKUX MHOXKeCTB BToporo Ttuma (auri. IT2FS), kotopsle mpuBiekaioT
3HAYMTENPHOEC BHUMAHUE HCCIENOBaTeNeil B HacTosmiee BpeMs. 3HAYUMOCTH 3aJa4yu
pa3paboTKu MONOOHBIX MOAEJEH ompenensercs, B HEPBYIO oOuYepenb, HEOOXOIUMOCTHIO
aJIeKBaTHOTO YydeTa TeX (haKTOpOB, KOTOpHIE IO CBOGH CYTH SBISAIOTCS HEYETKHMHU
(HeompeneneHHbIMH). JlaHHAs paboTa, O MHEHHIO aBTOPOB, MOXKET IOMOYb B TPOJIOJKCHUN
1 Pa3BUTHHU HCCIIEOBAHUIA, CBSI3aHHBIX C 3TOI)K€ WK TOJOOHBIMH TEMaMH.

KitoueBble ci10Ba: cepBUC IS TMO3MIMOHMPOBAHUS; MOOWIBHBIC MPHIIOKEHHS; HEYETKOES
mogenupoBanue; GPS; WIiFi; MmoOunbHbIe ceTr; 00MIECTBEHHBIA TPAHCIIOPT; WHTEPBATbHBIE
HEYETKHEe MHOXKECTBA BTOPOT'0 THIA; CHCTEMa HEYETKOTO BBIBOJIA; HEYETKOCTh; HETOYHOCTh

DOI: 10.15514/ISPRAS-2017-29(4)-6

105

Gimaletdinova A.R., Degtiarev K.Y. Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 87-106.

Js uurtupoBanus: ['umaneraunoBa A.P., lerrapes K.IO. Mozens no3uuuoHupoBanus B
METpO, OCHOBAaHHAsI Ha HEUETKHX IpaBmiIax Broporo tuma. Ipyoet UCII PAH, Tom 29, BbIIL.
4, 2017 r., ctp. 87-106 (Ha anrnmiickom si3sike). DOI: 10.15514/ISPRAS-2017-29(4)-6

Cnucok nutepaTtypbl

[1]. Chen C-Y., Yang J.-P., Tseng G.-J., Wu Y.-H. and Hwang R.-C. An Indoor Positioning
Technique Based on Fuzzy Logic, in Proc. International Multi Conference of Engineers
and Computer Scientists (IMECS), 2010, pp. 854-857.

[2]. Teuber A. and Eissfeller B. WLAN Indoor Positioning Based on Euclidean Distances
and Fuzzy Logic, in Proc. Workshop on Positioning, Navigation and Communication
(WPNC), 2006, pp. 159-168.

[3]. Yasunobu S., Miyamoto S. and lhara H. A Fuzzy Control for Train Automatic Stop
Control. Transactions of the Society of Instrument and Control Engineers, 2002, vol. E-
2(1), pp. 1-9.

[4]. Klir GJ. and Wierman M. Uncertainty Formalizations. In: Uncertainty-Based
Information. Elements of Generalized Information Theory, ser. Studies in Fuzziness and
Soft Computing (#15), 2™ ed., Physica Verlag, Germany, 1999, 168 p.

[5]. Arigela L., Veerendra P., Anvesh S. and Hanuman K. Mobile Phone Tracking &
Positioning Techniques. Int. Journal of Innovative Research in Science, Engineering and
Technology, 2012, vol.2, pp. 906-913.

[6]. Gps.gov, “Official U.S. Government Information About the GPS and Related Topics,
GPS Accuracy”, 2017. http://www.gps.gov/systems/gps/performance/accuracy/ [[lara
ob6paruenus 27.02.2017].

[7]. Zeimpekis V., Kourouthanassis P. E. and Giaglis G. M., Mobile and Wireless
Positioning Technologies, in UNESCO Encyclopedia of Life Support Systems (EOLSS),
vol. 6.108, EOLSS Publishers, France, 2007, [http://www.eolss.net].

[8]. Mosmetro.ru, “Merpomnonuten B mudpax”, 2017. http://mosmetro.ru/press/metropoliten-
v-tsifrakh/ [Qata o6pamenus 28.01.2017] (in Russian).

[9]. Nashemetro.ru, “Metpo B tmbpax”, 2017. http://nashemetro.ru/facts.shtml [[ara
obpamenus 13.01.2017] (in Russian).

[10]. Mendel J.M., Hagras H., Tan W.-W., et al. Introduction to Type-2 Fuzzy Logic Control.
Theory and Applications (IEEE Press Series on Computational Intelligence), Wiley-
IEEE Press, Piscataway, 2014, 376 p.

[11]. En.wikipedia.org, “Moscow Metro”, 2017. https://en.wikipedia.org/wiki/Moscow_Metro
[dara o6pamenus 25.01.2017].

[12]. Mendel J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions, Prentice Hall PTR, Englewood Cliffs, 2001, 576 p.

[13]. Karnik N.N., Mendel J.M. Type-2 Fuzzy Logic Systems: Type-Reduction, in Proc.
IEEE Int. Conference on Systems, Man, and Cybernetics, 1998, pp. 2046-2051.

[14]. Mendel J.M. Interval Type-2 Fuzzy Logic Systems and Perceptual Computers: Their
Similarities and Differences. In: Sadeghian A., Mendel J., Tahayori H. (eds) Advances
in Type-2 Fuzzy Sets and Systems. Studies in Fuzziness and Soft Computing, vol. 301.
Springer, New York, 2013, pp. 3-18, doi: 10.1007/978-1-4614-6666-6_1.

106

The Mixed Chinese Postman Problem

M.K. Gordenko <mkgordenko@gmail.ru>
S.M. Avdoshin <savdoshin@edu.hse.ru>
Software Engineering School,
National Research University Higher School of Economics
20, Myasnitskaya, Moscow, 101000, Russia

Abstract. The routing problems are important for logistic and transport sphere. Basically, the
routing problems related to determining the optimal set of routes in the multigraph. The
Chinese postman problem (CPP) is a special case of the routing problem, which has many
potential applications. We propose to solve the MCPP (special NP-hard case of CPP, which
defined on mixed multigraph) using the reduction of the original problem into General
Travelling Salesman Problem (GTSP). The variants of CPP are pointed out. The
mathematical formulations of some problems are presented. The algorithm for reduction the
MCPP in multigraph into GTSP is shown. The experimental results of solving MCPP in
multigraph through the reduction into GTSP are presented.

Keywords: Mixed Chinese Postman Problem, Arc Routing Problem, heuristic algorithm,
Traveling Salesman Problem

DOI: 10.15514/ISPRAS-2017-29(4)-7

For quoting: Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy
ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 107-122. DOI: 10.15514/ISPRAS-2017-
29(4)-7

1. Introduction

The Chinese Postman Problem (CPP) was originally studied by the Chinese
mathematician Kwan Mei-Ko in 1962 on the example of the rural postman problem
[1]. A problem is called the CPP after Kwan Mei-Ko [2].

In the modern world, the number of companies and industries that are interested in
building an optimal route of product delivery is growing. For example, the postman
delivering letters or leaflets wants to know the optimal route that traverses every
street in the given area, starting and ending at the office [3].

Apart from the traditional application of the CPP to solving the routing problems
such as path planning of snowplows or serving teams, there is a wide range of

107

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

applications including robot exploration, testing web site usability and finding
broken links [3].

There are various classifications of the CPP. This problem can be applied for a
directed, undirected, mixed graph, or in a multigraph (a graph with parallel directed
and undirected edges). The CPP can also be closed (the postman should return to the
starting point) or open (starting and ending points can be different). The problem in
directed or undirected graph has exact algorithms and may be solved in polynomial
time. The mixed case is NP-hard and there are no polynomial-time algorithms for
solving the CPP in mixed graph or multigraph exactly [4, 3].

In this paper, heuristic algorithms for the mixed case are described and assessed.
The mixed CPP (MCPP) is a simply-stated problem, which has many useful
applications, but has no exact algorithms [3].

The objective of the research is implementation and quality assessment of heuristic
algorithms for the MCPP.

The paper is organized as follows. First, the mathematical formulation of the
problem is pointed out. The next section is dedicated to related works. In the next
part a brief description of implemented algorithms and methodology of the research
are presented. Then, already obtained results are revealed. In the final part, the
expected results and future directions of research are described.

In this article, in accordance with generally accepted definitions, under the
understanding of an understanding directed edge, under the edge is an undirected
edge.

2. The General Routing Problem

The routing is one of the most important problem in the optimization researches.
The GRP is to define a minimum cost set of routes (one route also is possible) in a
multigraph, that must include some required vertices and pass through some
required edges and arcs of the original multigraph [1].

Formally, the GRP is defined on multigraph
G =<V,E,A,C >, where

V is a set of vertices,

A is a multiset of directed edges (arc);

E is a multiset of undirected edges (edges);

C: EUA - R, is a cost function giving non-negative weights of arcs and edges
between vertices.

In the routing problems, it is not necessary to visit all vertices, edges and arcs of the
multigraph. Two subsets of edges and arcs A; € A and E; € E are defined. The
arcs and edges from Ap and Er must necessarily appear in the solution. Let the
subset of vertices V; € V consist of those vertices that must appear in the route.

108

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

The goal of all routing problems is to define a minimum cost set of routes, that
traverses all the arcs and edges from the multisets A, and Er and includes all
vertices of the set V.

3. The Vehicle Routing Problem

The VRP is a special case of the GRP with A, = @ and E; = @, i.e. the
restrictions on the edges and arcs, which must necessarily appear in the route, are
absent. The VRP is to determine the Hamiltonian cycle of minimum cost, which
traverse all vertices of the subset V [1].

In the case, when V, = V, the problem reduces to one of the most famous problem
of combinatorial optimization — the classical Traveling Salesman Problem (TSP).

4. The Arc Routing Problem

Another special case of the GRP is the Arc Routing Problem (ARP), it is to
determine the minimum cost set of routes, that traverses all required edges E and
all required arcs Ay of original multigraph. In the ARP, there are no restrictions on
the presence of vertices in the route, i.e. V = @. The CPP is the variant of ARP. In
the original formulation, the CPP is the problem, where the postman should traverse
through every street in the given area.

5. The Variants of Chinese Postman Problem

The CPP was originally studied by the Chinese mathematician Kwan Mei-Ko in
1960. A problem is called the Chinese Postman Problem after him. Kwan Mei-Ko
defined the problem on undirected graph. Today, there are many various
classifications of CPP, including classifications based on the graph type, on the type
of solution route and other restrictions and additions [2].

In the modern world, the number of companies and industries that are interested in
building an optimal route of product delivery is growing. For example, the postman
delivering letters or leaflets wants to know the optimal route that traverses every
street in the given area, starting and ending at the office. Apart from the traditional
application of the CPP to solving the routing problems such as path planning of
snowplows or serving teams, there are a wide range of applications including robot
exploration, testing web site usability and finding broken links [3].

Below, the most popular variants of the CPP are presented.

5.1 The Undirected Chinese Postman Problem

The formulation of the Chinese Postman Problem in undirected graph (UCPP) is an
original formulation of the CPP problem. The UCPP is a special case of ARP,
where

A = @ and Ex = E. The UCPP belong to class of P problems.

109

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

5.2 The Directed Chinese Postman Problem

The Chinese Postman Problem in directed graph (DCPP) is the modification of
UCPP, where every arc (directed edge) can be traversed in one direction. Another
name of problem is the New York Street Sweeper Problem. The DCPP is a special
case of ARP, where A, = Aand E = @. The DCPP belong to class of P problems.

5.3 The Windy Chinese Postman Problem

The Windy Chinese Postman Problem (WCCP) is the interesting generalization of
classical CPP, which has many real uses. In WCPP the cost of traversing some edge
depends on way of traversing. The WCPP is a special case of ARP, where E; = E,
A = @ and at least for one edge the cost of traversing in direct way is differ from
cost of traversing it in opposite way. The DCPP belong to class of NP-hard
problems, which cannot be solved in polynomial time.

5.4 The Rural Chinese Postman Problem

The Rural Chinese Postman Problem (RCPP) is a special case of ARP, where
Ar € A, Eg € E. Another name of RCPP is the Selecting Chinese Postman
Problem. In all above defined CPP problems, it is necessary to find a closed shortest
route, that traverses all edges or arcs of the original multigraph at least once. In the
real world, it is not always necessary to traverse all roads (edges or arcs). It is
enough to traverse only a set of requires arcs and edges (A; and Eg). The RCPP
belong to class of NP-hard problems, which cannot be solved in polynomial time.

5.5 The Mixed Chinese Postman Problem

The Mixed Chinese Postman Problem (MCPP) is a well-known version of the CPP,
where multigraph contains both arcs and edges. The MCPP is a special case of
ARP, where Ep =E and A =A. The MCPP belong to class of NP-hard
problems.There are other variants of the problem, such as Hierarchical Postman
Problem (HCPP), k-Chinese Postman Problem (k-CPP), Chinese Postman Problem
with Time Windows and others.

6. The Variants of Chinese Postman Problem

The MCPP is one of the most important problem of the ARP. The MCPP is a
special case of ARP, for which A, = A # @, E, = E # Q.

An edge {v;, v;} (an unordered pair of vertices) from the set E is fixed. Let (v, v))
is ordered pair of vertices (this mean, that should traverse {v;, v;} from vertex v; to
vertex v;). Note, that, V{vi,vj} EE, c((vi,vj)) = c({vj,vi}) and C((vj,vi)) =
C({vj,v:}), it means that the cost of traversing the edge in any directions is the
same.

The mathematical formulation of the MCPP problem is presented below.

110

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

Let/ ={1,2,.., [E4+Al}, L={1,2,.., [V]}.

Indexation on the set of wvertices %4 is defined as
inv:V - L, Vv, €V Vv €V v #v;>10 #j, i = inv(y;). On the multiset
EUA indexation is defined asinea:EUVA — I,
Ve, E(EUA) Ve, € (EUA) e #e¢ =1 #j,i= inea(e).

Route u = (vy,, €p,, Vi,, €p,y» -5 U1,y €p,) 1S the solution of the MCPP that satisfies to
the following properties:

* ey = (vli,vlm), i=12,..,k—1;

o ey, =Wy, vy,);

e FUA /{epl,epz, ...,epk} = Q.
Let C(u) = Xi-, C(ep,) is the cost of the MCPP route. Let M be a set of solutions
of the MCPP. It is necessary to find a route u, € M that satisfies the following
property Vi € M C(po) < C(p) or C(po) = mingene (C(w)).

7. The reduction of Chinese Postman Problem

The MCPP can be reduced to an equivalent ARP. When problem defined in directed
graph (DCPP), it can be reduced to the asymmetric TSP. When problem defined in
mixed or undirected graph, it can be reduced to GTSP [4-6].

7.1 Description of reduction algorithm

Originally, the reduction algorithm was presented for the graph [3, 4]. The
algorithm modification, applicable to the multigraph, is given below [7].

The process of reduction the MCPP to GTSP is to transform the original graph
G =<V,E UA,C > into equivalent GTSP on complete graph ¢ =<V, 4,C >.

Table 1. Formulas for computing arc costs of Asymmetric GTSP

1 2 3 4 5 6 7 8
v, i3 vi3 vy V33 v vl vl

1| vy |- Sputcls | Spitels | Spp+chy | Spptcy | Spptchy | Spatchy | Spatcdy
2 | vy | sy+celp | - Ss1tcfsy | Saptchy | Sspt i | Sspcly | Ssatcy | Smtcn
3| vh | sty | sstefs | - S3p+ €y | S3p+Cy3 | SzptChz | S33t €3y | Sz3t
4| vy | syutel, | syytefs | sptedy | - S1pt+ s | Siptcdy | siztesy | sizteg
5 | vyg | saptcly | sstely | syitefs | st |- S3p+Cy3 | S33tC3y | Szztexp
6 | v3; | saitcly | Ssitefs | sy tefs | Sptey | Ssptegs | - S33+ €31 | S3zt 3
Ty | syt clp | siu+ cfs | s+ cfs | spteq | st e | sptc 3 |- S13+C3p
8 | vi | sputely | s+ cfs | sy + cfs | sppteqy | st i3 | spptc 3 | Szt ch | -

Each arc ai‘j € A between to vertices v; €V, v; €V is represented as vertex
Vikj € V, which must be used in the solution at least once, where k is the serial
number of parallel arc. Each edge e{j- € F betweento v; €V, v; € V is represented
as two vertices vf}? eV, vika € V, one of which must be used in the solution, another
may not be used, where k is a serial number of parallel edge, k., k, are the serial

111

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

numbers of parallel arcs between two vertices. After replacing the arcs and edges in

vertices, the cost from each pair of vertex v € 7,v*2 € 77 in graph G compute, as
¢, =dpc + cf;, where d,,. is the shortest distance between vertices v, €V ,v. €V
in original multigraph G. Then, the compete graph G is partitioned into clusters as
follows: each arc and each edge is separate cluster. The number of clusters is equal
to |[A U E|. The graph partitioned into clusters because edge can be traverse in two
ways, for solving the MCPP any way is appropriate and the problem transforms into
GTSP [5-7].

The GTSP is a variation of the Traveling Salesman Problem in which all vertices
are divided into clusters, and solution consist from only one vertices from each
cluster.

7.2 The example of reduction

The example of original multigraph is shown on Fig. 1. Each arc and edge has the
cost of traverse. Each vertex has the serial number.

Fig. 1. The original MCPP problem in multigraph

We replace each edge by a pair of two oppositely directed arcs and specify the
numbering of parallel arcs between each pair of vertices (see Fig. 2). In multigraph
only one arc al, or al, is required, because these arcs represent one edge. The same
applies to arc a3; or al,.

Fig. 2. The results of numbering each parallel arc
112

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

After that, should replace each arc and edge as vertex. We received new graph G
with 8 vertices. The V can be calculates according to the formula || = |4| + 2|E].

eloo@
©EE)®

Fig. 3. The vertices and clusters of transformed problems

/

The cost from each pair of vertices is calculated by formulas (see Table 1, see Table
2). The vertices represent the edge are marked with a color in the table (different
colors for different edges).

Table 2. The cost matrix

1 |2 | 3] 4|56 |7 |8
vip | Vs | Vi | vy | V33 | Vs | Vi | V3,
1| v, | - 6 | 7| 1] 2|3]6]|S5
2| v | 5 - 10| 4| 5|6 | 4|3
3 v | 5] 9 - 4 | 5] 6| 4|3
4| vi;| 1 |5 |6 - 314176
5|vis| 5 | 9 | 10| 4 - 6 | 4 | 3
6| v, | 5| 9 |10 4 | 5 - 4 | 3
7lvi, | 1 | 5|6 | 2|3 | 4] - 6
8|lvi, | 2|6 | 7|12]3]|6

Then vertices from V are partitioned into clusters. Fig. 3 depicts the vertices and
clusters of transformed graph. The reduction of the MCPP to Asymmetric GTSP is
received. After transformation of the original MCPP into the GTSP, the existing
algorithm for GTSP can be applied.

8. Algorithms of GTSP Solving

In the work, the nearest neighbor heuristic algorithm (NN) and its modifications
were applied to solve the GTSP problem.

8.1 Nearest Neighbor Heuristic (NN)

Nearest Neighbor heuristic belongs to the group of tour construction heuristics. In
the tour construction methods, the route is built by adding new vertices at each step,
according to some rules, while the already existing tour does not improve.

113

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

The algorithm starts building the route from some starting vertex, and then selects
the nearest vertex from another cluster to the start point and adds it to the route.
Then, the nearest vertex, belonging to an unused cluster, should appear in the route,
until all the clusters are used. After adding the vertices, we return to the starting
point.

Time complexity of the algorithm in the best and worst case — 0(|I7|2) [5].

8.2 Repetitive Nearest Neighbor Heuristic (RNN)

Since the length of the obtained route in NN depends on the considered starting
vertex, another variant of the nearest-neighbor is the repeated nearest neighbor,
which calculates the cost of the route, when NN is applied to each vertex as starting
vertex, and chooses the best route among all.

Time complexity of the algorithm in the best and worst case — 0(|I7|3) [5].

8.3 Improved Nearest Neighbor Heuristic (INN)

Another modification of NN is the heuristic, in which the shortest edge between two
vertices from different clusters is selected as the starting edge for the route, and then
NN is applied to the found edge (the end vertex of shortest edge is the starting
vertex for NN).

Time complexity of the algorithm in the best and worst case — 0(|I7|2) [5].

8.4 Repetitive Improved Nearest Neighbor Heuristic (RINN)

This method is a joint modification of the methods RNN and INN, which based on
the fact, that in the problem there are several edges with a minimum weight. It is
proposed to find the lengths of routes for all minimal edges [6].

Time complexity of the algorithm in the best case is 0(|I7|2) and in the worst case is
o(IVI®) [6].

8.5 Double-Ended Nearest Neighbor Heuristic (DENN)

The algorithm starts building the route from some starting vertex, and, then, selects
the nearest vertex to the start vertex and adds it to the route. Then the nearest vertex,
belonging to an unused cluster, to the first vertex in the solution or the last is added,
should appear in the route, until all the clusters are used. Thus, the route grows from
both ends, the vertices can be added at the beginning of the route, and at the ending
of the route. After adding all the vertices, we return to the starting point.

Time complexity of the algorithm in the best and worst case — 0(|I7|2) [5].

8.6 Loneliest Nearest Neighbor Heuristic (LNN)

The main idea of the heuristic is that the vertices most remote from the others
should be paid special attention during the construction of the route to avoid their
114

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

later inclusion in the route with higher cost. To make such heuristic possible, the
concept of “loneliness” of the city was introduced. Together with the distance to the
nearest neighbor, the closeness of the nearest neighbors will also be the criteria for
adding the next vertex to the route. “Lonely” neighbors, i.e. most remote, will be
preferable to others. At the preprocessing stage, a new distance matrix is obtained,
such that shorter new distances from the vertex to the others are a weighted function
of short old distances to these vertices, and a higher loneliness of this city. Then NN
is applied to the new matrix [5].

Time complexity of the algorithm in the best and worst case — 0(|I7|2).

8.7 Double-Ended Nearest Neighbor Heuristic (DENLN)

The heuristic is a modification of the NLN and DENLN heuristics, the weighted
distance function is also calculated here, considering the “loneliness” of the city, but
the DENLN algorithm is already applied in the next stages [5].

Time complexity of the algorithm in the best and worst case — 0(|I7|2) [6].

9. Methods of testing

The algorithm for graph transformations and solving GTSP was written on C++ in
MS Visual Studio 2015.

To test all algorithms, the two databases were used. For multigraph, the test data
sets were not found. However, graph is a special case of multigraph (without
parallel arcs and edges) and algorithm can be tested on graph data sets. In Bonisch’s
database the input data for 50, 100, 200 vertices in graph are presented [8]. For each
dimension, there are 75 different tasks. The test data from Angel Corberan web-site
for 500, 1000, 1500, 2000 and 3000 vertices also was used [9]. For each dimension,
there are 25 different tasks.

115

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

Table 3. The Pareto-optimal algorithms for solving MCPP through the reduction to GTSP

[=} [=} S S
21215188 /8|8 ¢
L O T T T AR
EIE|E|IE|slslsl=s
NN + + +
INN + + + + + + + +
RINN +
DENN
NLN +
DENLN
RNN + + + + + + + +

The time performance and error rate of proposed approach were measured as
follows:

e Test data were loaded in console program.

e The measurements for each input data set were carried out 10 times. The
results of computational time were obtained as the average of 10 runs of

Ty++++T;
the program: T,, = %

e Error rate of the TSP algorithms was evaluated according to the formula

W, where C(u) is the resulting length of the route of the
0

MCPP, C(u,) is the optimum length of the route of the MCPP given in
input data.
All test provides on Mac Book Pro 13 retina 2014 (Intel Core i5, 2.6 GHz).

Error =

10. Obtained results

For all tests from test database the time and error rate were computed. On Fig. 4,
Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 the results are presented in the
form of diagrams, where for each described above algorithm the average
computational time and error rate are depicted.

Diagrams allow determine the Pareto-Optimal algorithms on two criteria:
computational time and error rate. For all tested dimension, this groups are similar
and contain RNN and INN algorithms.

The obtained results make it possible to conclude that the proposed approach is
applicable to MCPP and gives good results in terms of computational time and
error, taking into account the fact, that one of the simplest heuristics was used (the
nearest neighbor heuristic).

116

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

[VI=50
18.00%

16,00% .
14.00% @ *°
12,00%
10.00%

8.,00%

Tounocts, %

6.00%
4,00%
2,00%

0,00%
0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035
Bpems, cex

o NN @RNN @INN ¢ RINN eDENN eNLN eDENLN
Fig. 4. The results for |V|=50
[V|=100
18,00%
16,00% »® o
14,00%
12,00%
10,00%

8,00%

TouHocTh, %

6.00%
4,00%
2,00%
0,00%
0,000 0.050 0,100 0,150 0,200 0,250 0,300

»

Bpemsa, cex

o NN @RNN @INN < RINN eDENN eoNLN e DENLN

Fig. 5. The results for |V|=100
117

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

V=200
18,00%
16,00% %o
14,00%
12,00% o
10,00%

8,00%

TouHOCTE., %o

6,00%
4,00%
2,00%

0,00%
0,000 0200 0400 0,600 0800 1000 1200 1400 1600
Bpems, cex
e NN @RNN @®INN RINN o DENN eNLN eDENLN

Fig. 6. The results for |V|=200

V=500

20,00%

15,00%

TouHOCTh, %

10,00%
5.00%

0.00%
0.000 5.000 10,000 15.000 20,000 25,000 30,000 35,000
Bpewma, cex

oNN @ENN @INN «RINN *DENN oNLN eDENLN

Fig. 7. The results for [V|=500
118

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

[VI=1000
25,00%
20,00% é
]
= 15.00%
W
5
]
2 10.00%
5,00%
0,00%
0,000 50,000 100,000 150,000 200,000 250,000 300,000
BpeMma, cex
ONN @ORNN @INN «RINN eDENN oNLN eDENLN
Fig. 8. The results for |V|=1000
[VIE1500
22,00%
[]
21,50%
21,00%
<
£ 20,50% ©
3 .
g @
Fy 20,00"/0
=
19.50%
19,00%
@
18.50%
0,000 200,000 400,000 600,000 800,000 1000,000
Bpewus, cex

@ONN @RNN OINN «RINN ®DENN @NLN e DENLN

Fig. 9. The results for |V|=1500
119

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 107-122.

IVI=2000

21.50%
21,00%
20,50%

20,00%

TouHOCTE, %0

19.50%
19.00%

®
18.50%

0,000 500,000 1000,000 1500,000 2000,000 2500,000
Bpems, cex

o NN ©ORNN @INN «RINN ®DENN #NLN «DENLN
Fig. 10. The results for |V|=2000

[V=3000

22,60%
22.40%
2220%
22,00%
21.80%
21,60%
21.40%
21,20%
21,00%
20,80%
20,60%
20,40%
0,000 1000,000 2000,000 3000,000 4000,000 5000,000 6000,000 7000,000

Bpewms, cex

o NN @RNN @INN «RINN @DENN eNLN eDENLN

TorunocTh, %

Fig. 11. The results for |V|=3000
120

Topaenko M.K., Apnoma C.M. CmenranHast 3aja4a Kuraiickoro nouransona. 7pyost UCIT PAH, Tom 29, Bbin. 4, 2017
r., ctp. 107-122.

References

[1]. C. E. Noon and J. C. Bean, "An Efficient Transformation of The Generalized Traveling
Salesman Problem," INFOR Information Systems and Operational Research, vol. 31, no.
1, February 1993.

[2]. H. Thimbleby, "The directed Chinese Postman Problem," Software Practice and
Experience, vol. 33, no. 11, pp. 1081-1096, 2003.

[3]. Mei-Ko Kwan, «Graphic programming using odd or even points» Acta Mathematica
Sinica, p. 263-266, 1960.

[4]. G. Laporte and M. Blais, "Exact Solution of the Generalized Routing Problem through
Graph Transformations," Operations Research, vol. 54, no. 8, pp. 906-910, 2003.

[5]. F. L. Pimentel, «Double-ended nearest and loneliest neighbour—a nearest neighbour
heuristic variation for the travelling salesman problem» Revista de Ciéncias da
Computagdo, T. 6, Ne 6, 2016.

[6]. P. Vreda and P. Black, Dictionary of Algorithms and Data Structures, National Institute
of Standards and Technology, 2014.

[7]. G. Laporte, «Modeling and solving several classes of arc routing problems as traveling
salesman problems» Computers & operations research, 1. 24, Ne 11, pp. 1057-1061,
1997.

[8]. S. Bonisch, «Implementierung der Edmonds-Johnson Heuritik fiir das Mixed Chinese
Postman Problem» 21 December 1999.

[9]. A. Corberdn, "Arc Routing Problems: Data Instances," [Online]. Available:
http://www.uv.es/corberan/instancias.htm. [Accessed 3 April 2017].

CmellaHHad 3agava KUTaucKoro novtanboHa

M.K. I'opoenxo <mkgordenko@gmail.ru>
C.M. Asoowun <savdoshin@edu.hse.ru>
Jlenapmamenm npoepammnou unxcenepuu, Hayuonanvuviii uccie0osamenbCckuil

YHUBepcumem « BolCuias WKoua 3KOHOMUKUY,
101000, Mockea, yr. Macnuykas, 0. 20

AHHOTamMs. 3a7a4uy MapUIpyTH3allMd BaXKHBI Uil OOJACTEH JIOTHMCTHKU M YIPaBJICHHS
TpaHCOPTOM. 3a/ladll MapIIPyTH3AIHH B OCHOBHOM CBSI3aHBI C OTIPEIEIEHHEM ONTHMAIBLHOTO
Habopa myTtedl B mynsTHrpade. 3amada kutaiickoro moutanboHa (CPP) sBisercss ocoObM
cllydaeM 3ajadd MapIIpyTH3al{M, MMIOIMM MHOTO IMOTEHIHMATBHBIX HPHIOKEHHH. Mbl
npemiaraem peuienne MCPP (cnenumansnoro NP-nosHoro cinywyas CPP na cmemanHoM
MynbTHrpade) ¢ HCIOIb30BAHUEM PEAyLUPOBAHUS UCXOIHOM 3aaun K 0000IIeHHON 3a/1aue
kommuBosbkepa (General Traveling Salesman Problem, GTSP). Yka3swiBaroTcs BapHaHTBI
CPP. IlpencraBneHsl MaTeMaTHYeCKHE (OPMYIHUPOBKM HEKOTOPHIX Tpobiem. Ilokazan
aroput™ pemymupoBanust MCPP B mymbrurpage k= GTSP. IlpuBomsrcs
SKCIIEpHMEHTaNbHBIe pe3ynbTaTel pemenuss MCPP B mymsTurpade mocpenctsom
penyuuposanus k GTSP.

KiioueBble cji0Ba: cMelllaHHas 3ajaya KMTAlCKOro MouTanaboHA, 3ajladya MapIIpyTU3aLuH,
SBPUCTUYECKUI aJrOpUTM, 3aa4a KOMMUBOSKEpa

121

mailto:savdoshin@edu.hse.ru

Gordenko M.K., Avdoshin S.M. The Mixed Chinese Postman Problem. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,

2017,

pp. 107-122.

DOI: 10.15514/ISPRAS-2017-29(4)-7

Ja nurupoBanusi: I'opaenxko M.K., ABmommn C.M. CwmenianHas 3agada KHTailcKoro
nouranbona. Ipyowt UCII PAH, tom 29, Boim. 4, 2017 r., crp. 107-122 (na aurnumiickom
s3pike). DOI: 10.15514/ISPRAS-2017-29(4)-7

Cnucok nutepatypbl

[1].

[2].
[3].
[4].
[5].

[6].
[71.

[8l.
(91

122

C. E. Noon and J. C. Bean, "An Efficient Transformation of The Generalized Traveling
Salesman Problem,” INFOR Information Systems and Operational Research, vol. 31,
no. 1, February 1993.

H. Thimbleby, "The directed Chinese Postman Problem," Software Practice and
Experience, vol. 33, no. 11, pp. 1081-1096, 2003.

Mei-Ko Kwan, «Graphic programming using odd or even points» Acta Mathematica
Sinica, p. 263-266, 1960.

G. Laporte and M. Blais, "Exact Solution of the Generalized Routing Problem through
Graph Transformations," Operations Research, vol. 54, no. 8, pp. 906-910, 2003.

F. L. Pimentel, «Double-ended nearest and loneliest neighbour—a nearest neighbour
heuristic variation for the travelling salesman problem» Revista de Ciéncias da
Computagdo, 1. 6, Ne 6, 2016.

P. Vreda and P. Black, Dictionary of Algorithms and Data Structures, National Institute
of Standards and Technology, 2014.

G. Laporte, «Modeling and solving several classes of arc routing problems as traveling
salesman problems» Computers & operations research, . 24, Ne 11, pp. 1057-1061,
1997.

S. Bonisch, «Implementierung der Edmonds-Johnson Heuritik fiir das Mixed Chinese
Postman Problem» 21 December 1999.

A. Corberan, "Arc Routing Problems: Data Instances".
http://www.uv.es/corberan/instancias.htm. [Iara o6pamenus 03.04.2017].

The Metric Travelling Salesman Problem:
The Experiment on Pareto-optimal
Algorithms

S.M. Avdoshin <savdoshin@hse.ru>
E.N. Beresneva <katrinberesneva@yandex.ru>
Department of Software Engineering,
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. The Metric Travelling Salesman Problem is a subcase of the Travelling Salesman
Problem (TSP), where the triangle inequality holds. It is a key problem in combinatorial
optimization. Solutions of the Metric TSP are generally used for costs minimization tasks in
logistics, manufacturing, genetics and other fields. Since this problem is NP-hard, heuristic
algorithms providing near optimal solutions in polynomial time will be considered instead of
the exact ones. The aim of this article is to experimentally find Pareto optimal heuristics for
Metric TSP under criteria of error rate and run time efficiency. Two real-life kinds of inputs
are intercompared - VLSI Data Sets based on very large scale integration schemes and
National TSPs that use geographic coordinates of cities. This paper provides an overview and
prior estimates of seventeen heuristic algorithms implemented in C++ and tested on both data
sets. The details of the research methodology are provided, the computational scenario is
presented. In the course of computational experiments, the comparative figures are obtained
and on their basis multi-objective optimization is provided. Overall, the group of Pareto-
optimal algorithms for different N consists of some of the MC, SC, NN, DENN, CI, GRD, CI
+2-Opt, GRD + 2-Opt, CHR and LKH heuristics.

Keywords: metric travelling salesman problem, heuristic algorithms, Pareto-optimality
DOI: 10.15514/ISPRAS-2017-29(4)-8

For citation: Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem:
Pareto-optimal Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017. pp. 123-
138. DOI: 10.15514/ISPRAS-2017-29(4)-8

1. Introduction

The Travelling Salesman Problem (TSP) is one of the most widely known questions
in a class of combinatorial optimization problems. Essentially, to meet a challenge
of the TSP is to find a Hamiltonian circuit of minimal length. A subcase of the TSP

123

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

is Metric TSP where all of the edge costs are symmetric, and they satisfy the
triangle inequality.

The methods for solving the TSP have been developed for many years, and since the
problem is NP-hard, it continues to be topical. The TSP has seen applications in the
areas of logistics, genetics, manufacturing, telecommunications and neuroscience
[1]. The most common practical interpretation of the TSP relates to the movement
of people and vehicles around tours, such as searching for the shortest tour through
N cities, school bus route planning, and postal delivery. In addition, the TSP plays
an important role in very large-scale integration (VLSI).

The purpose of this study is to determine the group of Pareto-optimal algorithms
among the set of selected ones for Metric TSP by criteria of run time and qualitative
performance.

Clearly, a study of this type is inevitably restricted by various constraints, in this
research only heuristic algorithms constructing near optimal solutions in polynomial
time will be considered instead of the exact ones.

The paper is structured as follows. First, the theoretical basis is described. It
presents definition of resource-efficient parameters, Pareto optimization and, at last,
the formulation of the aim of the project. Then the description of methods to be used
is provided with their prior estimates. After that the details of the research
methodology and expected results are mentioned.

2. Theoretical basis
In this paper, mathematical formulation of Metric TSP is adopted as stated here [2].

2.1 Parameters for Pareto-optimality

Let M be a set of selected heuristic algorithms for Metric TSP. There are two
parameters of resource-efficiency for m € M for each number of vertices N in data
set:

e f.(m,N) — qualitative performance;

e fi;(m,N) — running time.
Qualitative performance can be calculated using:

f(s) = f(so)
= —_— % 0,
fe(m,N) FG0) 100%,

where f(s) is the obtained tour length and f(s,) is the optimal tour length. The
values of optimal tour lengths are taken from the open libraries VLSI Data Sets and
National TSPs as the lengths of the best found (exactly) or reported solutions for
each of the instances [3] [4].

124

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

2.2 Pareto-optimality

The algorithm my € M is said to be Pareto optimal if (vm € M) ((m = my) =

(f:0m) > fu(me)) V (f.m) > fi(m))).

2.3 The aim of the study
The aim is to find a set M, = {(Vm € M) ((m #mg) = (fum) > fi(mgy)) Vv

(f:(m) > ft(mo)))} of Pareto-optimal algorithms for Metric TSP by criteria of
time and qualitative performance.

3. Algorithms
Algorithms for solving the TSP may be divided into two classes:

e Exactalgorithms, and

e Heuristic (or approximate) algorithms.
Exact algorithms are aimed at finding optimal solutions. However, a major
drawback is connected with their time efficiency. It is a common knowledge that
there are no exact algorithms running in polynomial time. Thus, only small datasets
can be solved in reasonable time. For example, the 4410-vertex problem is believed
to be the largest Metric TSP ever solved with respect to optimality [3].
In this paper, some algorithms from a class of heuristic search algorithms will be
taken into account. They are designed to run quickly and to get an approximate
solution to a given problem.
Heuristic algorithms are subdivided into two groups. The first group includes tour
construction algorithms that have one feature in common — the tour is built by
adding a new vertex at each step. The second group consists of tour-improving
algorithms that, according to Applegate, °...take as input an approximate solution to
a problem and attempt to iteratively improve it by moving to new solutions that are
close to the original’. Full classification of heuristic algorithms has already been
presented in [2].
In order to restrict our investigation, it was decided to choose only three types of
tour improving algorithms — the most simple local-optimal method (2-Opt), the
most perspective one (LKH) and one of the best swarm intelligence methods —
algorithm qCABC based on bee colony agents.
The list of used algorithms for Metric TSP is as follows.

3.1 Nearest Neighbour (NN)

The key to NN is to initially choose a random vertex and to add repeatedly the
nearest vertex to the last appended, unless all vertices are used [5].

125

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

3.2 Double Ended Nearest Neighbour (DENN)

This algorithm is a modification of NN. Unlike NN, not only the last appended
vertex is taken into consideration, so the closest vertex to both of endpoints in the
tour is added [6].

3.3 Greedy (GRD)

The Greedy heuristic constructs a path by adding the shortest edge to the tour until a
cycle with K edges, K < N, is created, or the degree of any vertex exceeds two [7].

3.4 Nearest Addition (NA)

The fundamental idea of NA is to start with an initial subtour made of the shortest
edge and to add repeatedly other vertices which are the closest to the vertices being
already in the cycle. It should be noted that insertion place is not specially
calculated. It is always added after the nearest vertex in the cycle. Algorithm is
terminated when all vertices are used and inserted in the tour.

3.5 Nearest Insertion (NI), Cheapest Insertion (Cl), Farthest
Insertion (FI), Arbitrary Insertion (Al), Nearest Segment
Insertion (NSI)

The start step of these algorithms is similar to NA (except for FI, where the longest

edge is found). Next, other vertices are added repeatedly using various rules.

Depending on the algorithm the vertex not yet in the cycle should be inserted so

that:

e In NIl itis the closest to any node in the tour;

e In Cl its addition to the tour gives a minor increment of its length;

e InFlitis the farthest to any node in the cycle;

e IN Al itis the random vertex not yet in the cycle;

e In NSI distance between the node and any edge in the tour is minimal.

The previous step should be repeated until all vertices are added to the cycle.

The feature of these methods is additional computation that selects the best place for
each inserting node [6] [8].

3.6 Double Minimum Spanning Tree (DMST)

DMST method is based on the construction of a minimal spanning tree (MST) from
the set of all vertices. After MST is built, the edges are doubled in order to obtain an
Eulerian cycle, containing each vertex at least once. Finally, a Hamiltonian circuit is
made from an Eulerian circuit by sequential (or greedy) removing occurrences of
each node [9].

126

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

3.7 Double Minimum Spanning Tree Modified (DMST-M)

This algorithm is a modification of DMST. Unlike DMST, it is necessary to remove
duplicate nodes from an Eulerian cycle using triangle inequality instead of greedy
method.

3.8 Christofides (CHR)

This method is a modification of DMST that was proposed by Christofides [10].
The difference between CHR and DMST is addition of minimum weight matching
calculation to the first algorithm.

3.9 Moore Curve (MC)

This is a recursive geometric method. Vertices are sorted by the order they are
located on the plane. Only the two-dimensional example of Moore curve is
implemented [11]. Figure 1 shows the order of the cells after one, two and three
subdivision steps respectively [11].

I LI LT 1

L_I LI l_J
L - I"I mlirm I"l
—I r 1 I L 1|
J L_ I | I |
[L] e [_1
= | | e

Fig. 1. The order for the Moore curve after 1, 2 and 3 subdivision steps

3.10 Sierpinski Curve (SC)

This algorithm is also included in the family of Space-Filling Curves combinatorial
algorithms as MC. SC is more symmetric than MC [12]. Figure 2 shows the order of
the cells after one, two and three subdivision steps respectively.

Fig. 2. The order for the Sierpinski curve after 1, 2 and 3 subdivision steps

3.11 2-Opt

The main idea behind 2-Opt is to take a tour that has one or more self-intersections
and to remove them repeatedly. In mathematical terms, edges ab and cd should be

127

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

deleted and new edges ac and bd should be inserted, if d(a,b) + d(c,d) >
d(a,c) +d(b,d) [13].

a c a C
2-Opt
d b 9,

Fig. 3. 2-Opt modification

3.12 Helsgaun’s Lin and Kernighan Heuristic (LKH)
LKH uses the principle of 2-Opt algorithm and generalizes it. In this heuristic, the

k-Opt, where k = 2..+/N, is applied, so the switches of two or more edges are made
in order to improve the tour. This method is adaptive, so decision about how many
edges should be replaced is taken at each step [14].

It should be noted that because of complexity of LKH algorithm, it was not
implemented by the authors of research. The original open source code [15] was
used to carry out experiments. All the parameters were not changed, so they were
used by default.

3.13 Quick Combinatorial Artificial Bee Colony (QCABC).

This is one of the Swarm Intelligence methods, which is based on colony of bees.
Algorithm suggests that all agents are divided into the three groups: scout bees
(looking for new random solutions), employed bees (keeping information and
sharing it) and onlooker bees (choosing the solution to explore) [16].

3.14 Estimates

f(s)
f TSO).
According to [1], for any k-Opt algorithm, where k < N/4, problems may be
constructed such that the error is almost 100%. So 2-Opt and LKH algorithms have
approximate upper bound 2. Upper-bound estimates and running times of the
algorithms are represented in Table 1.

Estimated upper bounds for the algorithms can be calculated as are the ratio o

128

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

Table 1. Upper-bound estimates and running time of algorithms

Algorithm Upper-bound estimate Running time
1 NN
5 DENN 0.5[log, N + 1] O(N?)
3 GRD O(N?logN)
4 NA o)
5 NI
6 Cl O(N?logN)
7 Fl 2
8 Al 27N
9 NSI O(N?)
10 DMST
11 DMST-M
12 CHR 3.1 O(N®)

2 N
13 2-Opt O(N?%)
14 LKH 2 O(N??)
15 MC
6 sC log N O(NlogN)
17 qCABC ? 0(N?)

4. Experimental research

This section documents details of the research methodology. The experiment is
carried out on a 1.3 GHz Intel Core i5 MacBook Air. It includes the qualitative
performance and the run time efficiency of the current implementations.

Heuristics are implemented in C++. Two types of data bases from an open library
TSPLIB are selected. The first one is VLSI data sets [3]. There are 102 instances in
the VLSI collection that range in size from 131 vertices up to 744,710 vertices. All
of these instances are tested. The first dataset is National TSPs, which includes 25
instances that vary from 29 to 71009 points [4].

There is one data set for each number of vertices for all input data. The integer
Euclidean metric distance is used, so coordinates of nodes and distances between
them have integer values. The distance d between some nodes v and w is calculated
as follows:

d(w,w) = [Ix@) = x> + [y(w) —yW) [+ 05|
The computational experiment corresponds to the following scenario:

Input: Algorithms, input datasets (VLSI Data Sets, National TSPs)
foreach tour construction and composite algorithm m
foreach tour improving algorithm m’
foreach dataset type DT from input datasets
foreach dataset D form DT

A WN R

129

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

for i € {1..11} // tour construction stage
solution s = run algorithm m on D
if (1 > 1)
calculate f;(m,D), f,(m,D)
calculate f, . (m,D)
remember best solution s,
calculate o3} f;,(m, D))

calculate f,, (mD) = f—fl(m'D)+"1':ff1°(m'D)
if (m is composite) continue
for i € {1..11} // improvement stage on s,

solution s = run algorithm m’ on D

if (1> 1)

calculate f;(so +m',D), f;(so+m'D)

calculate f, . (so+m,D)
calculate o3} f;,(so +m', D))
calculate fta,,g(so"‘mI:D) :ft1(50+m ,D)+~1-(-)+-ft1u(50+m D)
calculate E(f;,,(mD)), E(fe,,.(5+m’D)) for all D
calculate a(fgmm(m,D)), a(fgmm(so+m’,D)) for all D
calculate max (f;mm(m,D)), max (fgmin(so+m’,D)) for all D

calculate min (f;mm(m,D)), min (fgmin(so+m’,D)) for all D

Fig. 3. Computational scenario

Metrics used in scenario have following meanings:

fe,(m, D) — qualitative performance of m (one iteration),

ft,(m, D) — running time of m (one iteration),

fermin Ms N) — best qualitative performance of m,

ftavg (m, N) — average running time of m (sec),

0(2321 ft,(m, D)) — standard deviation of running time estimates through
10 iterative runs,

E (fermin M N)) — expected value of qualitative performance of m for
one DT,

o (fgmin (m, N)) — standard deviation of qualitative performance of m for
one DT,

max (fgmin (m, N)) ,min (fgmm(m, N)) — maximum and minimum
values of qualitative performance of m for one DT.

Qualitative performance metrics are represented in Table 2. Table color scheme
varies from green (the best result in a column) to red (the worst value in a column).

130

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

Table 2. Running time of algorithms

Algorithms E(f,) max f, min f, o(fe)

LKH 0,08% 0,23% 0,00% 0,07%
CHR + 2-Opt 6,14% 12,14% 3,47% 1,59%
GRD + 2-Opt 6,79% 10,82% 4,69% 1,57%
DENN + 2-Opt 11,06% 22,26% 4,39% 5,30%
NN + 2-Opt 11,89% 24,91% 3,90% 2,36%
CHR 12,60% 16,82% 9,31% 1,41%
Cl + 2-Opt 13,04% 21,86% 6,74% 2,83%
NI + 2-Opt 14,60% 29,66% 5,86% 6,33%
DMST-M + 2-Opt 16,08% 35,78% 4,80% 9,29%
GRD 17,31% 31,34% 10,30% 3,83%
NSI + 2-Opt 17,63% 33,65% 8,92% 6,87%
DMST + 2-Opt 19,08% 39,12% 6,91% 10,52%
Cl 20,28% 25,05% 12,46% 1,96%
DENN 22,82% 33,38% 11,97% 2,47%
NN 25,38% 32,68% 13,94% 2,62%
NA + 2-Opt 27,04% 57,90% 6,79% 17,84%
NI 28,07% 35,29% 14,89% 2,87%
FI + 2-Opt 28,90% 58,05% 4,01% 17,68%
DMST-M 32,46% 41,68% 18,55% 4,32%
SC + 2-Opt 36,20% | 166,45% 8,11% 31,69%
NSI 36,23% 48,17% 19,15% 5,46%
MC + 2-Opt 36,47% | 177,83% 6,21% 39,70%
DMST 40,09% 48,88% 33,16% 3,07%
Al + 2-Opt 50,23% 77,85% 5,26% 23,43%
NA 51,30% 59,23% 35,38% 4,67%
Fl 56,88% 66,09% 31,59% 5,98%
MC 64,49% | 242,41% 33,07% 41,08%
SC 66,16% | 246,64% 30,76% 42,13%
Al 85,20% | 100,92% 65,78% 6,81%

The time limit on algorithm’s running time is introduced. It is 11 800 seconds = 3
hours and 20 minutes, at the maximum. That means computational time for one
experiment cannot exceed 11 800 seconds * 11 runs ~ 36 hours ~ 1.5 days.

5. Results

Experimental results showed that algorithm qCABC takes a large amount of time
(more than ‘the slowest” CHR) and gives improvement in accuracy even less than

131

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

‘the most rough’ 2-Opt. So qCABC as tour improving algorithm is admitted to be
“unviable”.

Running time

16 s====CHR + 2-Opt
14 ==CHR +qCABC
12
=]
210
o
E s
=
6
4
? /_/—/
0
SR D P P @D
N

Number of vertices, N
Fig. 4. Running time comparison of CHR + 2-Opt and CHR + qCABC algorithms.

We decided to select 10 pairs of data sets from VLSI and National TSPs with
similar number of vertices (see Table 3) to plot charts that illustrate Paretos.

Table 3. Pairs of input datasets from VLSI and National TSPs

VLSI National TSP
737 734
z 984 980
é" 1973 1979
B 3386 3496
2 7168 7146
5 10150 9976
3 14233 14185
E 16 928 16 862
z 22 777 22775
33203 33708

The charts for pair with N = 22 775 and N = 22 777 are shown below (see Fig. 5,
Fig. 6, Fig. 7, Fig. 8). The name of each TSPLIB instance is shown in chart title.
The horizontal axis represents the time performance of methods in seconds. The
vertical axis shows the gap between optimal and obtained solutions, expressed in
percent. Pareto-optimal methods are highlighted in red. The points which are
represented by Pareto solutions are bigger than non-Pareto-optimal solutions.

There are two charts (see Fig. 6, Fig. 8) where not all algorithms are compared.
These auxiliary charts are enlarged copies of their originals. Their role is to
graphically illustrate Pareto-optimal algorithms at scale-up.

Results on VLSI Data sets only are reported in more detail in [2].

132

Asyiommmn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalIbHOE HccieaoBanue [Tapeto-
ONTUMAJBHBIX aNrOpUTMOB. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 123-138.

eNA
9% ®NA +2-0pm
SNl
LSB22777 (VLSI) N o
eNSI
ONSI +2-0pt
T s
SO+ 20
FI
60% FI+ 2-0pt
Al
L]
WAL+ 20
S0, = SDMST
. DMST + 2-0pt
R #DMST-M
40% # ® DMST-M + 2-Opt

B0% ¢

» @ NN
30, NN + 2-Opt
@DENN

®DENN + 2-Opt
20% = ®crD

. . SGRD + 201
. ®nc
10% '] 8 MC + 2-0pt
LEN
0% . 8C +2-Om
e CHR
2000 4 000 ﬁDCH.J S000 10000 12000 14000 ®CHR + 2.0pt
Time, sec @LKH

Qualitative performance, %

Fig. 5. Pareto-optimal algorithms for LSB22777.tsp (N = 22777)

90 *NA
LSB22777 (VLSI), not full -
B0
* NSI
TG
ecCI
0% C FI
< s
o5 S0 Al
E ¢’ * DMST
£ 0% . r
2 . * DMST-M
e 300
i - - NN
S @ o N
& a ®DENN
10% ® GRD
0% oNMC
. 10 20 30 40 50
Time, sec *5C

Fig. 6. Pareto-optimal algorithms for LSB22777.tsp (N = 22777), scaled-up

133

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

BNA
WA+ 20pt
VM22775 (National TSP) ~ *¥
J 2
S NEL
60% O NS+ 2-0pt
o
. 8= 2-0pt
50% < Fl
FI+ 2-Opt
Al
ar ¥ ® AL+ 2-0pt
40% T SDMST
DMET = 2-0pt
L ®DMST-M
30% S DMST-M = 2-0pt
NN
: MM + 2-0pt
-)
200 ' .m‘..\.\
M ®DENN < 2-0pt
. ®GRD
B GRD = 2-0pt
10% . ®nc
BMC = 2-0pt
®sc
0 . . S.E' <+ LOpt
0 2000 4000 6000 8000 10000 12000 L% o
Time, sec ®LEH

T0%

Qualitative performance , %
.

Fig. 7. Pareto-optimal algorithms for VM22775.tsp (N = 22775)

70% *NA
VM22775 (National TSP), not full * NI
G0%
’ * NSI
o ® eci
FI
£ e .
g 40% Al
g » * DMST
é 0%
P .® . * DMST-M
: Ve
‘g 20% NN
5 ¢ &
g ®DENN
10%
®GRD
0% ®MC
4] 10 20 30 40 500 }
Time, se¢ ®5C

Fig. 8. Pareto-optimal algorithms for VM22775.tsp (N = 22775), scaled-up

134

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

Pareto-optimal solutions, that can be suggested on the basis of both data sets only,
are shown in Table 4 and they are sorted in the order of increase of running time:

Moore Curve (MC);

Sierpinski Curve (SC) — this algorithm depends on type of input data, so
qualitative performance estimates are unstable;

Nearest Neighbour (NN);

Double Ended Nearest Neighbour (DENN);

Cheapest Insertion (CI) is Pareto-optimal if N < 400000 because of
introduced time limit; if N < 3 500 CI’s behavior fluctuates;

Greedy (GRD) — is Pareto-optimal if N < 30 000 because of memory

limits — w pairs of edges are needed to be kept simultaneously ;

Cheapest Insertion and 2-Opt (Cl + 2-Opt) — is Pareto-optimal if
30000 = N <100000;

Greedy and 2-Opt (GRD + 2-Opt) — is Pareto-optimal if N < 800;
Christofides (CHR) — is Pareto-optimal if N < 2 000;

Helsgaun’s Lin and Kernighan Heuristic (LKH) — this algorithm works

excellent if N < 55 000, however if input data size exceeds 55 000 than
time limit is met.

Table 4. Pairs of input datasets from VLSI and National TSPs

Algorithm Number of vertices, N (thousands)

(0;0.8) | [0.8;2) | [2;3.5) | [3.5;30) | [30; 55) | [55; 100) | [100; 400) | [400; 700)
MC + + + + + + i +
SC + + + + + + + +
NN + + + + + + + +
DENN + + + + + + + +
Cl + + + hts s 5 il
GRD s s i s
Cl +2-Opt T T
GRD + 2-Opt +
CHR + b
LKH + + + + +

The “+” sign means that the algorithm in the same row is supposed to be Pareto-
optimal at the range of vertices defined in the same column. The “+” sign shows
that experiments did not clearly define if it is Pareto-optimal or not.

6. Conclusion

The presented study is undertaken to determine what heuristics for Metric TSP
should be used in specific circumstances with limited resources.

This paper provides an overview of seventeen heuristic algorithms implemented in
C++ and tested on both the VLSI data set and instances of National TSPs. In the

135

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

course of computational experiments, the comparative figures are obtained and on
their basis multi-objective optimization is provided. Overall, the group of Pareto-
optimal algorithms for different N consists of some of the MC, SC, NN, DENN, ClI,
GRD, CI + 2-Opt, GRD + 2-Opt, CHR and LKH heuristics.

In our future work, we are going to fine-tune parameters of LKH method using
genetic algorithms of search optimization. Further, it is possible to increase the
number of heuristic algorithms, to transit to other types of test data and to conduct
experiments using different metrics in order to ensure that a Pareto optimal group is
sustainable.

The practical applicability of our findings is to present Pareto optimal algorithms
that lead to solutions with maximum accuracy under the given resource limitations.
The results can be used for scientific purposes by other researchers and for cost
minimization tasks.

References

[1]. Applegate, D., Bixby, R., Chvatal, V., Cook, W. The Traveling Salesman Problem: A
Computational Study, Princeton: Princeton University Press, 2011.

[2]. Beresneva (Chirkova), E.N., Avdoshin, S.M. Pareto-optimal Algorithms for Metric TSP:
Experimental Research. International Journal of Open Information Technologies , vol. 5,
Ne 5, pp. 16-24, 2017, ISSN: 2307-8162.

[3]. Department of Combinatorics and Optimization at the University of Waterloo. Status of
VLSl Data Sets. University of Waterloo (web-site). Available at:
http://www.math.uwaterloo.ca/tsp/visi/summary.html, accessed 29.04.2017.

[4]. University of Waterloo. National Travelling Salesman Problems. UWaterloo, (web-site).
Available at: http://www.math.uwaterloo.ca/tsp/world/countries.html, accessed
16.04.2017.

[5]. Flood, M.M. The traveling-salesman problem. Operation research, vol. 4, pp. 61-75,
1956.

[6]. Rosenkrantz, D. Stearns, R., Lewis Il, P. An analysis of several heuristics for the
traveling salesman problem, vol. 6, pp. 563-581, 1977.

[7]. Cook, W.J. Combinatorial optimization, New York: Wiley, 1998.

[8]. Hahsler, M., Hornik, K. TSP — Infrastructure for the Traveling Salesperson Problem,
vol. 23, Ne 2, 2007.

[9]. Christofides, N. Graph theory — An Algorithmic Approach, New York: Academic
Press, 1974.

[10]. Christofides, N. Worst-case analysis of a new heuristic for the travelling salesman
problem. Graduate School of Industrial Administration, CMU, 1976.

[11]. Buchin, K. Space-Filling Curves. Organizing Points Sets: Space-Filling Curves,
Delaunay Tessellations of Random Point Sets, and Flow Complexes, Berlin, Free
University of Berlin, 2007, pp. 5-30.

[12]. Bartholdi, J., Platzman, L., Collins R., Warden, W. A Minimal Technology Routing
System for Meals on Wheels, vol. 13, Ne 3, pp. 1-8, 1983.

[13]. Aarts, E., Lenstra, J. Local Search in Combinatorial Optimization, Princeton, New
Jersey: Princeton University Press, 2003.

136

http://www.math.uwaterloo.ca/tsp/vlsi/summary.html
http://www.math.uwaterloo.ca/tsp/world/countries.html

Asyiommn C.M., BepecHea E.H. Merpudeckas 3aaua KOMMHBOSDKEpa: SKCIIEpUMEHTalbHOE uccnenoBanue [lapeto-
ONTUMANBHBIX arOpuUTMOB. Tpyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 123-138.

[14]. Helsgaun, K. An effective implementation of the Lin—Kernighan traveling salesman
heuristic, EJOR, vol. 12, pp. 106-130, 2000.

[15]. Helsgaun, K. LKH (web-site). Available at:
http://www.akira.ruc.dk/~keld/research/LKH, accessed 24.02.2017.

[16]. Gorkemli, B., Karaboga, D. Quick Combinatorial Artificial Bee Colony -qCABC-
Optimization Algorithm for TSP, vol. 1, Ne 5, 2013.

MeTqueCKaﬂ 3agavdya KOMMuBosixKepa.
JKCnepumMmeHTanbHoOe uccrnegoBaHue I'IapeTo-
onTUMalibHbIX anNropuTmMoB

C.M. Agoowun <savdoshin@hse.ru>
E.H. Bepecnesa <katrinberesneva@yandex.ru>
Jenapmamenm npoepammuou undceHepuu,
Hayuonanvnolii uccneoosamenvckuti ynugepcumem “Buvicwas wikona skonomuxu”,
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20.

AHHOTanMs. 3agadya KOMMHBOSDKEpa — OJHA W3 BaXHEHIINX 3amad Teopudu TrpadoB U
KOMOWHATOPHOM ONTHMHU3AIIMH, CYTh KOTOPOU COCTOUT B HAXOXKICHHH FaMUJIBTOHOBA IUKJIA
HavMeHbIeH JUIMHBL Pa3paboTka METONOB IS pPEHICHUS 3a7adydl KOMMHBOSIKEpa
OCYIIECTBIIACTCS Ha MPOTSHKCHHH MHOTHX JIET, W, MO-TIPSKHEMY, OCTAeTCS aKTYaIbHOM,
MOCKOJIbKY 3amada siBisercss NP-TpymHoi. PelieHHs NpPUMEHSIOTCS, B OCHOBHOM, ISt
MHUHAMH3AIAH TPOU3BOACTBCHHBIX M JIOTHCTHYECKHX 3aTparT W u3Iepkek. B pabore
paccMatpuBaeTCs YacTHBIA caydail OOIIel MOCTAaHOBKH 3a1aud KOMMHUBOSDKEpA, B KOTOPOM
BBITNOJIHAETCS. CBOMCTBO METPUKU — METpUUecKas 3ajadya KOMMHUBOsDKepa. Llenpio manHoM
paboTel sBIsIETCA oOmpenereHHe Tpynnsl [lapeTo ONTHMaNbHBIX aNTOPUTMOB PEUICHUS
METPHUYECKOH 3a1a4i KOMMHBOSDKEpPa M0 KPUTEPHSIM BPEMEHH PaObOTHl M TOYHOCTH PEIICHUS
B XOJIe DKCHEPUMEHTAILHOIO HCCENoBaHUsA. B CBS3UM ¢ TeM, 4TO 3ajadya KOMMHBOSDKEpA
spisiercsi NP-TpynmHO#H, B paboTe pacCMaTpUBAKOTCSA TOJBKO 3BPUCTHYECKHE AITOPHTMBI,
MO3BOJIAIONINE TIONYYHTh TMPUOIMKCHHBIC PEIICHHs 3a TMOJMHOMHAIbHOE BpeMs. B crathe
MPEJICTABIEHO KpPaTKOE OIMUCAHHE HCIOJIb3YEMbIX alTOPUTMOB PEUICHUS METPUUYECKON
3aMaud KOMMHUBOSDKEpa, yKa3aHbl HMX AamnpHOPHBIE TOYHOCTHBIE M BpPEMEHHBIC OIIEHKH.
IIpuBeneno ommcanne TIaHA OKCIEpUMEHTa. JIaHHBIMH IS OKCIIEPUMEHTAIBHOTO
WCCIICIOBAHUS TIOCTY KU 1Ba HA0OpA U3 OTKPBHITON OMOIMOTEKH NAHHBIX JJISI METPUIECKOU
3alaud KOMMHBOSKEPA, OCHOBAHHBIE Ha BBICOKO-WHTETPABHBIX BBIYHCIUTENBHBIX CXEMax
(VLS| Data Sets) u reorpaduueckux KoopauHaTax (BbICOTE W UIMPOTE) TOPOJOB B
pasmuunbix crpanax (National TSPs). B pesynbrare vcciieoBaHn BbISBIEHBI ONITUMAIIBLHbIE
no [Tapero anroput™msl A1 HAOOPOB AAHHBIX Pa3IUYHBIX pazmepHocTedt — 110 700 ThICSY
BepiuH. [kaxmoro N B umcio [TapeTo-onTHMAaIbHBIX aITOPUTMOB BXOIAT HEKOTOPBIC U3
airoputMoB MC, SC, NN, DENN, CI, GRD, CI + 2-Opt, GRD + 2-Opt, CHR u LKH.
[IpuBenena Tabnuia, coaepixarias HHPOPMAIHIO O Pe3yNIbTaTax IKCIIEPUMEHTOB.

KinroudeBble ci0Ba: MeTpuueckass 3ajada KOMMUBOSDKEpa, 3BPUCTUUECKHH allOPUTM,
ontuManbHOCTH 10 [Tapero.

DOI: 10.15514/ISPRAS-2017-29(4)-8

137

http://www.akira.ruc.dk/~keld/research/LKH

Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 123-138.

Ja nutuposanus: Asgomun C.M., bepecnesa E.H. Merpuueckas 3ajaua KOMMUBOSDKEpa!
JKCIIepHIMEHTaIbHOE HcclienoBanue [lapero-onTuManbHbIX anroputMoB. Ipyoer MCII PAH,
tom 29, Beim. 4, 2017 r. ctp. 123-138 (na anrsmiickom s3bike). DOI: 10.15514/ISPRAS-2017-
29(4)-8

Cnucok nutepaTtypbl

[1].
[2].

(3]

[4].

[5].
[6].

[7].
(8].

[a].
[10].

[11].

[12].
[13].
[14].
[15].

[16].

138

Applegate, D., Bixby, R., Chvatal, V., Cook, W. The Traveling Salesman Problem: A
Computational Study, Princeton: Princeton University Press, 2011.

Beresneva (Chirkova), E.N., Avdoshin, S.M. Pareto-optimal Algorithms for Metric TSP:
Experimental Research. International Journal of Open Information Technologies , 5, Ne
5, pp. 16-24, 2017, ISSN: 2307-8162.

Department of Combinatorics and Optimization at the University of Waterloo. Status of
VLS| Data Sets. University of Waterloo (web-site). octymHo mo ccbuike:
http://www.math.uwaterloo.ca/tsp/visi/summary.html, mara o6pamenus 29.04.2017.
University of Waterloo. National Travelling Salesman Problems. UWaterloo, (web-site).
Hocrynro mo cceuike: http://www.math.uwaterloo.ca/tsp/world/countries.html, nara
obpamienus 16.04.2017.

Flood, M.M. The traveling-salesman problem. Operation research, vol. 4, pp. 61-75,
1956.

Rosenkrantz, D. Stearns, R., Lewis II, P. An analysis of several heuristics for the
traveling salesman problem, 6, pp. 563-581, 1977.

Cook, W.J. Combinatorial optimization, New York: Wiley, 1998.

Hahsler, M., Hornik, K. TSP — Infrastructure for the Traveling Salesperson Problem,
23, Ne 2,2007.

Christofides, N. Graph theory — An Algorithmic Approach, New York: Academic
Press, 1974.

Christofides, N. Worst-case analysis of a new heuristic for the travelling salesman
problem. Graduate School of Industrial Administration, CMU, 1976.

Buchin, K. Space-Filling Curves. Organizing Points Sets: Space-Filling Curves,
Delaunay Tessellations of Random Point Sets, and Flow Complexes, Berlin, Free
University of Berlin, 2007, pp. 5-30.

Bartholdi, J., Platzman, L., Collins R., Warden, W. A Minimal Technology Routing
System for Meals on Wheels, 13, Ne 3, pp. 1-8, 1983.

Aarts, E., Lenstra, J. Local Search in Combinatorial Optimization, Princeton, New
Jersey: Princeton University Press, 2003.

Helsgaun, K. An effective implementation of the Lin—Kernighan traveling salesman
heuristic, EJOR, 12, pp. 106-130, 2000.

Helsgaun, K. LKH (web-site). JoctymHo o CCBIIKE:
http://www.akira.ruc.dk/~keld/research/LKH, narta o6pamenus 24.02.2017.

Gorkemli, B., Karaboga, D. Quick Combinatorial Artificial Bee Colony -qCABC-
Optimization Algorithm for TSP, 1, Ne 5, 2013.

http://www.math.uwaterloo.ca/tsp/vlsi/summary.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.akira.ruc.dk/~keld/research/LKH

MvuHuMM3auma aBToMaToB C TaVIMGYTaMVI n
BpeéMeéHHbIMU OorpaHn4YeHnAMHm

A.C. Teapoosckuii <tvardal@mail.ru>
H.B. Eemywenxo <nyevtush@gmail.com>
M.JI. I'pomos <maxim.leo.gromov@gmail.com>
Hayuonanvnutii uccnedosamensvckutl ToMcKuil 20Cy0apcmeentulil yHusepcumen,
634050, Poccus, e. Tomck, np. Jlenuna, 36

AnHotanus. KoHeuHble aBTOMAaThl MIMPOKO HCIONB3YIOTCS Ul aHalk3a M CHHTE3a
YIOPaBIAIOMUX CUCTEM. [IpH ommcaHuu CHCTEM, MOBEICHHE KOTOPHIX 3aBHCUT OT BPEMEHH,
KOHEYHBI aBTOMAT pacUIMPSETCS BBEICHHEM BPEMEHHBIX ACIEKTOB W BBOIUTCS IOHSATHE
BPEMEHHOT'0 aBTOMara. B HacTosmeil pabore MBI paccMaTpuBaeM MpoOJieMy MUHHMHU3AIHH
aBTOMATOB C TaliMayTaMyd U BPEMEHHBIMH OI'PaHUYEHUSIMHU, TIOCKOJIBKY CI0XKHOCTH MHOTHX
3a/1a4 B TEOPUH aBTOMATOB CYIIECTBEHHO 3aBHUCHUT OT Pa3MEpPOB HCCIIEAYEMOW CHCTEMBI.
TloBeneHne BpPEeMEHHOTO0 aBTOMaTa MOXKET OBITh JOCTATOYHO TOYHO OIHCAHO
COOTBETCTBYIOIIMM KOHEYHBIM aBTOMATOM, M MpeIUlaraéMblii METOJ MUHHUMM3ALUN YHUCIIa
COCTOSIHMI CHCTEMBI OCHOBAaH Ha HMCIOJb30BAHUU TaKOH KOHEYHO aBTOMATHOH aOCTpaKLUH.
Bonee toro, mamee Mpl MHHUMHU3UpPYEM H BPEMCHHBIC aclEKTHl aBTOMATHOTO OIHCAHWS,
COKpamas TpPOJOJDKUTENBHOCTh TalMayTOB M YHCIO TEPEXOAO0B C BPEMEHHBIMH
OTpaHMYCHHSMH. MBI TarKke TIIOKa3blBaEM, YTO [UIA TIOJHOCTHIO ONPEAEIEHHOTO
JIETEPMUHUPOBAHHOTO BPEMEHHOI'O aBTOMaTa CYLIECTBYET €IMHCTBEHHAss MHHUMAaJbHas
(kaHOHMYHAs) (OpMa, T. €. CAUHCTBEHHBIN MPUBCAEHHBIA MO COCTOSHHSAM W BPEMCHHBIM
acreKTaM aBTOMAaT ¢ TakMayTaMH W BPEMEHHBIMH OTPAHUYEHHUSMH, MOBEIEHHE KOTOPOIo
COBIIAJIaCT C HMCXOJHBIM BPEMCHHBIM aBTOMATOM; HANpHMEp, Takas MHHUMalbHas (opma
MOXeET OBITh HCIHOJB30BaHA IIPH IOCTPOCHUHM MPOBEPSIOMINX TECTOB UL TPOBEPKH
(YyHKOMOHANBHBIX M HE(QYHKIMOHAJIBHBIX TPeOOBAaHMK K TECTHPYEMOH pealn3allim.
IIpemtoxkenHpIii METOH K MHHUMH3AIMH BpPEMEHHBIX AacleKTOB Ha OCHOBE KOHEYHO
ABTOMATHOU aOCTPaKIH MOKET OBITh IPUMEHEH M [T YaCTHBIX CITy4acB pacCMaTpHUBACMON
MOJENIM, T. €. [MHUHUMH3AUUH JCTEPMHUHHUPOBAHHBIX TIOJIHOCTBIO OINPEAEICHHBIX
AaBTOMATOB TOJIBKO C TaliMayTaMH WU TOJIBKO C BPEMEHHBIMU OTPAaHWYCHUSIMH.

KimoueBble c10Ba: BpeMEHHBIC aBTOMATHI; MPUBEASHHAs (hopMa; MUHUMAaJbHAS opma
DOI: 10.15514/ISPRAS-2017-29(4)-8

Jns nurtupoBanus: Tsapmosckuit A.C., Esrymenko H.B., I'pomoB M.JI. MunumMusanus
aBTOMATOB C TaliMayTaMH U BPEMEHHBIMU orpaHudeHusMu. Ipyov: UCI1 PAH, Tom 29, BbIIL.
4, 2017 r., ctp. 139-154. DOI: 10.15514/ISPRAS-2017-29(4)-8

139

mailto:evtush@gmail.com

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

1. BeedeHue

KoneuyHo-aBTOMaTHBIE MOJETN LIMPOKO HCIIONB3YIOTCS IIPH aHANIN3E M CHHTE3C
JMCKpETHBIX cucteM [1, 2], B YacTHOCTM TIpH peATH3alMd KOMIOHEHT
yrpasstonmx cucreM [3, 4, 5], mpuueM CIIOKHOCTb PEIICHHAS MHOTHX 3a7ad
TEOPHUHU aBTOMATOB CYIIECTBEHHO 3aBHCHUT OT YHCJIA COCTOSHHH PaccMaTpHUBAEMOTO
aBTOMara. bosee TOro, MHOTHE aNrOPUTMBI CHHTE3a TECTOB C rapaHTHPOBAHHOM
nomHoTOM [2, 6, 7, 8] IA IHMCKPETHBIX CHCTEM pa3pabOTaHBl TONBKO JUIS
NPUBEIEHHBIX aBTOMAaTOB, T.€. aBTOMAaTOB, B KOTOPBIX JII00as Mapa COCTOSIHUIA
paznuuuMa.

IIpn paccMOTpEeHHMH COBPEMEHHBIX CHCTEM YacTO IPUXOTUTCS yIUTHIBATH
BpPEMEHHBIC aCIEKThl B WX MOBEJCHHH, U COOTBETCTBEHHO, MOHITHE KOHEYHOTO
aBTOMaTa pacIIUpseTCs] BBEJCHUEM BPEMEHHBIX nepeMeHHbIX [7, 9, 10]. M3BecTHbI
pas3nuyHbIe croco0b! J00aBJICHHST BPEMEHHBIX IIEPEMEHHBIX B ONHMCaHKE IU(POBBIX
KOMIIOHCHTOB, IMOBEACHUEC KOTOPLIX OIMMCBIBACTCA KOHCUHBIMH aBTOMaTaMu. B
HacTosIel paboTe MBI pacCMaTpUBacM aBTOMAThI C TalilMayTaMH M BPEMEHHBIMHU
orpannyeHusmu [10], xoTopsie ABISIFOTCS 0OOOLICHHEM AaBTOMATOB TONBKO C
TalfiMayTaMu M TOJIbKO C BpeMEHHBIMU orpanuueHusmu [11, 12].

Mpu1 npeajiaracm METO MHUHUMMH3AIIUU JACTCPMUHUPOBAHHOTO IIOJIHOCTBIO
OIpEJIeJICHHOT0 BPEMEHHOI'0 aBTOMaTa, HUCIOJB3ys, NomoOHO [1], pa3Ouenue
MHOXXECTBA COCTOSHMH aBTOMara II0 OTHOIIGHHIO SKBHBaJeHTHOCTH. Ilo
OTIPEZICTICHUIO, COCTOSIHHS SKBHBAJICHTHBI, €CIIM aBTOMAT B 3THUX COCTOSHHUSAX MMEET
OJIHY H Ty K€ BBIXOJHYIO PEaKIHIO Ha 000 BXOIHYIO IOCIEI0BATEIbHOCTD. MBI
BBOJIMIM KJIACC IPUBEJCHHBIX II0 COCTOSHHUSAMH W BPEMEHHBIM aCIEKTaM aBTOMATOB
C TaliMayTaMHM W BPEMEHHBIMH OTPAaHWYEHHSIMH, M TIIOKa3bIBAa€M, 4YTO TaKas
MHUHUMaJIbHAsT (GopMma SIBISIETCS €IMHCTBEHHOH C TOYHOCTBIO 10 HM30MOpdusma.
[Toctpoerne MHUHUMANBLHOW (OPMBI OCHOBAaHO HAa CHEMUATBHOH KOHEYHO
AaBTOMATHO# aOCTpaKIMM, KOTOpas COXPAaHSET IOCJeI0BATeIbHOCTHBIE CBOWCTBA
BpeMeHHOro apromara. CTpykrypa pabOoTel cienyromias. Pasmen 2 comepxuT
OCHOBHbIE OIpejesieHnsl 1 0003HaueHus. B pasznene 3 paccMarpuBaeTcsi ajlropuTM
MOCTPOCHUS KOHEYHO aBTOMATHOM aOcTpakimu U obcyxknmatorcs e€ cBoiictBa. B
paznene 4 mpeACTaBICH IPEUIOKEHHBIH ANTOPUTM MHHHUMM3AIMHA COCTOSHUH
JIETEPMUHUPOBAHHOTO TIOJIHOCTBIO OIPENICNICHHOTO aBTOMara ¢ TaiMayTaMu |
BpPEMEHHBIMH OTpaHHYECHUSIMH. B pazzerne 5 npeanaraercst anropuTM MUHAMH3ALUH
BPEMEHHBIX aCIEKTOB aBTOMaTa ¢ TaiMayTaMH M BPEMEHHBIMH OTPaHWYCHHUSIMH U
MOKAa3bIBACTCS, YTO MUHUMaIbHast (popma JuIs TaKoi MOJIEIN BPEMEHHOTO aBTOMAaTa
€/INHCTBEHHA.

2. OcHoeHbIe onpedesieHUss u 0603HavYeHus1

Tox xoneunvim asmomamom nonumaercs dersépka S = (S, I, O, hs), tae | —
MHOKECTBO BXOJIHBIX CHMBOJIOB, O — MmHOJICECMBO 6bIXOOHBIX CUMBON0E, S —
KOHEYHOE HEIyCcToe MHOXeCTBO cocmosnuil, hs < (S x | x O x S) — omnowenue
nepexodos. COOTBETCTBEHHO, KOPTEX (S, i, 0, S') ONMCBHIBAET MEPEXO/] U3 COCTOSIHUS

140

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

S B CoCTOsHHE S' TIOX JCHCTBHEM BXOTHOTO CHMBOJA | C BBIJAa4eil BBIXOIHOTO
cumBosia 0. [lociemoBaTeNbHOCTh MMAp BXOIHOW CHMBOJI/BBIXOJHONW CHMBOI
Ha3bIBACTCsI BXOJI0-BBIXOIHOM MOCIIEI0BATENFHOCTRIO M 0003HaUaeTcs oy, rae o —
BXOJIHAsI [IOCJICIOBATENILHOCTD, M Y — BBIXO/IHASI IOCJIEI0BATEILHOCTb.

Mon asmomamom ¢ maimaymamu u 6peMEHHbIMU OZPAHUYEHUSIMU TOHHUMACTCS
marepka S = (I, S, O, hs, Ag), tae | — Bxoanoii andasur, O — BeIXogHOM andaBut, S
— KOHEYHOE HEMyCTOe MHOXeCTBO coctosuuid, hs < (S x | x O x S x [T x Z*) —
oTHOIIEeHHe mnepexonoB, As: S — S x (N U {»}) — bynkuus maiimayma,
ompeenstomas Uil KaXIOTO COCTOSHHUS MaKCUMaJbHOC BpeMs OXHAAHHS
BXOJHOTO cHMBOJIa, N — MHOXECTBO HATypalbHbIX uuces, [/ — MHOXECTBO
uHTepBaioB u3 npomexytka [0; T) suma (a, b), rme (€ {[,(},) € {1)}, T ectms
TaiiMayT B TEKYIIEM COCTOSHHH W Z+t — MHOXECTBO WEJbIX HEOTPHLATEIBHBIX
uncen. CooTBeTCTBEHHO, Kopmedic (S, i, 0, S, ¢, d) omuceiBaeT mepexon wu3
COCTOSIHHS S B COCTOSIHHE S' 1TOJ] ISHCTBHEM BXOJHOTO CHMBOJIA |, IOCTYIHBIIETO B
MOMEHT Bpemenu t, t € (, mocie mepexona aBTOMara B TEKYLIEE COCTOSHUE C
BBIZIaueii BBIXOJHOTO CHMBOJIa O depe3 O TaKTOB BpPEMEHH IOCJIE MOCTYIUICHHS
BXOJHOrO cuMBona. Muorma Bpemsi d 00pabOTKM BXOJHOTO CHMBOJIA HA3bIBAIOT
BbIXOOHBIM MAUMAYMOM WU 8pemeHem 3adepoicku. ECI B HEKOTOPOM COCTOSTHHU
aBTOMAaTa BXOJHOW CHTHAJ HE MOCTYMaeT B TEUCHHE OMPEICICHHOTO BPEMECHH,
KOTOPBIil TpeBbImiaeT (BXOJHON) TaliMayT B TEKYIIEM COCTOSHHH, TO aBTOMAT
MOKET U3MEHUTh CBOE cocrosinue. Hanpumep, ecnu Ag(S) = (S', T) u B cocTosiHIH
S B TeueHHWEe | eIUHHI] BPEMEHH Ha aBTOMAT He ObUIO MOJAHO HU OJHOTO
BXOJIHOTO CHMBOJIa, TO aBTOMAT MEPEXOIUT B cocTossHue S'. Jlns Talimayta Buaa
As(S) = (S', ®) cnpaBemmuBo, uro S=S'. [locie mepexoma B COCTOSHUE S' IO
BXOJIHOMY CHMBOJIy JHOO TaiiMayTy oTcuer Bpemenu Haumnaetrcs ¢ 0. Ecmm
S=+s', To mocime JOCTI)KEHHs TaliMayTa B COCTOSHHH S OTCYET BpPEMEHHU
HaunHaetcs ¢ 0. Oyukuus time(s, t) = §' [7] onpenensier, B KaKoM COCTOSIHUH S'
HAXOMUTCSI ABTOMAT uepe3 | TaKTOB BPEMEHH, MPU YCIOBHHU, YTO BXOJHOW CHMBOII
He ObUI MOJaH B TEUEHHE 3TOTr0 BpemeHH. JIyisi BpeMEeHHOro aBromara S uepes B
O6yneM 0603HauaTh HAMOOJBIIYI0O KOHEUHYIO I'PAaHUILY AJISI BpEMEHHBIX HHTEPBAJOB,
KOTOpast COBIAJIAaeT ¢ MAKCUMAIIbHOM BEIMYMHOM BXOIHOTO TaiiMayTa.

Bpemennvim 6xoonvim cumsonom HaspiBaetcs mapa (i, t), rae i — CHMBOI BXOIHOTO
andasuta, t — BpeMsi TTOCTYILUICHUSI BXOJHOTO CHMBOJIA MOCIE BBIJAYH ABTOMATOM
MOCJIE/THETO BBIXOJHOTO CHMBOJIA. BpeMeHHbIM GbIXOOHbIM CUMBOJIOM HA3BIBACTCS
napa (0, d), rme 0 — cuMBOJ BBIXOJHOTO andaBurta, d — YKCIO EAUHHI] BPEMEHH
MEKIy TMojaueil BXOJHOTO CHMBOJIA M BbIIaueidl BBIXOJHOTO cuMBoOa. Jlist
BPEMEHHOI'O aBTOMaTa S M BXOJHON BpEMEHHOH mocienoBarenbHocT o = (i, ty),
(i3, t) ..., (in, t,) cOOTBETCTBYIONIAs BBIXOIHAS BPEMEHHAS MOCIIEI0BATENBHOCTD Y =
(0, dy), (0y, d2) ..., (On, dn) Ha3bIBaercs (BBIXOOHOW) peakimeir. [Ipu sTOM
NOCIIEeI0BATEIBHOCTD Tap (BPEMEHHOH BXOJHOW CHMBOJ / BPEMEHHOH BBIXOJHOM
CHMBOJI) HA3bIBACTCSl BPEMEHHOU 6X000-8bLIXOOHOU NOCIE008AMENbHOCHbIO W
obozuawaercst afy. Jis HAXOXKIEHUS pEaKIMd BPEMEHHOTO aBTOMAra Ha BXOIHOMN

141

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

BpeMenHoi cumBoi (i,) B cocrosHuM S, cHayana OMpeessieTcsl COCTosHuE S’ =
time(s, t), B KOTOpOM HaXOAUTCS aBTOMAT B MOMEHT BpeMEHH t, ajiee onpeaensercs
nepexon (s', i, o, 5", g, d) Takoii, uto (f — X) € g, e £ ecTh CyMMa TalMayTOB IpH
nepexojax Mo TakMayTaM M3 COCTOSIHUSL § B COCTOSIHHUE §'; COOTBETCTBEHHO, MPH
mozave BXOAHOTO BpeMeHHOro cumBoiia (i, t) B COCTOSHHH S aBTOMAT TPOM3BOIHT
BEIXOAHYIO peaknuio (0, d) u mepexomur B cuemyromee cocrostaue s”. Takum
0o0pa3oM, peakuusi aBTOMara Ha BPEMEHHYIO BXOIHYIO IOCJEIOBATEIHLHOCTh B
COCTOSIHUH S BBIUUCIISIETCSI UTEPATHBHO, HauWHas C COCTOSHHS S. BrlunmTanue
BEJIMYMHBI ¥ U3 BPEMEHH MOCTYIUICHHS BXOJHOTO CHMBOJIA OTPaXKaeT TOT (aKT, 4To
OTCU€T BpeMeHU «cOpachiBacTCs» B 0 MPH BBIMOJHEHHH ABTOMATOM IEPEXOIOB IO
TaMayTy.

B wHactosie#t pabore MBI pacCMaTPHBAaEM IMOJHOCTBHIO OMpEJAEICHHbIE |
JICTEPMUHUPOBAHHBIE ABTOMATHI, T.€. JJISI KAXJOTO COCTOSIHUSL S M BPEMEHHOTO
BxogHoro cumBoia (i, t) eAMHCTBEHHBIM O0OPa30M OIpEAENSETCS CIEAYIOIEe
cocrosiHue 5" aBTOMAaTa M BBIXOIHAS peakius (0, d).

Ha pucynke 1 mpencraBieH aBToMar ¢ TalMayTaMu M BPEMEHHBIMH
orpaHnyeHussMA S. Peakuuu aBTOMara S B COCTOSIHUH Sy HA BPEMEHHBIE BXOHBIE
cumBoubl (i, 0) u (i, 1) pasnmuuaroTcst ¥ IPEACTABISIOT COOO0M BBIXOAHBIC BPEMEHHbIE
cumBoitsl (01, 1) u (0y, 3) coorBercTBeHHO. ECnm ke BXOAHOHN cuMmBONI He Oymaer
MOJIaH Ha aBTOMAT S B COCTOSHHUHU Sg B TEYEHHE JBYX €IUHHUI] BPEMEHH, TO aBTOMAT
NepensIET B COCTOSIHUE S3 IO TaliMayTy.

i,[0: 1)/ (05, 3)

L[0: 1)/ (0, 1)
ia[l;z)/(ob 3)

i, [0; 1)/ (05, 1)
i, [1;00) / (05, 1)

Puc. 1. Bpemennoii asmomam S
Fig. 1. Timed Finite State Machines S

CocTosiHHS S W P TOJHOCTBIO OIPENEIEHHBIX JIETCPMHHUPOBAHHBIX BPEMEHHBIX
aBTOMATOB S M P Ha3BIBAIOTCS 9KEUBALIECHMHbIMU, €CIIH PEAKIIMU aBTOMATOB B 3THX
COCTOSIHMSIX COBIIJal0T Ha JIIOOYIO BXOAHYIO BPEMEHHYIO IIOCIIEIOBATEIHHOCTb.
Ecnu cocrossHust S M P HE SBISIIOTCA SKBHBAICHTHBIMH, TO OHH HAa3bIBAIOTCS
paznuuumvimy. OTHOLIEHNE SKBUBAICHTHOCTH Ha MHOXKECTBE COCTOSIHHMI aBTOMAara
MHIYLIUpYeT pa3OueHne Ha MHOXKECTBE COCTOSHHM, KOTOpOe HasbIBaeTcs
pasdueHuem TIO OTHOIICHUIO SKBHBAJEHTHOCTH M nanee obosHadaercs E. JlroObie
JIBA COCTOSIHHS, TpPHHAJICKAIINE OJHOMY Kiaccy paszOomenuss E, sBusiorcs

142

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

SKBUBAJICHTHBIMHE; JIOOBIE JIBa COCTOSIHHS, MPUHAICKALINE PA3TUIHBIM KiaccaM
paszouenus E, SBISIOTCS pa3InIuMBIMHU.

JIBa aBTomMara S u P sxeuganenmmusi, €CIu UIA KaXIOTO COCTOSHHS aBTOMaTa S
CYIIECTBYET SKBHBAJCHTHOE COCTOSIHAE B aBTOMaTe P, W I Ka)kJOTO COCTOSIHHS
aBTOMaTa P cCymecTByeT SKBHBAJICHTHOE COCTOSHHE B aBToMare S. ABTomar
Ha3BIBACTCS NPUBCOEHHBIM NO COCMOAHUAM, €CIH JIOOBIE IBa COCTOSHUS B HEM
pa3nmuauMel. [Ipusedénnou no cocmosHusMm ¢opmoti BPEMEHHOTO aBToMara S
Ha3bIBa€TCS NPUBEAEHHBIN aBTOMAT, 9KBUBAJIEHTHBIN S.

Bpemennbie aBTOMatel S W P ¢ OOUHAKOBBIMHA BXOJHBIMH W BBIXOJHBIMH
andaBuTaMu U30MOpPEhHLL, €CIM MEXKIY MHOKCCTBAMH COCTOSHHUN M TEPEeXO0B
9TUX aBTOMAaTOB MOXHO YCTaHOBUTH B3aMMHO OJHO3HAYHOE COOTBETCTBHUE, T.C.
CYIIECTBYET B3aMMHO-0HO3HaUHOE oToOpaxenue H: S — P, takoe uro (S;, i, 0, S;,
g, d) € hs, ecm 1 Tombko ecim (H(S), i, 0, H(s), g, d) € hy m Ag(si) = (55, T), ecim
tonbsko ecna Ap(H(s;)) = (H(sj), T). BpemeHHoii aBTOMaT, H30MOPdHEI 3aJaHHOMY
BpPEMEHHOMY aBTOMAaTy, MOXXET OBITh TOJy4YeH MEPEHMMEHOBAHUEM COCTOSHUIMA
HCXOJHOT'O aBTOMaTa.

3. KoHeyHo aemomamHas abcmpakyusi

[MoBeneHre aBroMaTa C TafiMayTaMd M BPEMEHHBIMH OTPAHHUYCHUSIMH B DsJe
Clly4aeB MOXKHO aJeKBATHO OIKCATh MPH MOMOIIM KOHEYHOrO aBTOMara, T.€. C
HCIIOJIB30BaHUEM KoHeuro asmomamuou aocmpaxyuu [10]. B Hacrosimieir paGote
3TO MOHATHE HECKOJBKO PACIIMPSETCS U IOCTPOSHHS KOHEYHO aBTOMATHOM
abCTpaKIMu JJisi BPEMEHHBIX aBTOMATOB C BBIXOAHBIME Taiimaytamu. [Tycts S = (S,
I, O, hs, As) — HETepPMHUHHPOBAHHBIA MOJHOCTHIO OMPEACICHHBIH BPEMEHHOM
aBTOMaT W B — HauOonblnas KOHEYHAs TI'PaHUIA JJIsi BPEMEHHBIX BXOJHBIX
MHTEPBAJIOB, B TO BpeMs kKak D omnpenenser HanOOJNBINYIO BBIXOIHYIO 3aJEPIKKY.
TocTpouM KoHeuHO asmomMamuyio ab6CmpaKyuio 8PEMeHHO20 AémomMama, KoTopas
SIBJISIETCS TTOJTHOCTBIO ONPEAEIEHHBIM KOHEUHBIM aBTOMATOM Ag = (Sp, | U {I}, O,
7\,A5, So), rae SA = {(S, 0), (S, (0, 1)), ceey (S, (B -1, B)), (S, B), (S, (B, OO)) S e S}, OA=
{(0, 0), (0, 1), ..., (0, D): 0 € O}U{I}, a I — coenUaNbHbBI CHMBOJI KOHEYHO
aBToMaTHO# abcrpakumu. s cocrostHus (S, §), §j = 0, ..., B, aBromara As n
BXOJJHOI'O CHMBOJIA i, MHOXKECTBO Aps COAEpXkHUT mepexon ((S, t), i, (0, d), (', 0)),
€CJIM M TOJIBKO €CJIM CYILIEeCTByeT mepexon (S, i, 0, §', g;, d) € As Takoii uto t; € ;.
Hnst cocrosnums (S, i), i = (0, 1) ..., (B — 1, B), (B, «), aBTOMaTa Ag U BXOIHOTO
CHMBOJIA i, MHOXECTBO Aps comepxut mepexon ((S, 9i), i, (0, d), (s', 0)), eciu u
TOJIBKO eciiu cymiectByeT nepexon (S, i, 0, §', g, d) € As Takoii uto @ < g.
Iepexoasl MO CHENUATBHOMY CHMBOJNY 1 OTpaXKalOT H3MEHEHHE BpPEMEHHOM
MEPEMEHHOM MEXy BEIIECTBEHHBIMHM 3HAYE€HHsIMU W3 WHTepBana Buaa (a, b) u
LEJIOYHCIIEHHBIMU 3HAYEHUSIMHU, JIM0O MEPEXO]I 10 TaliMayTaM MEXTy COCTOSHUAMH.
Iepexomst ((S, n), I, I, (s, (n, n +1))), ((s, (n—1,n)), I, I, (S, n)) € Ans, €CIH 1
Tonpko eciid N < T < oo, re As(S) = (s, T). Hlepexox ((s, (n — 1, n)), I, I, (5,
0)) € Aas, ecim u TONBKO eci N =T < oo, Tae Ag(S) = (S, T).

143

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

Iogo6ro [10], MOXHO TIOKa3aTh, YTO €CIM MCXOIHBI BPEMEHHOW aBTOMAT
MOJIHOCTBIO OTPENENEHHBI U JEeTEPMUHUPOBAHHBIN, TO M KOHEYHO aBTOMAaTHAas
abCcTpakmusl TaroKe SBIAETCS IIONHOCTBIO OTPENENIEHHBIM JIEeTCPMUHHPOBAHHBIM
KOHEYHBIM aBTOMATOM.

Bpemennas BxojHas IOCIEAOBaTEIbHOCTh OL MOXET OBITh II€peBe/ieHa B
COOTBETCTBYIOIYIO IIOCIECIOBATEIbHOCTh BXOJHBIX CHMBOJIOB [UII KOHEYHO
ABTOMATHO# abCTpakuuK Osy. [IpH 3TOM KaxXblii BpeMEHHOH BXOMHO#H cuMBOI (i,
t) mpencraBnseTcs MOCIEAOBATENbHOCTHIO BXOAHBIX CHMBOJIOB a0CTpakuuy Buja I,
I, ..., I, i, rae uncio cuMBOJIOB I paBHO YHCITy TIEPEXO0B 3HAYECHHN BPEMEHHOM
TIePEMEHHOM M3 IIeJIOTO YHClia B DIIEMEHT WHTepBaia Buaa (&, a + 1) u obparHo 3a
BpeMs t. B To jke BpeMs BBIXOJHAs peakiys abCTpaKkIuy Ha MMOCIeA0BaTENEHOCTD I,
I, .., I, i umeer Bua I, I, ..., I, (0, d), rae unciio cumBosioB I BO BXOIHOM U
BBIXOJIHOW TIOCJICI0BATEIBHOCTH coBmagaet, a (0, d) ecThb peakims HCXOJHOTO
BpemeHHOro aBroMara Ha (i, t). Takum 00pa3oM, BBIXOJHAs MMOCIIEAOBATEIFHOCTD
aOCTpaKkIMU Yrsy MOXKET OBITh TIEpEBEAECHa B COOTBETCTBYIOIIYIO BPEMEHHYIO
BBIXOJIHYIO IIOCJIEJOBATEIBHOCTD Y yJaJICHHEM BCEX CHUMBOJIOB I.

YTBepxaenne 1. BXomo-BeIXOIHAs MOCIEIOBATEIBHOCTh Oy CYIIECTBYET BO
BPEMEHHOM aBToMare S, eciM W TOJNbKO €CIM BXOJO-BBIXOJHAS
HOCTICZIOBATENBHOCTE Olpsw/YFsm CYLIECTBYET B KOHEYHO aBTOMATHOH aOCTpakIuu
AS.

Joka3ateabcTBO. PacCMOTPHM COCTOSIHHE S BpEMEHHOTO aBTOMATa S M MHOXECTBO
cocrosauii (S, 0), (s, (0, 1)), ..., (S, (T —1, T)) koHEUHO aBTOMATHOM abCTpakimu Asg,
rae As(s) = (s', T). Kaxnoe cocrosHre Ag COOTBETCTBYET LIEJIOMY MOMEHTY BPEMEHH
aubo uHTepBany Buaa (@, @ + 1), B KOTOPOM HAaxOIUTCS BPEMEHHas MepeMeHHas
aBTOMara S, a Iepexobl 0 BXOJHOMY CUMBOJY I OTpa)aloT U3MEHEHHE 3HAYCHHS
BPEMEHHOM IIEPEMEHHOM aBTOMaTa S U3 LEJIOr0 YKCIIA B 3JIEMEHT UHTEpBala BUAA
(a, a + 1) u obparHo. Takum 00pa3om, MO NpaBUIAM MOCTPOCHUS MHOXECTBA
nepexooB abcTpakuuu, Bxomo-BeixomHas mapa (i, t) / (0, d) cymecrByer B
aBTomMare S, eciM M TOJNBKO €CIM CYLIECTBYET BXOJIO-BBIXOJHAs
nocneposarensrocts I, I, ..., I, i/ I, I, ..., I, (0, d) B aBTOMare Ag, TJ€ YHCIIO
CUMBOJIOB I DAaBHO YUCIy H3MEHEHHUN 3HAUYECHUN BPEMEHHOW IIEPEMEHHOU U3
[EJIOTO YHUCIia B DJIEMEHT WHTepBal Buia (4, a + 1) u obOpaTtHo 3a Bpemsa t < T. B
CHIIy TOTO, 4YTO mepexonay mo rtaiimMayty Ag(S) = (', T) aBromata S COOTBETCTBYET
nepexon ((s, (T -1, T)), I, I, (s', 0)) aromara As, TO aHAIOTHYHBIE PACCYKIACHUS
MOYKHO IIPOBECTH Ui cocTosiams §' 1 MHOKecTBa (S', 0), (S', (0, 1)), ..., (s, (T - 1,
T)), a Taxke Bcex MOCIENYIOIUX COCTOSIHUIM, B KOTOPbIE aBTOMAT S MOXKET MepeiTH
MO TaliMayTy W COOTBETCTBYIOIIEr0O MHOXKECTBA COCTOSIHHMH aOcTpakuuu. B To xe
BpeMs, 10 NpaBHIaM IIOCTPOCHHMS IEPEX00B KOHEYHO aBTOMATHOW abcTpakuuny,
BXOJHOW BpeMeHHOW cuMmBoI (i, t) mepeBenér aBToMaTr S B COCTOsIHHE S, €CIH H
TOJIBKO €CJIM BXOJHas mocnenoBarenbHocts I, I, ..., I, i nepeBenér aBTomMat As B
cocrostane (S", 0). Hanee, mans mapbl coctostHuil S" m (S", 0) MOXHO IpoBecTH
aHAJIOTUYHBIE PACCYKICHUSI.

144

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

YrBepxaenue 2. CocTosHUA Sy U S; BDEMEHHOTO aBTOMATa S 3KBHBAJICHTHBI, €CITH
U TOIBKO €CIM B COOTBETCTBYIOIIEM KOHEYHOM aBTOMAaTe Ag SKBHBAJICHTHBIMH
SIBJISIFOTCS COCTOSHMSA (S1, 0) 1 (Sy, 0).

HJokaszareabcTBo. IlycTb cocTOssHUS S; M S, BPEMEHHOIO aBTOMara S
SKBHBaJICHTHHI. [Ipennonoxum, uyTo cocTostHUA (Sy, 0) (Sp, 0) COOTBETCTBYIOMIETO
KOHEYHOTO aBTOMAaTa HE SIBJIIOTCA SKBUBAJICHTHBIMH, T.€. [UII HUX CYIIECTBYET
pasnuyarolas IociIeA0BaTeNbHOCTh. Torna B Cuily yTBepxkaeHus 1, Halpércs
paznuyaronias 1MocjaeJOBaTeIbHOCTh M ISl COCTOSHUM S; M Sp, YTO HPOTHBOPEUUT
YTBEPKIEHHIO, YTO COCTOSIHUSA S1 U Sy IKBUBAJICHTHBI.

[TycTb Teneps coctostHus (Sy, 0) ¥ (S, 0) SKBHBAJICHTHBI B TOCTPOSHHOM KOHEYHOM
aBTOMaTe Ag, OJHAKO COCTOSHUS S; M S, BPEMEHHOIO aBTOMaTa He SBISIOTCA
9KBUBAJICHTHBIMH, T.C. JUIS HUX CYLIECTBYET Pa3iMYalolias IOCIe0BaTEIbHOCTb.
Torna B cuny yTBepkaeHus 1, HalnErcs paszinnyaromas nocjie0BaTeIbHOCTh U JUIs
cocrosiauii (Sg, 0) u (S, 0), 4TO MPOTHBOPEUHT YTBEPKICHHIO, YTO COCTOSHHUSA (S1, 0)
u (Sp, 0) 5KBUBAJICHTHBI.

Takum 00pazoM, BbIBOJ 00 IKBHBAJICHTHOCTH COCTOSHHI BPEMEHHOTO aBTOMAaTa
MOXET OBITh CHeTaH Ha OCHOBE COOTBETCTBYIOIIMX COCTOSHHH KOHEYHO
ABTOMATHOM aOCTpaKIIHH.

4. MunHumu3ayus 4yucna cocmosiHul

IIponienypa MUHUMH3ALMU COCTOSHHUM IS KJIACCHMYECKHX KOHEYHBIX aBTOMAaTOB
xopoIio u3BecTHa [1] 1 ocHOBaHa Ha Pa30MEHUI MHOXKECTBA COCTOSIHHN KOHEYHOTO
aBTOMAara 10 OTHOLICHWIO O3KBHBAICHTHOCTH. MBI Ipe[uiaraeM HCIIOIb30BaTh
AQHAJOTUYHBIHN TTOJIXOJT IS COKPAIICHUS YKCiIa COCTOSIHNI BpEMEHHOr0 aBTomara. B
COOTBETCTBHM C pe3ylbTaTaMH MpEABIIYIIero pasjena, pa3OHeHHEe MHOXKECTBa
COCTOSIHWH TI0 OTHOLICHWIO 3KBHBAIEHTHOCTH JUII BPEMEHHOI'O aBTOMAara MOXKET
OBITh TOJYYEHO Ha OCHOBE COOTBETCTBYIONIETO pa3OMeHHs Ui KOHEYHO
aBTOMaTHOH abOcrtpaknuu. J[lamee, MbI IIpeajiaraéM ajirOPUTM ITOCTPOEHUS
MIPHUBEIEHHON MO COCTOSHUAM (POPMBI BpDEMEHHOTO aBTOMATA.

Aaroputm 1 mocTpoeHHUs TPHUBENEHHOH IO COCTOSHHUAM (POPMBI IOIHOCTHIO
OTIPEeEIEHHOTO JETEPMHUHUPOBAHHOTO BPEMEHHOTO aBTOMATa

Bxoa. [TonHOCTBIO ONpeIeIEHHBIN JETEPMUHUPOBAHHBIN BpeMEHHOW aBTOMAT S
Beixona. [IpuBenénHnas o cocrosHusiM popMa aBromara S

Ilar 1. ITo ucxogHOMY BPEMEHHOMY aBTOMAaTy S CTPOUTCS COOTBETCTBYIOILAS
KOHEYHO aBTOMaTHas alcTpakumsi Ag, Ui KOTOpOW cTpouTcs pasOuenue Ergy
MHO)KECTBA COCTOSIHMI Ha SKBHBAJEHTHBIE COCTOSHUSL.

MIar 2. Crpoutrcsi pazbuenue E cocTtosHmii aBTOMata S Ha SKBUBAJICHTHBIC
COCTOSIHUSI CJISAYIOIIMM 00pa3oM: COCTOSHUSL S; M S, aBTOMaTa S IpUHAIJIeKaT
onHoMmy Oyioky paszbuenust E, ecnu u tonmbko ecnu cocrosiHust (Sy, 0) u (Sp, 0)
NpUHAIJIeKAT OJHOMY OJIOKY pa3oueHus Epgy.

IMar 3. Crpourcs npuBesieHHas O cocTossHUAM (hopma B aBromara S. BxonHoit u
BBIXO/IHOW andaBUTHl aBTOMaTa B coBmagaloT Cc TakOBBIMH JUIsi aBToMara S,

145

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

cocrosaust by, by, ..., by coorBercTBYyroT Gnokam Bj, B,, ..., By pa36uenus E.
MuoxecTBo TmepexonoB hg aBromara B (dopmupyeM cleayromuMm 00pa3oM.
Beibupaem u3 kaxxmoro Gimoka Bj cocrostaue S;. st cocrosiauit by u by cymectsyer
xoprex (b, i, 0, bj, g, d) € hg, Torna u Tonpko TOrma, KOrAA CYIIECTBYET COCTOSHHE
S; € By, Takoe uro xoptex (S, i, 0, Sj, 9, d) € hs. Ans dpynkumu taiimayra Ag(b;) =
(b;, T), Torna u Tomeko Torxa, korxa As(s) = (s, T), Sj € B;.

Crenyrolliee yTBEpXKICHUE MOTBEPIKAAET KOPPEKTHOCTD MMOCTPOCHUSI IPUBEACHHOM
M0 COCTOSIHUSIM ()OPMBI BPEMEHHOT'O aBTOMATa 110 OMIMCAHHOMY BBILIE aJTOPUTMY.
YrBep:kaenue 3. [Iycts B — aBTOMAT, HIOCTPOCHHBIN AJIs aBTOMATa S 0 aJTOPUTMY
1. ABromar B sBiseTcs ACTEPMHHUPOBAHHBIM IIOJIHOCTBIO OMpPEACICHHBIM
aBTOMArToM, W cocTosiHue h; aBTomMara B SKBHBaJICHTHO COCTOSIHHIO S aBTOMaTa S,
€CJIM M TOJILKO ecin S € B;.

Joka3zateiabcTBo. COTNaCHO YTBEPXKACHHIO 2, COCTOSHHS S; U S; BPEMEHHOTO
aBTOMara S MNpUHAJJICKAT OJAHOMY OJIOKY pa3buenus E, ecnmu u TOJBKO ecnu
cocrostHUA (S, 0) m (Sp, 0) KOHEYHO aBTOMAaTHOW aOCTpakIuU Ag IpPHUHAIICKAT
omHOMY OJIOKy pa3OmeHust Epgy. Taxum obOpasom, pazbuenme E, momyueHHOE Ha
BTOPOM IlIare alrOpPUTMa, €CTh pa3OUeHHe MHOXKECTBA COCTOSHUN aBTOMaTta S 1o
OTHOIICHHIO SKBUBATIEHTHOCTH.

ABtomMar B sBASIeTCS TOJHOCTBIO OMNPEACICHHBIM M JETEPMHUHUPOBAHHBIM
aBTOMATOM, MOCKOJBbKY aBTOMAT S 00/afaeT 3TUMH CBOHCTBAMH U JUIS KaXIOTO
COCTOSIHHSL Dj MHOXECTBO MHEpPEXOJI0B «IOBTOPSIET» MHOXECTBO IIEPEXO0B JUIs
cocTosiHusA S € B;.

IMokaxkem, uTo cocTosiHus S; € Bj u cocrosinue b; aBTomara B, COOTBETCTBYyIOIIEE
6noky B pa3buenus E, skBuBanentHsl. Bee nepexopt u3 cocrostaust by nydnupyror
MEPEXO0/Ibl M3 HEKOTOPOTO COCTOSHUS S’ € Bj, 3KBHBaICHTHOTO JIFOOOMY COCTOSIHUIO
s; u3 B (yrBepkaenue 2). B To e Bpems, eciu As(Si') = (Sk, T) u Ag(by) = (b, T), T
< o, To S € By ecThb cocTosiHHE, DKBHBAJICHTHOE COCTOSIHHIO Sy', TEPEXObI
KOTOPOTO «IyOIUPYIOTCS» B COCTOSIHUHM Dy. AHANOTHYHBIE PACCYXKICHHS MOMKHO
MPOBECTH U JJIsl BO3MOXHBIX MPEEMHUKOB IO TaiiMayTam cocTosiHuiA S 1 by. Takum
00pa3oM, peakiu Ha Tr000W BPEMEHHOU BXOJHON CHMBOJI B COCTOSIHUSIX S U b
coBnagat. Ilockonbky mepexomy (S, i, 0, S, ¢i', d) ucxomHoro asroMara
cootBetctByeT mepexon (b, i, 0, by, gi', d) npuBenéuHo# 1o cocrostHUsIM GoOpMBbI,
rae Si' € By, To manst cocrosHuit S U by', U IS BCeX MX MPEEMHUKOB MO BXOHBIM
BPEMEHHBIM CHMBOJIAM, MOJYKHO MPOBECTH AaHAJOTHYHBIC PACCYXACHUS. Takum
obpa3om, peakiu aBTOMaToB B u S B cocrosHmsx b U S; Ha J00YI0 BXOAHYIO
NOCIIeI0BAaTENBHOCTD COBNaAAtOT. [IokaxkeM Tenepb, 4ToO COCTOsIHUA S € Bj u by, rae
i # j, He skBuBaneHntHel. CocTosiHue S; € Bj 3KBUBANIEHTHO COCTOSIHUIO b; coriacHo
HepBOi 4YacTu Aokas3atrenscTBa. COCTOSHMSA Sj M S HE 3KBHUBAJICHTHBI, TaK Kak
HaXOASATCS B Pa3iIndHbIX Onokax pazouenus E. Takum oOpaszom, coctostHus S 1 b
HE KBHUBAJICHTHEI.

CrpaBeiinBa ciieLyrolas Teopema.

146

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

Teopema 1. [TycTh S — MOHOCTBIO ONPEACTEHHBIN JeTEPMUHUPOBAHHBIN aBTOMAT C
TaiMayTaMl W BPEMEHHbIMHU OTpaHH4YeHHUSAMU. [lOJHOCTBIO OmIpenenEéHHbII
JIETEpPMHUHUPOBAHHBIN aBTOMAar B, MOCTpOeHHBIM 1O aiaroputmy 1, sBIsSETCS
TpUBEIEHHON IO COCTOSAHUAM (popMoit aBTOMATa S.

B xauectBe mnpumepa paccMOTpuM aBTOMar Ha pucyHke 1. IlpuBeneHHas 1o
COCTOSIHMAM (hopMa aBTOMaTa S MPEACTaBICHA HA PHCYHKE 2.

i, [0; 1)/ (o,, 1)

10 1
i, [152)/ (05 3) 6, [0: 1)/ (0, 3)

2 i,[1;©)/ (05, 1)

fs [0; I)/(O,‘ia])
i, [1:20) / (03, 1)

Puc. 2. Ilpugedénnas no cocmosnusim popma epemennozo agmomama S
Fig. 2. State reduced form of TFSM S

CHOoXHOCTh alrOpUTMa MHHHMMHU3AIUM BPEMEHHOTO aBTOMAaTa C N COCTOSHUSIMH,
BOOOIIIE TOBOPSI, ONMPENEISIETCS] CIOKHOCTHIO MHHUMH3AINHA KOHEYHO aBTOMATHOM
aOCTpaKIMK, YHCIIO COCTOSIHMM KOTOPOW He NpeBbIIIAaeT BeduduHbl 2Bn u
MHOKECTBO BXOJHBIX CUMBOJIOB COBIIAIa€T C TAKOBBIM JUUIsl BPEMEHHOI'O aBTOMATa.
Takum 00pa3oM, CJIOXHOCTh alIrOpUTMa MUHHUMH3AIMK IOJMHOMHAJIbHA
OTHOCHTEJILHO TPOM3BENCHUSI HauOOJblIe KOHEYHOH TpaHUIbI JJISI BPEMEHHBIX
BXOJIHbIX UHTEPBAJIOB U YUCJIA COCTOSHUM.

5. MuHuMu3ayusi epeMeHHbIX acriekmoe

B ominume OT KIACCHYECKHX aBTOMATOB, MPUBEICHHAS MO COCTOSHHUAM (opma He
SIBJIICTCSI MHHUMAIBHOW (OPMOIl BPEMEHHOrO aBTOMaTa, T.K. HE YYUTHIBACT
MHUHHMH3AI[MI0 BPEMEHHBIX MapamMeTpoB. B HacrosieMm pasjene MBI BBOJIHM
NOHATHE MHUHHMAIBHON (OpPMBI BpPEMEHHOTO aBTOMATa, KOTOpas SBISCTCS
SIUHCTBEHHOH C TOYHOCTBIO 10 H3oMopdu3Ma. ABTOMaT C TaifiMayramMu u
BPEMEHHBIMH OTPAHHYCHHSMH S Ha3bIBACTCA npugedeHHvlM no epemenu (time
reduced), ecnu st r0GBIX IBYX KopTexei (S, i, 0, S', gy, d), (5,1, 0, §', 05, d) € hy
CIIPaBEIUIMBO, YTO (; M Jp HeNb3sd OOBEOUHHUTH B OAWH MHTEPBAN M I JIOOOrO
cocrosiHus S, Takoro 4to As(S) = (8, T), He cymiecTByeT COCTOSHHS S U IEJI0TO
yucna T' < T, Takux 4To aBTOMAT S', MOJTyYeHHBIH M3MEeHeHneM (QyHKIUM TaiiMayTa
coctosiHusA S aBToMaTta S Ha Ag(S) = (", T') SKBUBaJIEHTEH UCXOTHOMY aBTOMATy S.
Ecau nnst mepexonos (S, i, 0, §', g1, d), (5, 1, 0, §', gz, d) € hy Bpemennoro aBromara S
UHTEPBANBl §; U (, MOTYT OBbITh OOBCIMHEHBI B OAMH HMHTEpPBal, TO 3TH JBa
nepexojia MOXHO 3aMEHUTh OJHUM IIepexoaoM Buaa (S, i, 0, S', g1 U s, d). TToBepka
CYILECTBOBAHUS U TOMCK TaliMayTa MEHBILIECH BETHMYMHBI MOTYT OBITH BBITIOJHEHBI
10 KOHEYHO aBTOMATHOW abctpakumu As. sl MOMCKa MUHUMAJIBHOTO TaiiMayTa B
147

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

COCTOSIHUM S HEOOXOIMMO pAcCMOTPETh COCTOSHHUS abcTpakuud Bupa (S, n),
COOTBETCTBYIOIIME [OBEIACHUIO BPEMEHHON0 aBTOMAaTa B COCTOSIHUM S B
IEJIOYKCIICHHBIC MOMEHTHI BpeMeHH. ECim miIs HEKOToporo cocTostHus (S, j)
CYIIECTBYET SKBHBAJICHTHOE cOCTOsHHE BHA (S', 0), TO Mepexo Mo CIerHaIbHOMY
Bxoguomy cumBoiny ((S, (j — 1, j)), I, I, (S, j)) Mmoxet ObiTh 3amMenéH Ha mepexon ((S,
G-1,)) I, 1, (s, 0). CooTBeTCTBEHHO, TallMayT B COCTOSHHH S aBTOoMara S,
MOKeT OBITh 3aMeHEH Ha Ag(S) = (S, J). Takum 0Opa3oM, ISl KaKIOTO COCTOSHHUS
MOKET OBbITh BBIOPaH MHHUMAJBHBIH BO3MOXKHBIH TaliMayT, KOTOPBIA HE U3MEHSET
MIOBE/ICHHE BPEMEHHOTO aBTOMara.

[anee, Mbl mpeylaraeM ajropuT™M MOCTPOEHHS MPUBEICHHONM MO BpeMeHU (HOPMBI
BPEMEHHOI'O aBTOMATa.

AJropur™M 2 TOCTPOCHHs MPUBEICHHOH MO BpeMeHH (OpPMBI aBTOMara ¢
TaliMayTaM{ U BPEMEHHBIMU OTPAaHUYCHUSIMU

Bxoa. [lerepMuHUpPOBaHHBIN NOJHOCTBIO ONPEACIEHHBIN BpeMEHHOM aBTOMAT S
Boixop. [IpuBenenHas o Bpemeru popma aBromata S

Mlar 1. Kaxnas napa nepexofos (S, i, 0, §', gy, d), (S, 1, 0, S', g, d), Takas uto g; u
02 MOTYT ObITh 00BEIMHEHBI B OJTUH UHTEPBAJI, 3aMeHsIeTCs Ha nepexof (S, i, 0, S', J;
U 02, d)

ar 2. [To ucxogHOMy aBTOMAary S CTPOUTCS COOTBETCTBYIOIIMH KJIACCUYECKHI
KOHEYHBI aBTOMAaT Ag, Ui KOTOPOTO CTPOWTCS pa30HeHHE IO OTHOIICHHIO
JKBUBAJICHTHOCTH.

Ilar 3. JIyis KaI0ro coCTOSHKSL S aBToMaTa S, 1ist Kotoporo As(s) = (s', T), cpeau
cocrosiuuii (S, j) aBtomara As, j = 1, ..., T — 1, ompezensieTcs COCTOSHHE C
MHUHHMAIBHBIM j, TSI KOTOPOTO CYIIECTBYET SKBHBAJICHTHOE COCTOsTHME BHaa (S,
0). Eciiit Takoe coctosiHue S CyHIECTBYET, TO TalMayT B COCTOSHUHU S 3aMEHSIETCSI
Ha As(S) = (8", J). Ecim Takoro coctosHus HET, TO TaliMayT B COCTOSHHH S HE
H3MEHSETCS.

Mlar 4. J{nst Kaxaoro cOcTosiHus S aBromara S, st kotoporo Ag(s) = (S, =),
onpenensercs cocrosiuue Buaa (S, 0) B aBTomare Ag, SKBUBAJIEHTHOE COCTOSIHUIO
(Sy (, ®)). Ecnu takoe cocrosiHue S" CyIIECTBYET, TO TaliMayT B COCTOSIHUU S
3amensiercss Ha Ag(S) = (S", J + 1). Ecnu Takoro COCTOSIHHSI HET, TO TaliMayT B
COCTOSIHHH S HE U3MEHSETCS.

Mlar 5. J{ns kaxmporo cocrosiaus S, e Ag(S) = (S', T) u T < oo, ynanstorest Bce
nepexojel (S, i, 0, §', g, d), takue uro g N [0, T) = &. Ecnu anst nepexona (S, i, 0, S',
(a, by, d) cnpaseqmuBo, uro (a, by N [0, T) # I u HeBepHo, uto (8, b) < [0, T), T0
nepexoz (S, i, 0, §', (@, b), d) 3amensiercst Ha nepexon (S, i, 0, §', (a, T), d).

Hmeer MecTo ciienyroniee yTBEpXKICHHUE.

YrBep:xknenne 4. Ilycte P — BpeMeHHONM aBTOMAaT, IOCTPOEHHBIN UId
NPUBEACHHOTO [0 COCTOSHMSIM aBTOMaTa S 10 anroput™my 2. ABTOMar P
9KBHBAJICHTCH aBTOMATy S U SBJISAETCS IPUBEACHHBIM [0 BPEMEHH aBTOMATOM.

148

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

Joka3aTtenabcrBo. [lokaxeM, urto aBromarsl S u P skBuBasieHTHbl. OObeANHEHUE
nepexoJioB (S, i, 0, §', g1, d), (S, 1, 0, §', gz, d) B mepexox (S, i, 0, S', §1Ugy, d) (Lar 1)
HE U3MEHSIOT MOBe/IeHHEe aBToMara. PaccMoTpuM mpoueaypy 3aMeHbl TaiiMayTa Ha
TpeThbeM miare anroput™a. IIycTb AJsi COCTOSIHHMS [BpEMEHHOro asTomara P
HaWJICHO COCTOSIHHE BPEMEHHOro aBroMara P'', Takoe, YTO CYIIECTBYET COCTOSIHUE
(p, j) u3 Ap, sxBuBasIeHTHOE cocTosHMIO (P, 0) aBroMarta Ap. 31ecs Ap(p) = (p', T) u
j < T. HocnenHee o3HAYaeT, B CHITy YTBEP:KICHHSA 2, UTO peakius aBromara P B
COCTOSIHHH P Ha JTIO0YI0 BXOAHYIO TOCICAOBATEIBHOCTh COBIAAACT C TAKOBOM ISt
aBTOMara B COCTOSHHH [B MOMEHT BpeMmeHH j. Takum oOpa3om, Mpu 3aMeHe
¢yukunn tatimayta Ap(p) = (p', T) B cocrosanm p Ha Ap(p) = (p", j) moBemeHwue
aBToMara P B COCTOSHMM P He MEHSETCs. AHAJIOTHYHO, 3aMCHa Taiimayra Ha
4eTBEPTOM IIAre aqropuTMa He MU3MEHsET MoBeleHHe aBTomaTta. Ha mstom mare
ANTOPHUTMA YAAISIOTCS JIUIIB mepexonst (P, i, 0, p', g, d), BpeMeHHbIC HHTEPBAIIBI
KOTOpBIX He mepecekatorcst ¢ uHTepBaiom [0, T), rme Ap(p) = (p', T),
COOTBETCTBCHHO, TaKWe IIEPEXOJbl HE MOTYT OBITh BBIMOJHEHBI ABTOMATOM.
Ilepexonbl, BpeMEeHHBIE HHTEPBAJIBI KOTOPBIX Hepecekatores ¢ [0, T), HO BEIXOJAT 3a
rpaHUIly TaliMayTa, OrPAaHUYUBAIOTCS CBEPXY BEIMYMHON TaliMayTa, YTO TAKXKe He
M3MEHSET MOBE/ICHUE aBTOMATA.

[MokaxxeM Terepk, 4TO aBTOMAT P ABIIsETCS MPUBEICHHBIM [0 BPEMEHHU aBTOMATOM.
JomycTuM, 9TO sl HEKOTOPOTO COCTOSIHHUSL Po aBToMara P TaitmayT Ap(Po) = (P1,
T,) MoxeT GbITh 3aMeHEH Ha TaliMayT Ap(Po) = (P2, T2), Tae Ty > T, TakuMm 06pasom,
YTO MOBEJCHUE aBTOMATa B COCTOSIHUM Py HE M3MEHHThCS. [locieqHee o3HAuaer,
YTO B KOHEYHO aBTOMATHOMN abCTpakiuu Ap CyHIECTBYET JHOO0 Mapa IKBUBATCHTHBIX
cocrostHuil (Pg, T2) U (P2, 0), mub6o (Po, (T2 — 1, ©)) u (p,, 0). CymecrBoBanue
SKBHUBAJICHTHBIX COCTOSHHU (Pg, T2) u (P2, 0) HEBO3MOXHO IO TPETbEMY IIary
anroput™a. CyIIecTBOBaHHE 3KBUBAJICHTHBIX cOCTOsTHUM (Po, (T2 — 1, 0)) u (Py, 0)
oTpaxaeT TOT (aKT, YTO peakius Ha JO0YI0 BXOJHYIO BPEMEHHYIO
MOCIIeZI0BATEIBHOCTD aBTOMAaTa P B COCTOSHUU P B MOMeHT Bpemenu T > (T, — 1)
COBIIAJIAET C TAKOBOW JJist cocTosiHus (P2, 0). B Takom cityuae, cocrostaust (Pg, T) He
CYIIECTBYET M0 MOCTPOCHHUIO abCTPAKIIUK, OJTHAKO, 110 Iary 4 aliropuTMa, TaimMayTt
Obu1 Obl 3amenén Ha Ap(Pg) = (P2, Tp). Takum o6pasoM, CyIIeCTBOBaHHE
SKBHUBAJIEHTHBIX cocTostHUM (Po, (T2 — 1,)) 1 (P,, 0) HEBO3MOXKHO.

B T0 e Bpems, iro0ble aBa mepexona Buma (S, i, 0, S, gy, d), (S, i, 0, S, O, d),
KOTOpbIE BO3MOXXHO OOBEAMHHUTH B OAuH mepexom (S, i, 0, S, Qiug,, d),
00BeIMHSIOTCS Ha mare 1 anropurma 2.

Ha ocHOBe TIOMYYeHHBIX pPE3yIbTATOB, MOYKHO YCTAHOBHTH HEOOXOAUMOE U
JOCTaTOYHOE YCIOBHE SKBUBAJCHTHOCTH BPEMEHHBIX ABTOMATOB.

Teopema 2. JleTepMHHUPOBAHHBIE MOIHOCTBIO OTPEICICHHBIC TPHBEACHHBIE TI0
COCTOSIHHSIM 1 BPEMEHH BPEMEHHBIC aBTOMATHI S M P 9KBHUBAJICHTHBI, €CJIH M TOJIBKO
€CITH ATU aBTOMAThI U30MOP(HBL.

Heo6xoaumocts. Ilycts S 1 P — neTepMuUHIPOBAaHHBIE TTOJHOCTBHIO ONpEIeIEHHBIC
OpUBEAEHHBIE TI0 COCTOSHHSM W BPEMEHH aBTOMAaThl C BPEMEHHBIMH

149

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

OrpaHMYCHUAMH M TaliMayTaMu, KOTOpBIC SBILIOTCS JKBHBAICHTHBIMU. [TokakeM,
4yro aBroMaTtbl S u P m3omop¢ubl. Paccmorpum otobpaxenne H: S — P, mpu
kotopoM H(S) ects cocrosHme aBTOMara P, SKBHUBAJCHTHOE COCTOSHHIO S.
OtobpaxkeHne H sBisgercs B3auMHO ONHO3HAYHBIM B CHIIy TPUBEAEHHOCTH IIO
COCTOSIHUSM aBTOMaToB S M P. ITokaxkeM, 4To A 11000 Mapbl COCTOSIHUI S U P
H(s), takoii uto As(S) = (S, Ts), As(p) = (p', Tp), cupaBeasuBo, uto Ts= T, u p'
H(s"). Homyctum, uato T, < Tg; Torga B cuily 9KBHBaJICHTHOCTH S u P, cymiecTByer
cocTosiHUE S, ’KBUBAJIICHTHOE COCTOSHUIO P'. A MMOCKOJIBKY COCTOSHHA S U) TaKXKe
SIBJISIFOTCSI SKBUBJICHTHBIMH, TO TaliMayT B COCTOSIHUM S MOXET OBITh 3aMEHEH Ha
As(s) = (", Ts"), tme Ts' = T, < Te. Iocnmeaaee HEBO3MOKHO, TIOCKOJIBKY S SIBISETCS
NPUBEJICHHBIM 110 BpeMeHH aBTroMmaroM. Ilycte Temeps T, > Ts, TOrma B cuily
9KBUBAJICHTHOCTU S U P, cymiecTByeT cocTosHUE P'', SKBUBAJICHTHOE COCTOSIHUIO S'.
A TIOCKOJIBKY COCTOSIHHSI S M) TakKe SIBISIOTCS SKBUBAJCHTHBIMHU, TO TalMayT B
COCTOSIHUU P MOXeT ObiTh 3aMeHEH Ha Ap(p) = (p", Tp), rme Ts = Tp' < T,.
Ilocnennee HEBO3MOXKHO, ITOCKOJIbKY P €CTh IPUBEIEHHBIN 110 BpEMEHH aBTOMar. B
CHJIy paBeHCTBa TalMayToB T, = Ts M OKBHBAJICHTHOCTH COCTOSHHH S H P,
cnpaBemuBo, uto Gyukiuu time(s, T¢) wu time(p, T,) coBmagaroT, H,
cootBeTcTBeHHO, P’ = H(S'). Ananoruuno [11], BBUAY SKBHBaJeHTHOCTH S u P,
CIpaBeTUBO, YTO Ui Jiroboro mepexoxa (S, i, 0, ', g, d) cyiiecTByeT mepexon
(H(s), i, 0, H(s"), g, d). Takum o6pa3zom, aBToMaThl S 1 P H30MOP(QHBIL
Jocrarounoctsb. [Tockonbky n30MOp(hHBIE aBTOMATBI COBIAAIOT C TOYHOCTBIO JI0
MepEerMEHOBAHUS COCTOSTHUMN, TO U30MOP(QHBIE aBTOMAThl YKBHBaJICHTHBI.

st ipuBeAEHHON 1O COCTOSIHHSAM (OPMBI aBTOMaTa S (PUCYHOK 2) TpHBEACHHAS
1o BpeMeHH (hopMa NoKa3zaHa Ha PUCYHKE 3.

5, [0; 1)/ (05, 3)

\ (
So ! S

i, [0; 1)/ (o}, 1) 1

i,[0; 1)/ (05, 1) 1

Puc. 3. Ilpusedénnas no epemenu u cocmoanuam gopma asmomama S
Fig. 3. Time and state reduced form of reduced form of S

Kak BunHo u3 pucynka 3, TaiiMmayT As(So) = (S, 2) ObLT 3aMeHEH Ha TaiiMayT As(Sp)
= (S1, 1), a mepexon (S, i, 02, So, [1, 2), 3) ynanén. B to xe Bpems, 1Ba mepexona u3
COCTOSIHUSL Sy ObLTH O00beAMHEHbI, a TaMayThl Ag(S1) = (S,) u Ag(Sy) = (Sz,)
3ameHeHbl Ha Ag(Sy) = (Sp, 1) 1 Ag(S2) = (S2, 1) cooTBEeTCTBEHHO.

150

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

Takum o0Opa3oMm, IUii BPEMEHHBIX aBTOMAaTOB HEOOXOOMMO BBECTH OIPEICICHUE
MUHUMAJIBHON (OPMBI, YUUTHIBAIOIIEH HE TOJHKO MUHUMH3AIUIO COCTOSTHUM, HO U
MUHUMHU3AIAI0 BPEMEHHBIX AaCHEKTOB. MuHumanvHot opmoll TOTHOCTHIO
ONPEAENEHHOr0 AETEPMUHUPOBAHHOIO aBTOMAaTa C TallMayTaMU U BpPEMEHHBIMH
OTPAaHUYEHUSIMH S Ha3bIBaeTCs NPUBEAEHHBIN 10 COCTOSIHUAM M BPEMEHH aBTOMAT,
SkBUBaJICHTHBIA S. [lo ompeneneHU0 MHHUMATBHOW (OPMBI, CHpaBeIUBa
clenyIoLIas TeopeMa.

Teopema 3. MunumanbHas (opMa aBTOMaTa C TaliMayTaMd W BPEMECHHBIMHU
OTpaHUYEHUSIMU €JMHCTBEHHA C TOYHOCTBIO 10 M30MOpdu3Mma.

7. 3aknroyeHue

B mHactosmeid pabore mpemyioxKeH METOA IOCTPOSHUS MHUHHMMAIBHON (OPMEI
aBTOMaTa ¢ TakMayTaMU U BPEMEHHBIMU OrpaHUYeHUAMU. 1IpeioKeHHbBIN TOAXO0N
OCHOBAH Ha IOCTPOSHUM Pa30MEHMs MHOXKECTBA COCTOSHUM BPEMEHHOI'0 aBToMara
Ha KJACcChl DKBUBAJIEHTHOCTH, KOTOPOE CTPOUTCS HA OCHOBE COOTBETCTBYIOIIErO
pa3OueHus JuIsi KOHEYHO aBTOMATHOM a0cTpakuuu. B oTinume oT KilacCHUECKHX
KOHEYHBIX aBTOMATOB, IPEMJIOKEHHBIM MOAXOJ MHUHHUMU3HUPYET HE TOJIBKO YHCIIO
COCTOSIHUH, HO U BPEMEHHBIE acNeKThl. MBI Tak:ke MOKa3bIBa€M, YTO MUHUMAIIbHAS
(hopma BpeMEHHOTO aBTOMaTa €IMHCTBEHHA C TOYHOCTHIO 10 m3oMopdusma. Tem He
MeHee, MO>KHO I0Ka3aTh, YTO CBOMCTBO MUHMMAaIbHOCTH BPEMEHHOIO aBTOMAaTa He
COXpaHsAeTCs Ul ero KOHEYHO aBTOMAaTHOW abcTpakiuu. B KOHEYHO aBTOMAaTHOM
abCTpakIMM MHHHAMAJIbHOTO BPEMEHHOTO aBTOMAaTa BO3MOXKHO HaJM4He
OKBUBAJIEHTHBIX COCTOsSIHMH. TakuM 00pa3oM, MpeaCcTaBIseT HHTEPEC HCCIIEA0BaHUE
CBOWCTB KOHEYHO aBTOMAaTHOM aOCTpaKkIMW BPEMEHHBIX aBTOMATOB, JUIi KOTOPBIX
CBOMCTBO MUHMMAJBHOCTH OyAeT HHBAPHAHTOM.

OTMeTHM TaKXKe, 4TO eAMHCTBEHHAs MUHUMalbHas (hopMa Juisi aBTOMATOB TOJILKO C
TaiiMayTaMd M TOJNBKO C BPEMEHHBIMH OIPaHHYEHUSIMA MOXET OBbITh IIOCTPOEHA IO
AITOPUTMY 2 ¢ HEOOXOJUMBIMHU COKPAICHUSIMH.

IIpencraBnsier uHTEpeC HU3yYeHHE MHHUMAIBHOW (OPMBI A HMHHUIMAIBHBIX
aBTOMAaTOB C TallMayTaMH, T.€. aBTOMATOB, B KOTOPBIX BBIACIEHO HAdajabHOE
COCTOsIHME. B 3TOM cily4ae B MCXOJHOM aBTOMATE BO3MOKHO HAJIMYHME COCTOSTHHM,
KOTOpbIE JOCTHMXUMBI U3 HA4YaJlbHOTO COCTOSIHMS TOJIBKO IO TaiMayTaMm U
COOTBETCTBEHHO, He 00s3aT€IbHO HMEIOT OKBUBAJICHTHOE COCTOSIHHE B
MHUHUMaJIbHOW (opMe. B kadecTBe JajbHEHIIMX HCCIENOBaHMA MBI TaKxke
IIPEAIoJIaraéM IPOBECTU HKCIIEPUMEHTHI 10 MUHUMHU3aLUU BPEMEHHBIX aBTOMATOB,
OIMCHIBAIOIIUX [TOBEACHHUE PEANILHBIX YIIPABJISIOIIUX CUCTEM.

BbnazodapHocmu
Pabota BemonHeHa npu noaep:xkke rpanta PH® No. 16-49-03012.

Cnucok nutepaTtypbl
[1]. Gill A. Introduction to the Theory of Finite-State Machines. 1962, 207 p.
151

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

[2].
[3].
[4].
[5].
[6].

[71.

[8].
(€1
[10].

[11].

[12].

152

Lee, D., Yannakakis, M. (1996) Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE. 1996, 84(8), pp. 1090-1123.

Murphy T.E., Geng X.-J., Hammer J.. On the control of asynchronous machines with
races. IEEE Transactions on Automatic Control, 2003, 48(6), pp. 1073-1081.

Kumar R., Garg V.K. Modeling and control of logical discrete event systems. Kluwer
Academic Publishers, 1995, 143 p.

Cassandras C. C., Lafortune S.. Introduction to discrete event systems. Kluwer
Academic Publishers, 1999, 822 p.

Dorofeeva R., El-Fakih K., Maag S., Cavalli A., Yevtushenko N. FSM-based
conformance testing methods: A survey an-notated with experimental evaluation.
Information and Software Technology, 2010, 52, pp. 1286-1297.

Zhigulin M., Yevtushenko N, Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Time-Outs. Proc. of the 11th International Conference on
Quality Software, QSIC 2011, IEEE, 2011. pp. 141-149.

El-Fakih K., Yevtushenko N., Fouchal H. Testing Timed Finite State Machines with
Guaranteed Fault Coverage. TestCom/FATES, 2009, pp. 66-80.

Merayo M., Nunez M., Rodriguez I., Formal testing from timed finite state machines,
Comput. Netw, 2008, 52 (2), 432-460.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. Intern Conf. GANDALF,
2014, pp. 203-216.

TeapmoBckuit A. C., EBrymenko H. B. K MuHMMH3annu aBTOMaToOB C BpEMEHHBIMH
orpannueHussMu. Bectnuk TI'Y. VYmopasneHue, BbIYHCIUTENbHAs TEXHMKAa U
undopmaruka, Ne 4 (29), 2014 r., crp. 77-83.

Teapposckuit A. C. K MunuMu3zanuu aBromaros ¢ taiimayramu. Tpynst UCII PAH, T.
26, Beim. 6, 2014 1., ctp. 77-84. DOI: 10.15514/ISPRAS-2014-26(6)-7

Trapnosckuii A.C., Esrymenko H.B., I'pomos H.B. Munumusaius aBToMaToB ¢ TaliMayTaMu ¥ BDEMEHHBIMU
orpanndeHusiMu. Tpyout UCIT PAH, tom 29, Beim. 4, 2017 r., ctp. 139-154.

Minimizing Finite State Machines with time guards and
timeouts

A.S. Tvardovskii <tvardal@mail.ru>
N.V. Yevtushenko <nyevtush@gmail.com>
M.L. Gromov <maxim.leo.gromov@gmail.com>
National Research Tomsk State University
Lenin st. 36, Tomsk, 634050, Russia

Abstract. Finite State Machines (FSMs) are widely used for analysis and synthesis of
components of control systems. In order to take into account time aspects, timed FSMs are
considered. As the complexity of many problems of analysis and synthesis of digital and
hybrid systems including high-quality test derivation significantly depends on the size of the
system (component) specification, in this paper, we address the problem of minimizing a
FSM with timed guards and input and output timeouts (TFSM). The behavior of a TFSM can
be described using a corresponding FSM abstraction and a proposed approach for minimizing
a TFSM is based on such abstraction. We minimize not only the number of states as it is done
for classical FSMs but also the number of timed guards and timeout duration. We show that
for a complete deterministic TFSM there exists the unique minimal (canonical) form, i.e., a
unique time and state reduced TFSM that has the same behavior as the given TFSM; for
example, this minimal form can be used when deriving tests for checking whether an
implementation under test satisfies functional and nonfunctional requirements. A proposed
approach for minimizing timed machines can be applied to particular cases of TFSM, i.e. for
FSM with timeouts and FSM with timed guards.

Keywords: Timed Finite State Machines; reduced form; minimal form.
DOI: 10.15514/1ISPRAS-2017-29(4)-8

For citation: Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State
Machines with time guards and timeouts. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017 r., pp. 139-154 (in Russian). DOI: 10.15514/ISPRAS-2017-29(4)-8

References
[1]. Gill A. Introduction to the Theory of Finite-State Machines. 1962, 207 p.

[2]. Lee, D., Yannakakis, M. (1996) Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE. 1996, 84(8), pp. 1090-1123.

[3]. Murphy T.E., Geng X.-J., Hammer J.. On the control of asynchronous machines with
races. IEEE Transactions on Automatic Control, 2003, 48(6), pp. 1073-1081.

[4]. Kumar R., Garg V.K. Modeling and control of logical discrete event systems. Kluwer
Academic Publishers, 1995, 143 p.

[5]. Cassandras C. C., Lafortune S.. Introduction to discrete event systems. Kluwer
Academic Publishers, 1999, 822 p.

[6]. Dorofeeva R., El-Fakih K., Maag S., Cavalli A., Yevtushenko N. FSM-based
conformance testing methods: A survey an-notated with experimental evaluation //
Information and Software Technology, 2010, 52, pp. 1286-1297.

153

mailto:evtush@gmail.com

Tvardovskii A.S., Yevtushenko N.V., Gromov M.L. Minimizing Finite State Machines with time guards and timeouts.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 139-154.

[7]. Zhigulin M., Yevtushenko N, Maag S., Cavalli A. FSM-Based Test Derivation
Strategies for Systems with Time-Outs. Proc. of the 11th International Conference on
Quality Software, QSIC 2011, IEEE, 2011. pp. 141-149.

[8]. El-Fakih K., Yevtushenko N., Fouchal H. Testing Timed Finite State Machines with
Guaranteed Fault Coverage. TestCom/FATES, 2009, pp. 66-80.

[9]. Merayo M., Nunez M., Rodriguez I., Formal testing from timed finite state machines,
Comput. Netw, 2008, 52 (2), 432-460.

[10].Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. Intern Conf. GANDALF,
2014, pp. 203-216.

[11]. Tvardovskii A., Yevtushenko N. Minimizing timed Finite State Machines. Tomsk State
University Journal of Control and Computer Science, 2014, Ne 4 (29), pp. 77-83 (in
Russian).

[12]. Tvardovskii A. On the minimization of timed Finite State Machines. Trudy ISP
RAN/Proc. ISP RAS, vol. 26, issue 6, 2014, pp. 77-84 (in Russian). DOI:
10.15514/ISPRAS-2014-26(6)-7

154

Mining Hybrid UML Models from Event Logs
of SOA Systems

K.V. Davydova <kvdavydova@edu.hse.ru>
S.A. Shershakov <sshershakov@hse.ru>
National Research University Higher School of Economics,
PAIS Lab at the Faculty of Computer Science,
20 Myasnitskaya st., Moscow, 101000, Russia

Abstract. In the paper we consider a method for mining so-called “hybrid” UML models,
that refers to software process mining. Models are built from execution traces of information
systems with service-oriented architecture (SOA), given in the form of event logs. While
common reverse engineering techniques usually require the source code, which is often
unavailable, our approach deals with event logs which are produced by a lot of information
systems, and some heuristic parameters. Since an individual type of UML diagrams shows
only one perspective of a system’s model, we propose to mine a combination of various types
of UML diagrams (namely, sequence and activity), which are considered together with
communication diagrams. This allows us to increase the expressive power of the individual
diagram. Each type of diagram correlates with one of three levels of abstraction (workflow,
interaction and operation), which are commonly used while considering web-service
interaction. The proposed algorithm consists of four tasks. They include splitting an event log
into several parts and building UML sequence, activity and communication diagrams. We
also propose to encapsulate some insignificant or low-level implementation details (such as
internal service operations) into activity diagrams and connect them with a more general
sequence diagram by using interaction use semantics. To cope with a problem of immense
size of synthesized UML sequence diagrams, we propose an abstraction technique based on
regular expressions. The approach is evaluated by using a developed software tool as a
Windows-application in C#. It produces UML models in the form of XML-files. The latter
are compatible with well-known Sparx Enterprise Architect and can be further visualized and
utilized by that tool.

Keywords: event log, process mining, hybrid UML model, UML sequence diagram, UML
activity diagram, reverse engineering.

DOI: 10.15514/ISPRAS-2017-29(4)-10

For citation: Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event
Logs of SOA Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.
DOI: 10.15514/ISPRAS-2017-29(4)-10

155

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

1. Introduction

Nowadays we use information systems everywhere. They are used not only at home
to increase the comfort of our life but also to support business processes. The
complexity of the systems is growing together with the complexity of processes and
tasks. Moreover, a lot of systems interact with each other. There is an increasing
chance of error as the complexity of the system increases. If the system finds these
errors, they are written into so-called event logs together with other information
about system execution. The logs store a lot of information during the work of the
system. On the one hand, manual processing of the logs is almost impossible
because of their size and lack of structure. On the other hand, the event logs are an
inestimable source of knowledge about real-life system behavior. Tools, which help
to obtain this knowledge in suitable form for analytics are extremely useful.
Different approaches, such as modeling, development within the standardized life
cycle, testing, quality assurance (QA), verification, etc., are applied to improve the
system quality and error correction. Using combinations of these instruments (for
example, testing and verification, modeling and reverse engineering with continuous
delivery) gives good results. New tools, modeling tools in particular, help to make
the process more convenient and more effective.

Models are built on different life cycle stages. In the classic approach, an architect
models an information system based on the customer‘s requirements. However, the
implemented system often differs from previously developed models because the
system is developed faster than its models. Developers may sometimes make
mistakes and may need to spend additional time on critical situations and deadlines.
This means that the design and implementation of some components is not
completed properly.

When there is no complete model of a system, reverse engineering techniques can
be applied to extract the necessary information from the system and build an
appropriate model. It allows us to obtain models of a real-life system automatically
or semi-automatically. These models correspond to a developed system rather than
to an initial plan and initial models. Such models aim both to understand a
structure/behavior of a real system and to eliminate any inadequacy of a real model
as compared to the initial model. This also makes it easier to fix errors in the
system. There are a number of approaches and tools aimed for this purpose. Most of
them require the source code of a system to perform analysis. It is not always
possible because of different reasons: the source code may not be available to
analysts; it is impossible to get the last copy of code or it can be lost. Moreover,
different work groups can develop different system components which complicates
centralized collection of source code.

Unlike existing reverse engineering approaches that use source code, we propose an
approach that works with system execution traces which can be extracted from
event logs. Our approach can be considered as a particular implementation of
Process Mining [1], a discipline aimed to discover, analyze and improve business

156

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

processes and their models. Our approach also includes features that are relevant to
software engineering. Hence, we refer to it as software process mining [2].

Process mining usually uses process models such as Petri nets, BPMN, Fuzzy maps,
etc. which are produced by applying different algorithms such as a-algorithm [1],
[3], [4], NLP-algorithm [5] or fuzzy miner [6] respectively. However, these models
are not perfectly suitable for software developers. In the software engineering area,
more specific approaches such as the Unified Modeling Language (UML) [7] are
more common. The most common approaches deal with static class diagrams,
statecharts, sequence and activity diagrams considering them as more descriptive
than other. According to UML 2.5, there are two groups of diagrams: structural and
behavioral. In this work we primarily focus on the behavioral group, in particular,
on sequence, activity and communication diagrams.

Modern approaches to the development of information systems make out small reusable
well-defined pieces of code, which are commonly refered to as services. Systems, using
services as a main component, are based on service-oriented architecture (SOA) [8]. Services
from heterogeneous SOA-systems are developed using different languages, environments
and tools, but they work in a single information space. Mining unified models of those
systems is a challenge and has some difficulties. For example, none of the popular reverse
engineering tools works with all languages used for web-service development [9]. As almost
all systems produce event logs which contain information about interesting system
components, it is possible to build models including all of these components. It simplifies the
process of reverse engineering and allows us to expand its application area.

In the paper, we consider event logs written by SOA-systems. Our goal is to expand
the applicability of UML-based models for SOA-systems by developing new
approaches and tools for mining such models from event logs. UML standard
describes different types of models which suit different modeling aspects of an
information system. Nevertheless, there are situations when analysts would like to
use expressive opportunities of several diagram types. UML 2.5 does not describe
such diagrams, and it does not forbid them either. In our paper, we propose a new
approach to UML-modeling, which includes mining a so-called hybrid diagram that
comprises elements of UML sequence and UML activity diagrams.

To illustrate the proposed approach, consider the following example.

1.1. Motivating example

We consider an event log (Table 1) produced by an online banking information system
with service-oriented architecture. The log contains a number of traces corresponding
to individual instances of a business process maintained by the information system.
Our goal is to obtain a UML model that represents some behavioral aspects of the
system from different perspectives [9].

Each row of Table I represents a single event. Columns represent attributes of the
log. Events are grouped in cases (by CaselD attribute); then, cases are represented in
the log by traces. Events are ordered by Timestamp attribute. Different components

157

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

of SOA are represented by other attributes such as Domain, Service/Process and
Operation. Domains contain services and processes while the latter consist of
operations [10].

Table 1. Log fragment L1. Banking SOA-system

CaselD | Domain Service/Process Operation Action | Payload Timestamp
user=a,
. . today=23.07.2015, 17:32:15
23 Account | Operations GetLastOperations REQ client=Maria, 135
manager=Julia
23 Account | CardInfo GetCardID REQ user=a, num=0 ;;632:15
23 Account | CardInfo GetCardInfo REQ num=0 ;;632:15
date=07/16,
name=MARIA 17:32:15
23 Account | CardInfo GetCardInfo RES GRISHINA. 267
id=15674839
_ 17:32:15
23 Account | CardInfo GetCardID RES res=15674839 297
23 Card Operations GetOperations REQ days=30 ;%32:15
23 Utils Calendar GetDate REQ days=30 %;32:15
23 Utils Calendar GetDate RES | res=23.06.2015 ez
. . res={BP Billing 17:32:15
23 Card Operations GetOperations RES Transfer} 513
. op=BP Billing 17:32:15
23 Card OperationData GetPlaceAndDate REQ Transfer 559
. op=BP Billing 17:32:15
23 Card OperationData GetPlace REQ Transfer 563
. res=RUS 17:32:15
23 Card OperationData GetPlace RES SBERBANK 571
ONLAIN PLATEZH
. op=BP Billing 17:32:15
23 Card OperationData GetDate REQ Transfer 575
. _ 17:32:15
23 Card OperationData GetDate RES res=20.07.2015 589
res=RUS
. SBERBANK 17:32:15
23 Card OperationData GetPlaceAndDate RES ONLAIN PLATEZH. 601
date=20.07.2015
_) _ 17:32:15
23 Account | Operations GetLastOperations RES res=succ 822
user=a,
. . today=23.07.2015, 17:40:18
25 Account | Operations GetLastOperations REQ client= Maxim, 345
manager=Julia
25 Account | CardInfo GetCardID REQ user=a 13;340:18
25 Account | CardInfo GetCard REQ num=0 121240:18
25 Account | CardInfo GetCard RES res=no cards 12240:18
25 Account | CardInfo GetCardID RES res=error 12540:18
. . _ 17:40:18
25 Account | Operations GetLastOperations RES res=no bounded cards 523

158

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

By applying a method [9] to the example log, we obtain a UML sequence diagram
as depicted in Figure 1 representing the overall process. The diagram contains all
possible details (excluding operation parameters) of the behavior of the system as it
is represented in the event log. Along with regular messages which connect two
different lifelines (depicted as vertical dash lines), the diagram also contains a
number of self-calls represented as labeled loop arrows, e.g. GetCardInfo,
GetCard. These self-calls are not important for studying the model from a more
abstract perspective. In contrast, they are important when modeling the process of
the individual service or another SOA component.

0 3) I) ‘cm Opemﬂon!‘

I
|
O GetlsstOperstions |

Utils::Calendar ‘ ‘Cald::()pelatmrmh‘

GetCargID

GetCardinfo

[P
__ leeCerdinio
GetCard

T T T e
_ _,GetCard

GetCardID
| _ SetCardD ——

alt GetOperations
T

GetDate

! GeiDate
GetOperatons ~ [[~TTTTTTTT7
[(S———————— === (i

GetPlaceAndDate

GetFlace

T
|
: -7

: _ _ | GetPlacs
|

' GetDate

|

|

T s
_ __GeiDate

E}<G eflastOperations

|

G<G siLastOpertions |
v

T

I3
I
|
|
|
|
|
|
|
|
}
O R A

Fig. 1. Usual UML sequence diagram mined from event log L1.

Thus, we propose to hide these calls on the general model with giving a reference to
another diagram. Note, that the hidden calls are restricted by one lifeline only. So,
using UML sequence diagram here loses its meaning, since only one agent is
involved. Therefore, it is convenient to model such behavior by using UML activity
diagrams, another type of UML diagram. Figures 2, 3 and 4 illustrate this idea and
represent a hybrid UML diagram combining the best features of two different model
types.

A distinctive feature of SOA, which is considered, is that processes call other
processes and services while services do not call other participants. To demonstrate
this feature, it is important to show the interaction between one selected service and

159

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

its direct services-neighbors which the service communicates with. A UML
communication diagram suits this purpose. = Example diagrams for
Card::Operations and Card::OperationData processes from example event
log are depicted in Figures 5 and 6 respectively. We can see that these processes are
called by other processes and call both different services and themselves.

We developed a tool that builds hybrid diagrams of UML sequence and activity
diagrams automatically. Moreover, the tool is able to build a UML communication
diagram for a selected SOA component.

‘ ‘Operati ‘ ‘ -ﬂlﬂ‘ﬂﬁ'\‘ Card::0) ‘ Utils::Calendar ‘ ‘Cald::opelahorﬂm‘
T T T T T
| | | | |
[:] GetlastOperations l : : : :
1 1 1 1
SetC i i i i
GetCard|D - | | |
| | |
| | |
ref | | |
Account-Cardinfo : : :
| | |
| | |
setc | | |
{____C_E‘:E_'d‘_p _____ | | |
L | | |
alt GetOperations - i i
: GetDate ! :
1 1
: GetDate :
GetOperations !
4 e 1 I
l 1 1
! GetPlaceAndDate ! !
| | | o]
| | |
I I I =
1 1 1
| | | y
| | | Card-OperstionDsts
| | |
| | |
1 | 1
e — |, CetPlacsndbete |]
[CetitOperations | | | | L
U 1 | | |
___________________ L el
i i [i i
D<EEILES\OpEIslian5 | : : : :
| | | |
1 1 1 1

Fig. 2. UML sequence diagram with hidden self calls. High-level diagram of a hybrid UML
diagram.

act Account::Cardinfo .~

GetCard

GetCardID
GetCardinfo

Fig. 3. UML activity diagram with an activity inside Account::CardInfo service.

160

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

act Card::OperationData /
H GetPlaceAndDate H GetPlace H GetDate l—';'(:)
end

start

Fig. 4. UML activity diagram with an activity inside Card::OperationData service.

1.2. Related work

Reverse engineering of behavioral UML diagrams is not a new area. There are a
number of works [11], [12], [13], [14], about building the UML diagrams based on
static source code analysis. Besides, there are some CASE tools [15], [16], [17],
[18], which can be used for reverse engineering of sequence and activity UML
diagrams. There is also a plug-in [19] for NetBeans development environment that
is able to build different types of behavioral models from Java source code.
However, all of the methods and tools mentioned above use static program analysis
(getting models from source code without execution) for their work. As it was
considered earlier, source code and all of its versions are not always available for
analysis. Hence, these tools and methods are useless in this case. Furthermore, none
of these tools is able to infer models from the code written in most popular
languages used for developing SOA information systems. Moreover, SOA
architectures are often developed with various programming languages. For
example, some modules can be written in C#, whereas others can be developed in
Java; they can interact with LAMP service, so a single CASE tool cannot produce
models for that system. Mining diagrams from event logs solves this problem.

sd Card::Operations -

Account: Card::Operations Utils::Calendar
Operations

Fig. 5. UML communication diagram for Card::Operations service.

5 :I Card: Operatlnn Data

Fig. 6. UML communication diagram for Card::OperationData service.

In [20], [21], [22], approaches to building models based on execution traces are
proposed. One related work [20] analyzes a single trace using meta-models of an
event log trace and a UML sequence diagram (UML SD). The trace includes
information not only about invocation of methods but also about loops and

161

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

conditions, which makes easier recognition of fragments such as iteration,
alternatives and options. However, logs of information systems do not usually
include this information, so it is necessary to modify the source code to apply this
approach.

There is a description of the mining UML sequence diagrams method based on
several execution traces in [22]. The authors propose to use a labeled transition
system (LTS) as an intermediate model to present one trace and an algorithm to
merge LTSs built by several traces. After that, the LTS is transformed into a UML
sequence diagram. Moreover, LTS can be used to build a Petri net that can then be
converted into a UML activity diagram [23]. This conversion possibility can be used
to apply different process mining algorithms for receiving a UML activity diagram.
The approach to mining hierarchical UML sequence diagrams is proposed in [9]
(see Section I11-D).

In [24], the authors describe a framework which allows not only behavioral but also
static UML diagrams to be built. Their framework generates execution traces by
itself from Java source code. After that, the framework is able to build UML activity
diagrams from traces, but it requires source code for its work.

Process mining proposes to use three abstraction levels for mining models for web
services interaction [25]: workflow, interaction and operation. At the operation
level, only one service is considered in order to look at its internal behavior and
functionality. At the interaction level, they consider not only one selected service
but also its direct callers and callees. Finally, the overall services interaction is
covered at the workflow level. We apply all of these levels to service-oriented
architecture in the paper.

Furthermore, research on service mining was described in [26]. The author builds
different Petri nets for different services (considered at the operation level) and then
combines them by places. Thus, he builds a generalized model which refers to the
workflow level.

The rest of the paper is organized as follows. Section Il gives definitions. Section IlI
introduces our approach to mining hybrid UML models. Section IV contains a
description of tool implementation. Section V concludes the paper and gives
directions for further research.

2. Preliminaries

P(X) is the powerset over some set X; A is a set of all possible string labels.
Definition 1. (Event log) Let e = (a4, a,, ..., a,) be an event, where a; is an i-th
attribute and n is a number of them. E is a set of events. ¢ =< ey, e,, ..., e, > is an
event trace where e, e,, ..., e, is an ordered set of events. Log = P(E) is an event
log which is a powerset of traces.

Definition 2. (UML Sequence Diagram) A UML sequence diagram is a tuple
Usp = (L, T,A,P,M,Ref,F), where:

162

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

e Tisaset of moments of discrete time, which determine a partial order over
diagram components.

o Lisasetof named lifelines. L = {l = (4, t)|1 € A, t €T}

e Als a set of activations mapped onto lifelines. a € A:a = (1, t, t.), where
lelty,t, €T t,<t,

e P c Aisasetof message parameters.

e Refisa set of interaction use (ref fragments) which group lifelines and hide
them interaction. ref € Ref : ref = (L',A),where L' c L,A € A
e M is a set of messages. m € M:m = (a,,t,A,a,, type), where a;,a, €
AURef,t €T,A€ P, type € {call,return}.a; = (I, t11,t12), Az =
(lz' l21' l22): tll < t21’t11 < t12't21 < t22
e F is a set of combined fragments of the diagram. F = {(frag, M")|M' <
M, frag € {alt, loop, opt, par}}
Figure 1 represents an example of UML sequence diagram. A lifeline is represented
as a vertical dashed line with its name at the top. An activation is represented as a
rectangle on a lifeline, which takes and emits messages (represented as arrows).
Message can be call and return and they contain text parameters. Messages inside
one fragment are ordered by time. Fragments contain a number of messages and can
contain other combined fragments. They are able to show alternatives, loops,
parallelisms and other control structures. Another type of fragment, ref fragments,
refer to other diagrams. Such diagrams can be both UML sequence diagrams and
UML activity ones.
Definition 3. (UML Activity Diagram) A UML activity diagram is a tuple Uy, =
(N,E,NT), where:
e NTis asetof node types. NT = {control,object, executable}
e Nisasetofnodes.n € N:n = (4, type), where 1 € A, type € NT
e Eisasetofedges. e € E:e = (n,n,), where ny,n, € N
Figure 3 represents an example of a UML activity diagram for Account: :CardInfo
service. Different node types have different meanings. Control nodes represent
different behavioral elements such as start, fork and decision. Object nodes
represent data (input and output) of an action. Executable nodes represent steps
(actions) of the modeling activity. There are three named executable nodes and four
control nodes (start, end, decision and merge) in Figure 3. Different control nodes
can impose limitations. For instance, start nodes cannot have incoming edges, end
nodes cannot have outgoing edges, decision and fork nodes can have only one
incoming edge but several outgoing ones; the opposite is true for merge and join.
Uy, is a set of all possible UML activity diagrams Uyp.
Definition 4. (Hybrid UML Diagram) A hybrid UML diagram is a tuple Uyp =
(Usp, AD,), where:
o Usp=(LT,A P, M Ref,F)isaUML sequence diagram.

163

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

e AD c Uy,
e f:Ref - AD is a function which maps ref fragments from a UML
sequence diagram onto corresponding activity diagram.
Figures 2, 3 and 4 illustrate an example of a hybrid UML diagram. Figure 2 is a
UML sequence diagram and represents a high-level diagram. It refers to UML
activity diagrams (Figures 3 and 4) using ref fragments.
Definition 5. (UML Communication Diagram) A UML communication diagram
isatuple Ucp = (Lep, Mcp), Where:
e LopcA is a set of named lifelines which represent interaction
participants.
e M.y is a set of messages. mep € Mep:mep = (13,15, 4), where 1,1, €
Lep, A € A.
Figures 5 and 6 provide examples of UML communication diagrams for two
different services.
U, is a set of all possible UML communication diagrams Up-
Definition 6. (Hybrid UML Model) A hybrid UML model is a tuple Ucp =
(Uyp, CD), where:
e Uyp isahybrid UML diagram.
e CDcUgp.
Figures 2, 3, 4, 5 and 6 represent a hybrid UML model built for example event log
L1

3. Mining Hybrid UML Models

The authors in [25] propose definitions of three levels of abstraction: operation,
interaction and workflow. The levels are used for consideration of web service
interaction. It motivated us to use different types of UML diagrams which
demonstrate features of these levels. In the following sections, we consider which
UML diagrams suit each abstraction level and why.

3.1. Operation and workflow abstraction levels

Operation level of abstraction shows what is happening inside one isolated service.
Activities outside the service are not considered at the operation level; the only
process participants are services. Using a UML sequence diagram leads to a large
number of self-calls and “snowball models”. 1t makes the diagram less readable and
less understandable. A UML activity diagram suits this purpose since it allows us to
demonstrate the complex relationships between operations inside a single
participant. Figure 3 shows an example of a UML activity diagram for service
Card: :OperationData.

A business process, provided by services, is represented at a workflow abstraction
level. There are a lot of participants, so it is useful to use a UML sequence diagram

164

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

for this level. The diagram is suitable to present not only a sequence of business
process actions but also participants of this process and their interaction. An
example for event log L1 is depicted in Figure 1.

To bind different abstraction levels, it is necessary to connect them. Our proposal is
to use hybrid UML diagrams to represent and connect operation and workflow
abstraction levels together. A UML sequence diagram is used to represent a
business process at a workflow abstraction level. The diagram contains special
objects, ref fragments, which make a connection to corresponding UML activity
diagram. Every such activity diagram models the behavior of a single service. An
example of considered hybrid diagram is presented in Figures 2, 3 and 4.

Input : an event log Log;

an attribute name with REQ/RES value Agrp;

a set of attributes for mapping onto lifelines Ay;

a set of attributes for mapping onto message parameters
A

a case ID which defines trace for which it is necessary to
build model caseld,;

a set of regular expressions for merging diagram
components Lrg ;

Output: Uy = (Ugp, CD) — hybrid UML model;

begin

/* Split event log into several
parts */
Logy, Log, < splitEventLog(Log, AL, ArR);
/* Build activity diagrams using
a-algorithm [3] */
AD + buildADsAlpha(Log,);

USD —
buildSD(Logw, AD, Lrg, AL, Am, ARR, caseld);
CD + buildCDs(Logw, AL, ARR);

return Upr;

Algorithm 1. Building a hybrid UML model Uy,

3.2. Interaction abstraction level

This level shows interaction of one selected service or process with its nearest
neighbors. For a given service, its nearest neighbors are caller and callee services. A
UML sequence diagram does not fully suit for representing this level as well as an
activity diagram. In the former case, a UML sequence diagram contains a time
perspective on which no relation can be mapped. Thus, this leads us to have a
“blind” diagram. In the latter case, it does not support multiple participants which is
important for this abstraction level.

We propose to use UML communication diagrams for depicting processes occurring
in SOA system at interaction abstraction level. An example of such a diagram for

165

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP

RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

Card::Operations and Card::OperationData from an event log example is

presented in Figures 5 and 6.

Input : an event log Log;
a set of attributes for mapping onto lifelines Az;
an attribute name with REQ/RES value Agpg;
Output: Log,, — a part of an event log which contains
interaction between different services;
Log, — a set of event logs (parts of initial event log).
Each of them contains events related to an individual
service;
Data: f: K — P(V), where K is a set of keys and
P(V) is a set of value sets;
begin
/* Get lifeline names from an event
log */
K + getLifelineNames(Log,AL);
for o € Log do
o 0
/* stack - stack with nested
events */
stack + 0;
for i + 1 to |o| do
e+ ali];
f(getLifelineName(e, AL)) +
f(getLifelineName(e, AL)) U{e};
if isRequest(e, Agg) = true then
€prev < Stack.peek();

i =0\ getLifelineName(e,AL)! =
getLifelineName(eprey, Ar) then
| o' +d'Ufeh
stack.push(e);

if isRequest(e, Arr) = false then

| stack.pop();

| Logw + Logw U{e'}:
for k € K do

| Log, ¢ Log, U{f(k)};
| return Logy, Logo;

Algorigm 2. Splitting of an event log into
several parts splitEventLog

166

Input : an event log Log; a set of UML activity
diagrams AD which Ugp will be refer to;

a set of regular expressions for merging diagram

components Lgg a set of attributes for mapping onto

lifelines Ay,; a set of attributes for mapping onto
message parameters Aps; an attribute name with

REQ/RES value Agp;

a case ID which defines trace for which it is necessary to

build model caseld;

Output: Usp = (L, T, A, A, M, Ref, F) — UML
sequence diagram referring to UML activity
diagrams;

begin

/* Get lifelines from event log */

L + mapLifelines(Log, AL) ;

if caseld = 0 then

isAlt + true;
caseld +
getCaseIdOfLongestTrace(Log);

else
L isAlt + false;

/* Get trace with case ID which is
equal to caseld x/
o + Log[caseld];

for i + I to |o| do

e+ ali];

while isRequest(e, Arr) = true do

if isAlt = true then

/* Look for differences
between corresponding events
in other traces, add found
events to diagram using
combined fragments */
findFrames(Log,caseld, e, Usp, Ay, Arr);

else
/* Get a message parameter
and add its message to
diagram */
mapMessagel(e, Ay, M, 4, Ref);
t—i+1;

while isRequest(e, Arr) = false do

if isAlt = true then

L findFrames(Log,caseld, e,Usp);

else

\\ mapResponseMessage(e, Ay, M, A, Ref);

t—i+1;
if LRE! = w then
/* Merge components of the diagram
using regular expressions */
| changeDiagramUsingREs(Ugp, Lrg)

| return Usp;

Algorithm 3. Building a UML sequence
diagram buildsD

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

Input : an event log Log;

a current event e;

a UML sequence diagram

Usp = (L, T,A,A,M, Ref, F);

Input : an event log Logy;

a set of attributes for mapping onto lifelines Ar;

an attribute name with REQ/RES value Agp;

Output: CD — a set of UML communication diagrams

N : for each service;
a set of attributes for mapping onto message parameters

A begin
an attribute name with REQ/RES value App; /x Iterate through lifeline nanes

i s e TS — (participants) from an event log */
a case ID which defines trace for which it is necessary to for I € getLifelines(Logy, A7) do

build model caseld, Lop & {1}
Data: T'ree is a tree with interaction operands Mcp + 0,
N for o € Log do
begin for i < 1 to |o| do

equalCases + (;

e+ ofi];
/* Look for corresponding not equal

if il =0\ getLifeline(e,Ar) =1

events in other traces, group case then
IDs with equal events into equalCases I + getLifeline(eprev, AL)}
*/ if i ¢ Lep then
Lop + Lep (')
notEqEvents CD D ;
. L Mep + Mop U{(, LDk

findNotEqEvents(e, Log, caseld, equalCases);
if not EqEvents! = 0\/

il =0\

isLastTrace(e, Log) = true then Q’Ef,l'ifeli“?(ewcyvAL) = then
/+ Look for operand where it is it‘ ?fiﬂ'lfﬁi‘:“e(e’ Ak

necessary to add events */ LCch LenU):

toAdd + findOperand(equalCases, Tree); L Mep — Mop U{(ii e

addMessagesToFragment (e, equalCases, L

toAdd, Tree); lfl igRequest(e,ARR) = true then
Cprev

Ucp « (Lep, Mep, A);
| CD+ CD\ H{Ucph

| return CD;

else
if Tree = () then
‘ Tree + newNode(equalCases);

if isRequest(e, Arg) = true then

| mapMessage(e, Au, M, A, Ref);

else Algorithm 5. Building UML communication
mapResponseMessage(e, Ay, M, 4, Ref); diagrams for each service buildCDs

Algorithm 4. Looking for differences
between corresponding events in other
traces findFrames

3.3. Building process

Figure 7 represents a workflow diagram of a hybrid mining process. The scheme
contains the following tasks (see Algorithm 1):

e Anevent log is split into several parts. The workflow part of the log refers
to services communication. Such communication is represented on a UML
sequence diagram at workflow level. The operation parts consist of events
referred to activity only inside a specific service.

e A UML sequence diagram is built from a workflow part of an event log
using the method proposed in [9] (see Section I11-D) extended by a number
of necessary ref fragments used for connecting with corresponding activity
diagrams.

167

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

e UML activity diagrams are built from the operation parts of the log
independently using one of the process mining algorithms which produces
a Petri net. For instance, a-algorithm [4] or inductive miner [27] can be
considered here. Then, Petri nets are converted into activity diagrams by a
simple translation routine. This conversion is rather trivial since UML
activity diagrams are initially based on Petri nets [7], [23].

3.4. Mining UML sequence diagrams

To mine a UML sequence diagram we use a method proposed in [9]. There, we
propose an approach to mining UML sequence diagrams with different levels of
abstraction. It consists of three steps. The first step of the approach is mapping event
log attributes onto UML sequence diagram components. There are two functions for
mapping attributes onto lifelines and message parameters. The smaller the SOA
element we choose for mapping onto lifelines, the lower the abstraction level we
receive.

Hybrid UML model

UML CD Miner
UML
communication
diagrams
Workflow)
part Hybrid UML diagram

UML SD Miner
UML
1 sequence
Event log diagram

Petri Net Miner

Operation rt UML
pparts sonve | activity

diagrams

Fig. 7. The workflow diagram of a hybrid mining process.

The second step is set to build a smaller model by applying regular expressions for
merging similar messages and lifelines on a diagram. For example, we have two
messages with the following parameters: GetPlaseAndDate, op=BP Billing
Transfer and GetPlaseAndDate, op=Retail. They differ in op value, thus, these
messages can be combined into one message with the following parameter:
GetPlaseAndDate, op=.*. After the merging, a derived model becomes more
generalized and its size decreases in width and height.

To demonstrate the hierarchy of calls, which is important for SOA, a hierarchical
diagram can be applied. Thus, the third step of our approach contains a way to
present a complex model by using hierarchical UML diagrams. UML standard [7]
allows us to divide the model into some parts and connect them by means of
interaction use (ref fragment) and gates.

168

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

4. Tool Overview

This section presents a brief overview of the software tool implementing the
proposed algorithm.

4.1. Event log

The tool requires an input event log to be presented in definite format. We use
simple CSV text files to represent event logs. An event log should contain a number
of fields that are mapped onto mandatory attributes, namely CaselD, Timestamp and
Activity.

4.2. Tool implementation

The tool is implemented as a Windows application written in C# programming
language. The tool allows users to configure main parameters such as regular
expressions, hierarchy and type of output diagram (regular UML, hierarchical or
hybrid). Regular expressions are applied for merging diagram components. It is
implemented as shown in Figure 8. The GUI allows the user to set the type of
diagram. The perspective of the diagram (a mapping attributes onto diagram
lifelines and messages) is set as it described in [9].

The output of the tool is an XMI-file containing a model and a description of
diagrams. It can be visualized by Sparx Enterprise Architect [15].

L=y UML Models Miner - O

Regular expressions:

GetPlaseAndDate, op=" Add
Diagram type

) Simple Hierarchical Hybrid

Fig. 8. GUI to set a type of the diagram and regular expressions for merging its components.

169

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

5. Conclusion

This paper introduced a new concept of hybrid UML models and proposed a method
of mining them from event logs of SOA information systems using a service mining
approach. Our method can also be applied to other types of UML diagrams. The
paper discussed approaches to mining diagrams at different abstraction levels.

Our method builds models by using only event logs. This is an advantage over some
reverse engineering techniques because the source code is not always available. The
proposed method includes mining hybrid UML diagrams that represent workflow
abstraction level on UML sequence diagrams and operation level on UML activity
diagrams. Moreover, we proposed to build UML communication diagrams to show
interaction abstraction level with regards to the service mining approach.

Generally, control structures in system‘s behavior lead to a presence of a big
number of nested combined fragments within a UML sequence diagram. It makes
the diagram less readable and less understandable. Although UML activity diagrams
have no time perspective in contradistinction to sequence diagrams, the former
show alternatives, loops and parallelism more clearly. Since there are also a lot of
event logs which are not produced by SOA systems, we are going to expand our
approach to mining hybrid UML diagrams from event logs of more broad types of
software architecture in the future.

Acknowledgement

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.

References

[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[2]. V. Rubin, C. W. Ginther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.
Schéfer. Process Mining Framework for Software Processes, pages 169— 181. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the a-algorithm to mine short loops. In Eindhoven
University of Technology, Eindhoven, 2004.

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16:2004, 2003.

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, pages 482-496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[6]. C. W. Gunther and W. M. P. van der Aalst. Fuzzy Mining — Adaptive Process
Simplification Based on Multiperspective Metrics, pages 328-343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

170

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

[7]

[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].
[18].
[19].
[20].

[21].

[22].

[23].

[24].

[25].

. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. 28(3):85-102, 2016.

S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In
Modeling and Analysis of Information Systems, pages 818-833, 2015.

A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered
Sequence Diagrams. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 254-263, New York, NY, USA, 2005. ACM.

A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96-102,
September 2005.

P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159-168. IEEE
Computer Society, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297-298. IEEE Computer Society, 2006.

Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

Visual Paradigm. https://www.visual-paradigm.com/ features/.

Altova UModel. http://www.altova.com/umodel.html.

NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.

L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642—
663, September 2006.

R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin
Breitman, and Roy Sterritt, editors, ICECCS, pages 107— 116. IEEE Computer Society,
2011.

B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. 2(3):798-805, 2013.

A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE ’16, pages 20-26, New York, NY, USA, 2016. ACM.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.

171

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

[26]. W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing, 6(4):525-535,
2013.

[27]. S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour, pages
66-78. Springer International Publishing, Cham, 2014.

MeTon aBTOMaTU4YE€CKOro NocTpoeHus rmopuaHbix UML-
Mozaerien Ha OCHOBe XXYypHasrioB COObLITUM CUCTEM C CepBUC-
OPUEHTUPOBAHHOU apXUTEKTYPOW

K.B. Jlasvioosa <kvdavydova@edu.hse.ru>
C.A. Ulepwaros <sshershakov@hse.ru>
Hayuonanvuwiii uccnedosamensckuii ynugepcumem Boicuias wKoaa IKOHOMUKU,
nabopamopus [IOUC ¢axyremema KomnviomepHvix HAYK,
101000, Poccus, . Mocksa, yn. Macrhuykas, 0. 20

AHHOTanmsi. B jaHHOH cTaThe MBI IpeaiaraeM METOJ aBTOMAaTHYECKOTO MOCTPOCHUS Tak
Ha3bIBaeMBIX «ruHOpuaHbIX» UML-Mozmeneif, 4ro oTHocuTcs K 00nacTé W3BICYEHHS U
a”anm3a nporeccos I10. Monenn cTposiTcss Ha OCHOBE TPAcC UCIIOMHEHMS, MPEICTABICHHBIX
B BUJIC)KYPHAJIOB COOBITHI, CUCTEM C CEpPBHC-OpUEHTUPOBaHHOM apxutekTypoit (COA). B To
BpeMs KaK H3BECTHBIE TEXHHUKH OOpaTHOH pa3paboTKM OOBIYHO HCIOJIB3YIOT HMCXOIHBIN
MIPOrpaMMHBIA KOJ, KOTOPBIH YacTO HEMOCTYIEH, Hall MOAXOJ paboTaeT ¢ KypHalaMu
COOBITHH, 3aNUCHIBAEMBIMH OOJNBIIMHCTBOM HH(OPMALMOHHBIX CHCTEM, M HEKOTOPBIMH
9BPUCTUYECKHUMH TapameTpamu. Tak kak otaenbHblid knacc UML-nuarpamm npencrasnsier
TOJBKO OJJHY TIE€PCIIEKTHBY MOJENH CHCTEMBI, MBI TIpeJJlaraéM CHHTE3UPOBaTh KOMOHMHAIINIO
Heckonbkux KiaccoB UML-muarpamm (IoCieoBaTeIbHOCTH M JICSTENBHOCTH), KOTOpbIE
paccMaTpHBarOTCSl COBMECTHO C JUarpaMMaMH KOMMYHHKAIMi. JTO MO3BOJISIET IOBBICUTH
BBIPA3UTENBHYIO CHIIy OTAENBHOM «TuOpuaHON» amarpamMbl. Kaxmelii kimacc aumarpamMm
npescTaBisieT oauH U3 ypoBHel aGerpakiuu (workflow, operation u interaction), kotopsie
OOBIYHO MCHOJIB3YIOTCS IIPH PACCMOTPEHHHM B3anmojeiicTBust Web-cepsucos. TIpeanaraempliii
ITOPUTM COCTOMT W3 HYETHIPEX JTAloB: pa3feNeHHE >KypHala COOBITHH Ha HECKOIBKO
gacreif, mnoctpoerne UML nmmarpamMmm mocienoBaTeNbHOCTH, — JESTENFHOCTH U
KOMMYHHKaImii. MBI Taroke MpeiaraeM HHKaICYIHPOBaTh HEKOTOPHIE HE3HAUYUTEIIbHBIE HITH
HH3KOYPOBHEBbIE HMIUIEMEHTAIIMOHHbIE JeTalu (HampuMmep, BHYTPEHHHE OIepalyun
CEpPBHCOB) B JHarpaMMbl JCATCIBHOCTH W COCIMHATH HX C 0oJiee BBHICOKOYPOBHEBBIMU
JMarpaMMaMH TIOCJICJIOBAaTEFHOCTH C HCIONB30BaHHEM «interaction use» d¢parmeHTos.
YrtoObl pemmTth mpobiaeMy Oospmimx pa3mepoB cuHTesupyembix UML amarpamm
MOCJICZIOBATEILHOCTH, MBI Ipe[yaraeM o0OOLIAIONIyI0 TEXHHKY, OCHOBaHHYIO Ha
pETyISpHBIX BBIpaXKEHMsX. [Ipe/Io’keHHBIH IOAXOJ OINEHEH C HCIOJIb30BaHUEM
pa3pabOTaHHOTO MPOrPaMMHOTO HHCTpyMeHTa B Buiae Windows-mpuioxeHus, HalucaHHOTO
Ha s3bike C#. OtoT mHCTpy™MeHT ctpout UML mMozmenn u coxpanser ux B Bune XML-daiinos.
Takue aiiel COBMECTHMBI C XOpOIIO U3BECTHBIM HHTPYMEHTOM IPOEKTHPOBAHHS
MporpaMMHO# apxuTekTypsl Sparx Enterprise Architect, B koTopom CHHTE3MpOBaHHbIE
MOJIENT MOTYT OBITh BH3YaJIM3UPOBAHbI U OTPEIAKTHPOBAHBL

172

Jaseinosa K.B., Illepurakos C.A. Metox aBToMaTiueckoro noctpoenus rubpuausix UML moaeneit Ha ocHoBe
skypHanoB coobiTiit COA-cucteM. Tpyowt UCIT PAH, tom 29, Bein. 4, 2017 1., ctp. 155-174.

KaroueBbie cJI0OBa: XypHal COOBITHIL; M3BJIEUYEHHE M aHATM3 IporeccoB (Process mining);
rubpugaeie UML monmenw; jgmarpamma mocnenoBarenbHoctH UML; nmarpamma
nesrenbHocTH UML; oOpatHas pa3paboTka.

DOI: 10.15514/ISPRAS-2017-29(4)-10

Jna upuruposanms: J[laBeimoBa K.B., Illepmakos C.A. MeToag aBTOMaTHYECKOIO
noctpoenust rubpuaHeix UML mogmeneli Ha ocHOBe xypHanoB coOwbituii COA-cucrem.
Tpyaet UCIT PAH, tom 29, Bbim. 4, 2017 r., ctp. 155-174 (na auriwmiickom si3bike). DOI:
10.15514/ISPRAS-2017-29(4)-10

Cnucok nutepatypbl

[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.

[2]. V. Rubin, C. W. Giinther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.
Schéfer. Process Mining Framework for Software Processes, pages 169— 181. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M.
Weijters. Process mining: Extending the a-algorithm to mine short loops. In Eindhoven
University of Technology, Eindhoven, 2004.

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16:2004, 2003.

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, pages 482-496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[6]. C. W. Gunther and W. M. P. van der Aalst. Fuzzy Mining — Adaptive Process
Simplification Based on Multiperspective Metrics, pages 328-343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[7]. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.

[8]. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[9]. K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. 28(3):85-102, 2016.

[10]. S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In
Modeling and Analysis of Information Systems, pages 818-833, 2015.

[11]. A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered
Sequence Diagrams. In Proceedings of the 27th International Conference on Software
Engineering, ICSE 05, pages 254-263, New York, NY, USA, 2005. ACM.

[12]. A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96-102,
September 2005.

173

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

[13].
[14].
[15].
[16].

[17].
[18].
[19].
[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

174

P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159-168. |EEE
Computer Society, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297-298. IEEE Computer Society, 2006.

Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

Visual Paradigm. https://www.visual-paradigm.com/ features/.

Altova UModel. http://www.altova.com/umodel.html.

NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.

L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642—
663, September 2006.

R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.

T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin
Breitman, and Roy Sterritt, editors, ICECCS, pages 107— 116. IEEE Computer Society,
2011.

B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. 2(3):798-805, 2013.

A. Bergmayr, H. Bruneliere, J. Cabot, J. Garcia, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE 16, pages 20-26, New York, NY, USA, 2016. ACM.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.

W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing, 6(4):525-535,
2013.

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour, pages
66-78. Springer International Publishing, Cham, 2014.

Tool for Behavioral Analysis of Well-
Structured Transition Systems

L.W. Dworzanski <leo@mathtech.ru>
V.E. Mikhaylov <vlamikhaylov@gmail.com>
Department of Software Engineering,
National Research University Higher School of Economics,
Myasnitskaya st., 20, Moscow, 101000, Russia

Abstract. Well-structured transition systems (WSTS) became a well-known tool in the study
of concurrency systems for proving decidability of properties based on coverability and
boundedness. Each year brings new formalisms proven to be WSTS systems. Despite the
large body of theoretical work on the WSTS theory, there has been a notable gap of empirical
research of well-structured transition systems. In this paper, the tool for behavioural analysis
of such systems is presented. We suggest the extension of SETL language to describe WSTS
systems (WSTSL). It makes the description of new formalisms very close to the formal
definition. Therefore, it is easy to introduce and modify new formalisms as well as conduct
analysis of the behavioural properties without much programming efforts. It is highly
convenient when a new formalism is still under active development. Two most studied
algorithms for analysis of well-structured transition systems behavior (backward reachability
and the Finite Reachability Tree analyses) have been implemented; and, their performance
was measured through the runs on such models as Petri Nets and Lossy Channel Systems.
The developed tool can be useful for incorporating and testing analysis methods to
formalisms that occur to be well-structuredness transition systems.

Keywords: formal verification; infinite systems; well structured transition systems;
Petri nets

DOI: 10.15514/ISPRAS-2017-29(4)-11

For citation: Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-
Structured Transition Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp.
175-190. DOI: 10.15514/ISPRAS-2017-29(4)-11

1. Introduction

Formal verification provides researchers and developers with approaches that are
widely-used for proving that a program satisfies a formal specification of its
behavior. These methods are highly demanded in the software and hardware

175

http://lms.hse.ru/?ap&t_id=100027
http://lms.hse.ru/?ap&t_id=100027

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

engineering, as they provide appropriate level of systems reliability; which, in most
cases, cannot be ensured by simulation.

One of the most common technique of formal verification is model checking or
property checking. It involves algorithmic methods that are applied to check
satisfiability of a logic formula used for the representation of the specification and
the model of a system. The main advantage of model checking is considered to be
the fact that it enables almost completely automatic process of verification. Model
checking proved to be effective in practice for analysis of finite-state systems [1];
however, in case of systems with infinite state space the situation is more
complicated because exhaustive search, which is usually used by verification tools,
cannot be applied directly.

In order to deal with infinite-state systems Finkel proposed the idea of well-
structured transition systems (WSTS) in 1987 [2]. “These are transition systems
where the existence of a well-quasi-ordering over the infinite set of states ensures
the termination of several algorithmic methods. [3]” The suggested model has
provided researchers with an abstract generalization of several models (e.g. Petri
nets, lossy channel systems and timed automata). Therefore, the results obtained
from the analysis of such a generalized model can be also applied to these specific
models.

The WSTS analysis can be used to solve, for instance, covering, termination,
inevitability and boundedness problems. However, the application of the WSTS
analysis is hampered by the necessity of implementing algorithms and data
structures to support the analysis for each new formalism. In this work, the tool that
can be used for analysis of WSTS is presented. We introduce the WSTSL language
- modification of SETL language [13,14] — set-theoretical programming language.
The language provides the user with opportunity to define the structure of analyzed
system as close to the original formal definition as possible. After definition of the
formalism, it is immediately possible to run backward reachability method [4] or the
Finite Reachability Tree [5] on it. It is convenient for computer science researcher
to postpone the implementation phase after what-if experiments.

The rest of the paper is organized as follows. The second section describes WSTS’s
basic terms and underlying concepts. The third section provides the description of
two used algorithms (the backward reachability method and the Finite Reachability
Tree). The forth section presents the architecture of the developed analysis tool. The
fifth section shows how the developed tool is used for the analysis of Petri nets and
provides performance analysis results. The sixth section summarizes and provides
possible applications of the study for the future research.

2. Well-Structured Transition Systems

The definition of well-structured transition systems (WSTS) was proposed by
Finkel in [2]. It is based on the two main concepts: transition systems (TS) and well-
quasi-orderings between the states of these systems.

176

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

Transition system (TS) is one of the most widely-used models for formal
description of the behavior of different systems. A transition system is defined by a
structure TS = (S, -, ...) where S = {s, t, ... } is a set of states, and - S X § is any
set of transactions [3]. TS can be also supplemented by other structures such as
initial states, labels for transitions, durations or causal independence relations [3];
however, for the consideration of the concept of WSTS using of set of states along
with set of transactions is sufficient.

A binary relation < on a set X is called preorder or quasi-ordering (qo) if it is
reflexive and transitive. So for any a, b, c S X we have:

1) a < a (reflexivity);

2) ifa<bandb < cthena < c (transitivity).

Definition 1. A well-quasi-ordering (wqo) is a go in which for every infinite
sequence of elements xg,x;,x;,x3,... ©X there exist such indices i < j that
x; < x; [3,6]. According to [7], there are a range of equal definitions of wqo;
however, the definition given above is generally used in papers on WSTS.
Definition 2. A well-structured transition system (WSTS) is a transition system
TS = (§,—-,<) equipped with a go << S x S between states such that the two
following conditions hold:
1) well-quasi-ordering: < is a wqo, and

2) compatibility: < is (upward) compatible with —, i.e. for all s; <t; and
transition s; — s, there exists such a sequence of transitions t; - t, that
s, < t, [3].

Succ(s) denotes the set {s' € S| s — s’} of immediate successors of s. Likewise,
Pred(s) denotes the set {s’ € S | s" — s} of immediate predecessors.

An upward-closed set is any set I € X such that y > x and x € [entail y € I. A
basis of an upward-closed I is a set I” such that I =U,»Tx, where
Tx =% {yly=x}.

3. Algorithms

3.1 Backward Reachability Method

Backward reachability method proposed by Abulla et al. in [4] is intended to solve
the covering problem which is to decide, given two states s and t, whether starting
from s it is possible to reach a state t' > t. This is essentially one of set-saturation
methods termination of which relies on the lemma that says that any increasing
sequence of upward-closed sets (I, € I; € I, < ---) eventually stabilizes (i.e. there
issuchak e Nthat [, = I, ;1 = Iy4o = -++) [3].

177

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

Assume there is some WSTS TS = (S, -, <) and some upward-closed set of states
I € S. Backward reachability method on the each j-th step generates the set of states
from which I can be reached by a sequence at most j transitions [4].

More strict generalization was suggested by Finkel and Schnoebelen in [3], where it
involves computing Pred*(I) as the limit of the sequence I, € I; < --- where
I, =%f Iand I,,., =% I, U Pred(l,).

Definition 3. A WSTS has effective pred-basis if there exists an algorithm
accepting any state s € S and returning pb(s), a finite basis of T Pred (T s).

The covering problem is decidable for WSTS if it has effective pred-basis and
decidable <. The proof of this statement is given in [3]. Essentially, it is said that if
there is a sequence K, K; ... with K, =€/ [? (finite basis of 1), K,,; =% K, U
pb(K,,) and m is the first index such that T K,, =T K41, then TU K; = Pred*(I).
By decidability of <, it is possible to check whether s € T Pred*(T t).

3.2 Finite Reachability Tree

The Finite Reachability Tree belongs to tree-saturation methods which represent
methods that consider all possible computations inside a finite tree-like structure
[3]. It is also called the forward analysis method, in contrast to the backward
analysis. Essentially, it is based on the ideas proposed by Karp and Miller in [5].
Assume there is some WSTS TS = (§,—,<). For any state s € S, the Finite
Reachability Tree is such a finite directed graph (tree) that:

1) nodes of the tree are labeled by states of S;

2) nodes are either dead or live;

3) the root node is a live node n,, labeled by s (written n; : s);

4) dead nodes have no child nodes;

5) alive node n : t has one child n’ : t’ for each successor t" € Succ(t);

6) if along the path from the root n, : s to some node n’: t’ there exists a node
n:t(n #n')suchthatt <t’, we say that n subsumes n’, and then n' is a
dead node [3, 6].

The Finite Reachability Tree is effectively computable if S has (1) a decidable <,
and (2) Succ mapping is computable [3]. All paths in the finite reachability tree are
finite as any infinite path would include a covering node [6].

This algorithm can be applied to termination, inevitability, and boundedness
problems (see [3] for details).

4. Proposed Architecture

The general structure of the architecture of the developed tool is illustrated in Fig. 1.
It consists of two main parts: Well-Structured Transition Systems Language

178

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

(WSTSL) and WSTS Analyzer. Also there are four input parameters that are set by
the user through WSTSL.

well-quasi-
ordering

WSTS Analyzer

h J

Fig. 1. Architecture of the developed tool

WSTSL is a programming language used in the developed system as the front-end
which provides user with a means of describing input parameters. Therefore, the
following data types are included: integers, tuples, maps and sets. To run the
appropriate algorithm the user has to use either backwardanalysis() or
forwardanalysis() command. As it is depicted in Fig.1 the parser for WSTSL is built
with Another Tool for Language Recognition (ANTLR), which generates it from a
formal language description called a grammar [8]. The parser’s sources are
generated in Java, since ANTLR itself is written in Java and provides more parsing
capabilities for some cases in comparison with other supported target languages
(C#, JavaScript, Python2, Python3, Swift, Go).

WSTS Analyzer represents that part of the system which is responsible for the
processing of the input transition system, which it gets from the WSTSL parser, and
the application of the algorithm selected by the user. WSTS Analyzer is
implemented in Java, as it allows running it in all platforms that support Java, and,
most importantly, naturally interacts with parser’s Java classes generated by
ANTLR.

As it was noted above, the input that is provided by the user includes four main
parts. Firstly, a general structure (WSTS structure) of the analyzed transition system
should be described (e.g. Petri nets or lossy channel systems in general). Secondly, a
well-quasi-ordering should be specified. Then, a structure of a specific transition
system (WSTS instance) that corresponds to the general structure is provided.

179

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

Finally, the desired analysis algorithm with appropriate parameters (query) is
specified. Essentially, all these parts are described in a single input program written
in WSTSL. Afterwards, the WSTS Analyzer runs the selected algorithm on the
specified system and generates report which format depends on the choice of the
algorithm.

5. Experiment

5.1 Petri Net

The applicability of the proposed approach could be demonstrated by an example
with common well-structured transition system called Petri net. The classical
definition of this model is the following.

Definition 4. A Petri net (P/T-net) is a 4-tuple (P, T, F, W) where
e P and T are disjoint finite sets of places and transitions, respectively;
e FC (PXT)U(T X P)isasetofarcs;

e W :F — N\ {0}-an arc multiplicity function, that is, a function which
assigns every arc a positive integer called an arc multiplicity or weight.

o A marking of a Petri net (P, T, F, W) is a multiset over P, i.e. a mapping
M : P - N. By M(N) we denote the set of all markings of the P/T-net N.

e \We say that a transition ¢ in the P/T-net N = (P, T, F,W) is active in
marking M if foreveryp € {p | (p,t) € F}:
M(p) = W(p,t). An active transition may fire, resulting in a marking M’,
suchas forallp € P:M'(p) = M(p) — W(p,t)

ifpel{p|(pt) €F}, M'(p)=Mp)-W(p,t)+W(tp)

ifp €{p|(t,p) € F)and M'(p) = M(p) otherwise.
For simplicity’s sake, we consider here the Petri net which arcs can only have
multiplicity 1.
For the experiment the Petri net illustrated in Fig. 2 will be considered.

P4
P2
T1 T2
P1
Fig. 2. Instance of the Petri net for consideration in the experiment
180

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

First of all, the general structure of the Petri net model described above should be
defined by means of WSTL (Fig. 3).

Lype P : set of int;

type T : set of int;

type PT(Pl:P, T1:T) : set of [from Pl,from T1];
type TP(P1:T, P1:P) : set of [from T1l,from P1l];
type M(P1:P) : map <from P1l,int>;

type PN(P1:P, T1:T,
pTl:PT, TPl:TP) : [P1,T1,PT1,TP1l]:;

Fig. 3. General structure of Petri net in WSTSL

Secondly, we describe the specific Petri net instance in WSTSL (Fig. 4). PT1 and
TP1 represent the arcs from places to transitions and vice versa, respectively. In
tuples, defining arcs, the corresponding transition goes first for the convenience in
description of Succ and Pred function as it will be seen below.
var P1:P = {("P1","P2","P3","P4"};
var T1:T = {"T1","T2"};
var PT1:PT(P1,T1) = {["T1","P1"],["T2","P2"],
[I|T2l|' HP3||] };
var TP1:TP(T1,P1) = {["T1","P2"],["T1","P3"],
("T2","P1m"y, ["T2","PA"]};

Fig. 4. Description of the specific Petri net instance in WSTSL

Then, a well-quasi-ordering should be described (Fig. 5). As it is shown in [3], the
inclusion ordering (M € M'when M(p) < M'(p) for every place) is a wqo and it is
known as Dickson’s lemma [9]. Operator forall iterator | test generates a boolean
value true if the condition test is met for each step in iterator and a boolean value
false otherwise.

func wqgo (PN1:PN, sl:M, s2:M)
return forall p in PN[0] | sl[p] <= s2[pl;
end func;

Fig. 5. Well-quasi-ordering function described as inclusion ordering in WSTSL

As it has been mentioned above in the Algorithms section, Backward Reachability
Method requires effective algorithm for computation of pred-basis. The algorithm
to compute it for Petri Net was suggested in [4]. How it is described in WSTSL is
shown in Fig. 6.

181

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

func pred(PN1:PN, K:set of M)
var P1:P = PN1[0O];
var T1:T = PN1[1];
var PT1:PT(P1,T1) = PN1[2];
var TP1:TP(T1,P1) = PN1[3]:
var predecessors: set of M(P1l) = { };

for s in K
for t in T
if forall tp in TP1[t] | s[tp[1l]] - 1 >= 0 then

sl = s;
for pt in PT1[t]
sl[pt[1l]] = sl[pt[1l]] + 1;

end for;
for tp in TP1[t]

slitp[1]] = slltp[1]] - 1;
end for;
predecessors = predecessors with sl;
end if;
end for;

end for;
return predecessors;
end func;

func pb (PN1:PN, K:set of M)
return min (pred(PN1, TI), wdgo)
end func;

Fig. 6. Description of the pred-basis and pred functions in WSTSL

To solve the covering problem the initial state and the state which coverability it is
required to check should be specified. Afterwards, backwardanalysis function
should be invoked with appropriate arguments (Fig. 7).

var mO:M(P1)

{<"P1",1>,<"P2",0>,
<"p3",2>,<"P4",1>};
var mc:M(P1l) = {<"P1",1>,<"pP2",1>,
<"pP3",1>,<"P4A", 2>} ;

backwardanalysis (PN1,wgo,pb,m0,mc) ;

Fig. 7. Description of the initial marking and the marking which coverability it is required to
check with Backward Reachability Method invocation

The tool provides the user with the output that contains sequence of sets K;, where
Ky = {m.}, Kn41 = pb(K,), their union U,y K; and its minimal elements (basis).
Finally, it is reported whether the analyzed state (marking) m, is covered or not
(Fig. 8).

182

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM

niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

KO:
K1:

K2:
K3:

K4:
K5:

[{P1=1,P2=1,P3=1,P4=2}]
[{P1=0,P2=2,P3=2, P4=1},
{P1=2,P2=0,P3=0,P4=2}]
[{P1=1,P2=1,P3=1,P4=1}]
[{P1=0,P2=2,P3=2, P4=0},
{P1=2, P2=0, P3=0, P4=11}]
[{P1=1,P2=1,P3=1,P4=0}]
[{P1=2,P2=0,P3=0,P4=0}]

Union: [{P1=0,P2=2,P3=2,P4=0},

{P1=0,P2=2,P3=2,P4=1},
{P1=1, P2=1, P3=1, P4=0},
{P1=1, P2=1,P3=1,P4=1},
{P1=1, P2=1, P3=1, P4=2},
{P1=2, P2=0, P3=0, P4=0},
{P1=2,P2=0,P3=0,P4=1},
{P1=2, P2=0, P3=0, P4=2}]

min (Union) :

[{P1=0,P2=2,P3=2,P4=0},
{P1=1,P2=1, P3=1, P4=0},
{P1=2,P2=0, P3=0, P4=0}]

The state {P1=1,P2=1,P3=1,P4=2} is not covered

Fig. 8. Report of the tool for the backward analysis invocation

As it has been mentioned above in the Algorithms section, Finite Reachability Tree
requires effective algorithm for computation of Succ. How it is described in WSTSL

is shown in Fig. 9.

To construct Finite Reachability Tree only the initial state should be specified.
Afterwards, forwardanalysis function should be
arguments (Fig. 10).

invoked with appropriate

183

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

func succ (PN1:PN, s:M)
var Pl:P = PN1[O0];
var T1:T = PN1[1]:

var PT1:PT(P1l,T1l) = PN1[2];
var TP1:TP(T1,P1l) = PN1[3];
var successors : set of M(Pl) = { };
for t in T
if forall pt in PT1[t] | s[pt[l]] - 1 >= 0 then
sl = s;
for pt in PT1[t]
sl[pt[1]] = sl[pt[1]] - 1;

end for;
for tp in TP1[t]

sl[tp[l]] = sl[tp[l]] + 1;
end for;
successors = successors with sl;
end if;
end for;
return successors;
end func;

Fig. 9. Description of the Succ function in WSTSL

var mO:M(P1) = {<"P1",1>,<"P2",0>,
<"PAM, 2>, <"P4",1>};

forwardanalysis (PN1,wgo, succ,m0) ;

Fig. 10. Description of the initial marking and the Finite Reachability Tree construction
invocation

The tool provides the user with the image which illustrates constructed Finite
Reachability Tree (Fig. 11). Nodes are labeled with their states. Dead nodes are red.
The node labeled with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1, P2=0,
P3=2, P4=2} >{P1=1, P2=0, P3=2, P4=1} (the latter state is represented by the root
which subsumes the dead node labeled by the former state).

P1=1 P2=0 P1=0 P2=1 P1=1 P2=0
P3=2 p4=1 P3=3 P4=1 P3=2 P4=2

Fig. 11. Constructed finite reachability tree

184

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

5.2. Lossy Channel Systems

Another model that we considered was Lossy channel system (LCS) which is a
subclass of FIFO-channel systems.

Definition 5. FIFO-channel system is a 6-tuple (S, sy, 4, C, M, §) where
e Sisa finite set of control states;

So € S is the initial control state;
e A isa finite set of actions;
e Cisa finite set of channels;

e M is afinite set of messages (M~ is a set of finite strings composed of
elements from M);

e ¢ isafinite set of transitions, each of which is represented by one of the
following tuples (s, c!m, s;), (s1,c?m,s,), (51, a,s;), where s;,s, € S,
c€eC,m € Mand a € A (see below).

Transition (s;,c!m,s,) changes the control state from s; to s,, adding the
message m to the end of the channel c. Operation c!m is also known as a send
action.
Transition (s;,c?m,s,) changes the control state from s; to s,, removing the
message m from the beginning of the channel c. If the channel ¢ is empty or its first
element is not m, then this transition cannot occur. Operation c? m is also known as
a receive action.
Transition (s;,c?m, s,) changes the control state from s, to s, and does not change
the state of the channels.
Considering LCS it is also assumed that some message in some channel can be lost
at any moment. To model this behavior one more operation 7(c, m) is introduced.
Transition (s;,7(c,m),s,) removes the message m from the channel ¢, and does
not change the control state.
For LCS = (S,50,4,C,M,5) the ordering < is defined on the set of global states
{(s,w)]| s € S,w:C - M*} as follows:
s,w) < (' w)yes=s"Aw(c) Kw'(c)Vc eC.
The ordering « is a subword ordering: u « v iff u can be obtained by erasing
letters from v. It is shown in [6] that this ordering is a wgo.
The concrete model that we considered was Alternating Bit Protocol (ABP). It is
represented by Sender and Receiver which communicate via two FIFO-channels ¢,
and c,. Sender sends messages to Receiver via c,, while Receiver sends
acknowledgements via c,. Both channels can lose messages. Messages and
acknowledgements contain one-bit sequence number 0 or 1. Sender continuously
sends the same message with the same sequence number, until it receives an
acknowledgement from Receiver with the same sequence number. Then, Sender
changes (flips) the sequence number and proceeds with sending the next message.
Receiver starts by waiting the message with the sequence number 0 (actually, it can
185

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

initially send acknowledgments with the sequence number 1). When it receives such
a message it starts sending acknowledgements with the same sequence number,
until it receives the message with the flipped sequence number and so on. The
described model is illustrated in terms of Lossy Channel System in Fig. 12.

Cu'0 Ca?1 Cw?d Call

Sender Receiver

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System

5.3 Performance

To measure the performance of the implemented Finite Reachability Tree algorithm
we applied it to the four different models, which include a model shown in Fig. 2
(Example 1) and the Petri Net models simulating the dining philosophers problem
[10] for a number of philosophers equal to 5, 6 and 7. We executed the experiment
on the following machine: Intel Core i7, 2.22 GHz, 16 GB RAM running OS X El
Capitan (v. 10.11.6). System.nanoTime() method was invoked immediately before
of the beginning of construction of a FRT and immediately after the end of
construction, then the difference was calculated to measure run time for one run. In
Table 1 in the Run time column average results for 20 runs are given in seconds. As
well, sizes of the constructed FRTs are given. It can be seen that both run time and
size of FRT grow exponentially for the philosophers problem.

Table 1. Performance of the tool during Philosophers problem solving

Run time (s) | Size of FRT
Example 1 0.03596 3
Phil5 0.08587 241
Phil6 1.87815 25711
Phil7 5221.64756 | 88062003

186

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

6. Summary

This paper addresses a lack of practical results in studies of well-structured
transition systems. In order to fill this gap, there was presented one of the possible
ways for development of the system capable to analyze WSTS with two common
algorithms: backward reachability method and the Finite Reachability Tree. Well-
Structured Transition Systems Language is introduced as a means of describing the
user’s input, which consists of the description of transition system’s structure in
general and specific instance’s relations and values.

The tool can be used by researchers to investigate the efficiency of the implemented
algorithms. It is expected that it is appropriate for conducting experiments on small
and mediumsized WSTS. The technology eases the efforts required to check the
potential of the WSTS analysis algorithms for practical applications and to make
what-if experiments on newly developed formalisms.

The application of the tool is illustrated for the Petri nets and Lossy Channel System
formalisms. Also, there were given results of the experiment on Petri nets modeling
the dining philosophers problem. The performance analysis of the Finite
Reachability Tree applied to this problem demonstrated the expected exponential
growth of execution time; and, it indicates the need for further investigations of
optimizations (e.g. reduction rules) that can be applied to make the algorithm
effectively applicable in practice.

7. Acknowledgements

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics and Russian Foundation for Basic
Research, project No. 16- 01-00546.

References

[1]. J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang, "Symbolic model checking:
1020 States and beyond", Information and Computation, vol. 98, no. 2, pp. 142-170,
1992.

[2]. A. Finkel, “Well structured transition systems,” Univ. Paris-Sud, Orsay, France, Res.
Rep. 365, Aug. 1987.

[3]. A. Finkel and P. Schnoebelen, "Well-structured transition systems
everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-92, 2001.

[4]. P. Abdulla, K. Cerans, B. Jonsson and Y. Tsay, "Algorithmic Analysis of Programs with
Well Quasi-ordered Domains", Information and Computation, vol. 160, no. 1-2, pp. 109-
127, 2000.

[5]. R. Karp and R. Miller, "Parallel program schemata", Journal of Computer and System
Sciences, vol. 3, no. 2, pp. 147-195, 1969.

[6]. E. Kouzmin and V. Sokolov, Well-Structured Labeled Transition Systems, Moscow:
Fizmatlit, 2005.

[7]. J. Kruskal, "The theory of well-quasi-ordering: A frequently discovered concept",
Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp. 297-305, 1972.

187

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

[8]. T. Parr, The definitive ANTLR 4 reference, Raleigh, NC and Dallas, TX: The Pragmatic
Bookshelf, 2013.

[9]. L. Dickson, "Finiteness of the Odd Perfect and Primitive Abundant Numbers with n
Distinct Prime Factors", American Journal of Mathematics, vol. 35, no. 4, pp. 413-422,
1913.

[10]. E. Dijkstra, "Hierarchical ordering of sequential processes”, Acta Informatica, vol. 1, no.
2, pp. 115-138, 1971.

[11]. S. Akshay, B. Genest, L. Hélouét, Decidable Classes of Unbounded Petri Nets with
Time and Urgency. In: F. Kordon, D. Moldt (eds) Application and Theory of Petri Nets
and Concurrency. PETRI NETS 2016. Lecture Notes in Computer Science, vol 9698.
Springer, Cham

[12]. L. W. Dworzanski, Consistent Timed Semantics for Nested Petri Nets with Restricted
Urgency, in: Formal Modeling and Analysis of Timed Systems Vol. 9884. Switzerland :
Springer International Publishing, 2016. doi Ch. 1. pp. 3-18.

[13]. J. T. Schwartz, "Set Theory as a Language for Program Specification and
Programming". Courant Institute of Mathematical Sciences, New York University,
1970.

[14]. R. Dewar, "SETL and the Evolution of Programming." In From Linear Operators to
Computational Biology, pp. 39-46. Springer London, 2013.

MHCprMEHT AnA aHanu3a noBegeHus BMNoJiHe
CTPYKTYPUpPOBaHHbIX CUCTEM nepexoanonB

JLB. [leopsnckuu <leo@mathtech.ru>
B.E. Muxaiinos <vlamikhaylov@gmail.com>
Hayuonanvnwiti uccnedosamenvckuil ynusepcumem
«Bovicuias wKkona SIKOHOMUKUY,
101000, Poccus, Mocksa, yr. Macnuyxas, 20

AHHOTauMsl. BIIOJHE CTPYKTypHpOBaHHBIE CHCTEMBI IEPEXOJOB SBISIOTCS XOPOLIO
W3BECTHBIM MHCTPYMEHTOM JUISl JIOKA3aTeNIbCTBA PAa3PEINMOCTH CBOIMCTB MOKPHIBAEMOCTH U
OrpaHnYeHHOCTH. KaXkaplii TOJ] MOSBISAIOTCS HOBBIE ()OPMAJIM3MBI, KOTOPBIE OKa3bIBAIOTCS
BIOJIHE CTPYKTYPUPOBAaHHBIMH CHUCTEeMaMH IepexonoB. HecMmoTpss Ha OGosbmioit o0bem
TEOPETHYECKOil PaboThl, CYIIECTBYeT OOJblIas MOTPEOHOCTh B AMITHMPHYECKHX H3yICHHH
BIIOJIHE CTPYKTYpPUPOBAHHBIX CHCTEM MEpexofoB. B maHHOH paboTe mpeacTaBieH
MHCTPYMEHT JUISl aHaJIM3a TaKUX CHCTEM. MBI MpeuiaraeM paciiipeHHe BICOKOYPOBHEBOTO
s3p1ka SETL a1t onmcaHust BOOJTHE-CTPYKTYPHUPOBAHHBIX CHCTEM IEPEX0A0B. DTO MO3BOJISET
OTIACHIBATH HOBBIE (POPMANU3MBI OJIM3KO K UX (HOpMaIbHOMY olpeeeHuto. TakuM oopazoM
YIpoIIaeTcsi CO3JaHHe U N3MEHEHNE HOBBIX ()OPMAIIM3MOB, a TAKXKE OCYIIECTBICHHUE aHAIH3a
MOBEJICHUECKUX CBOMCTB 6e3 GONbIIOro obobeMa MPOTrPaMMHCTCKHUX YCHIMH. DTO yI0OHO,
KOTJ1a HOBBIH (hOpMaM3M HaXxOIUTCS B CTAJUU U3YUSHHUS U pa3pabOTKH. Bputh peann3oBaHbl
JBa CaMbIX U3YUYCHHBIX aJITOPUTMA aHAJIN3a IMOBEACHUS BIIOJHE CTPYKTYPUPOBAHHBIX CUCTEM
nepexonoB (0OpaTHBIA aNrOpUTM W aHAIW3 KOHEYHBIX JEPEBBEB MOCTHXKHUMOCTH). X
HPOM3BOJUTENBHOCT OblIa M3MepeHa Ha Mojeisx cereid Iletpum M cucreM ¢ morepeit
CUrHAJOB. Pa3pa0oTaHHBIi HHCTPYMEHT MOXET OBbITh MOJIE3HBIM IIPU BHEAPEHUH U
TECTUPOBaHMM METOJOB aHanu3a (OPMAaNU3MOB, KOTOPBIC OKAa3bIBAIOTCS BIIOJIHE
CTPYKTYPHPOBAHHBIMU CHCTEMaMH MEPEXOJI0B.

188

JlBopsinckuit JI.B., Muxaiinos B.E. TIporpaMma 1oBe/ieH4€CKOro aHaIi3a BIOJIHE CTPYKTYPHUPOBAHHBIX CHCTEM
niepexonoB. Ipyost UCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 175-190.

KnioueBbie cioBa: ¢opManbHas BepH(UKAILMSA; CHCTEMBI C OECKOHEYHBIM UHCIOM
COCTOSIHMH; BIIOJIHE CTPYKTYpHUpOBaHHble cucteMsbl [lepexonos; cetu Iletpu.

DOI: 10.15514/ISPRAS-2017-29(4)-11

Jna nuruposanusa: JBopsaxckuii JI.B., Muxaiinos B.E. IIporpamma mnoBeneHuecKoro
aHanM3a BIOJHE CTPYKTYPHPOBAHHBIX CHCTEM TepexonoB. Ipyov: UCII PAH, Tom 29, Bo. 4,
2017 r., ctp. 175-190 (na anrnwmiickom si3sike). DOI: 10.15514/ISPRAS-2017-29(4)-11

Cnucok nutepatypbl

[1]. J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang, "Symbolic model checking:
1020 States and beyond", Information and Computation, vol. 98, no. 2, pp. 142-170,
1992.

[2]. A. Finkel, “Well structured transition systems,” Univ. Paris-Sud, Orsay, France, Res.
Rep. 365, Aug. 1987.

[3]. A, Finkel and P. Schnoebelen, "Well-structured transition systems
everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-92, 2001.

[4]. P. Abdulla, K. Cerans, B. Jonsson and Y. Tsay, "Algorithmic Analysis of Programs with
Well Quasi-ordered Domains", Information and Computation, vol. 160, no. 1-2, pp. 109-
127, 2000.

[5]. R. Karp and R. Miller, "Parallel program schemata”, Journal of Computer and System
Sciences, vol. 3, no. 2, pp. 147-195, 1969.

[6]. E. Kouzmin and V. Sokolov, Well-Structured Labeled Transition Systems, Moscow:
Fizmatlit, 2005.

[7]. J. Kruskal, "The theory of well-quasi-ordering: A frequently discovered concept",
Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp. 297-305, 1972.

[8]. T. Parr, The definitive ANTLR 4 reference, Raleigh, NC and Dallas, TX: The Pragmatic
Bookshelf, 2013.

[9]. L. Dickson, "Finiteness of the Odd Perfect and Primitive Abundant Numbers with n
Distinct Prime Factors", American Journal of Mathematics, vol. 35, no. 4, pp. 413-422,
1913.

[10]. E. Dijkstra, "Hierarchical ordering of sequential processes”, Acta Informatica, vol. 1, no.
2, pp. 115-138, 1971.

[11]. S. Akshay, B. Genest, L. Hélouét, Decidable Classes of Unbounded Petri Nets with
Time and Urgency. In: F. Kordon, D. Moldt (eds) Application and Theory of Petri Nets
and Concurrency. PETRI NETS 2016. Lecture Notes in Computer Science, vol 9698.
Springer, Cham

[12]. L. W. Dworzanski, Consistent Timed Semantics for Nested Petri Nets with Restricted
Urgency, in: Formal Modeling and Analysis of Timed Systems Vol. 9884. Switzerland :
Springer International Publishing, 2016. doi Ch. 1. pp. 3-18.

[13]. J. T. Schwartz, "Set Theory as a Language for Program Specification and
Programming”. Courant Institute of Mathematical Sciences, New York University,
1970.

[14]. R. Dewar, "SETL and the Evolution of Programming." In From Linear Operators to
Computational Biology, pp. 39-46. Springer London, 2013.

189

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

190

Stochastic Methods for Analysis of Complex
Hardware-Software Systems

! A.A. Karnov <karnov@ispras.ru>
23.V. Zelenov <zelenov@ispras.ru>
! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. In this paper we consider Markov analysis of models of complex software and
hardware systems. A Markov analysis tool can be used during verification processes of
models of avionics systems. In the introduction we enumerate main advantages and
disadvantages of Markov analysis. For example, with Markov analysis, unlike other
approaches, such as fault tree analysis and dependency diagram analysis, it is possible to
analyze models of systems that are able to recovery. The main drawback of this approach is
an exponential growth of models size with number of components in analyzed system. It
makes Markov analysis barely used in practice. The other important problem is to develop a
new algorithm for translating a model of a system to a model suitable for Markov analysis
(Markov chain), since the existing solutions have significant limitations on the architecture of
analyzed systems. Next we give a brief description of the context — AADL modeling
language with Error Model Annex library, MASIW framework, and also give an explanation
of Markov analysis method. In a main section we suggest an algorithm for translating a
system model into a Markov chain, partially solving the problem of exponential growth of
Markov chain. Then follows a description of further steps, and some heuristics that allow to
extremely reduce running time of the algorithm. In this paper we also consider other Markov
analysis tools and their features. As a result, we suggest a Markov analysis tool that can be
effectively use in practice.

Keywords: Markov analysis; system safety assessment; fault modeling; complex software-
hardware system.

DOI: 10.15514/ISPRAS-2016-29(4)-12

For citation: Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex
Hardware-Software Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-
202. DOI: 10.15514/ISPRAS-2016-29(4)-12

191

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

1. Introduction

In this paper we consider a task related to verification of models of software and
hardware systems. Such systems can be, for example, control systems for airplanes,
ships, medical equipment, etc. The price of error in these systems is very high, but
they are too complicated for “manually” analysis. Therefore such systems are
modeled before implementation. On the stages of design, development, and
verification of the models, it is necessary to constantly investigate system safety.

At present, three main methods of system safety assessment [1] are widely used:
fault tree analysis, dependency diagram analysis, and Markov analysis. Each
method has its own advantages and disadvantages. In this paper, Markov analysis is
considered.

Markov analysis works with a Markov chain [2] — a stochastic process, which can
be represented as a directed graph with weighted edges. Vertices of Markov chain
represent different states, and edges are labeled by probabilities of a transition
between states. The main drawback of Markov analysis is a size of Markov chains,
which increases exponentially with number of components in the system. In
addition, it is necessary to develop an algorithm, that takes system model and
translate it to the Markov chain. These problems make Markov analysis not so
popular as the other methods, and number of tools that use Markov analysis for
complex systems is relatively small. However, such approach has its advantages:
Markov analysis allows to look at the entire system, to consider not only causes and
probabilities of certain single failure, but also investigate how various failures affect
the system in the aggregate. Also Markov analysis, unlike the other approaches,
allows to analyze self-recovering systems, since return to operational state is natural
for Markov chains.

Thus, the task of development the Markov analysis tool of complex hardware-
software systems is quite important and relevant.

2. Context

2.1 AADL and Error Model Annex

Architecture Analysis & Design Language (AADL) [3] is a language, that widely
used for describing models of real-time hardware and software systems. Its features
include description of both hardware (so-called execution platform) and software
components of an analyzed system, and various connections between them. The
models, described in AADL, may be used for documentation, for various kinds of
analysis and for code generation.

Error Model Annex [4] is an extension of AADL, that allows to simulate
appearance and propagation of errors in the system. For each component, a modeller
can add a description of component’s behavior states, for example, operational and
failed. Transitions between system states are triggered by randomly occured error
events and internal errors propagated from other components. An error propagation

192

Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

condition may depend on certain behavior state of the component, some error
events, or error propagated from environment. Each propagated error has its own
type, that allows to control what is exactly happened in the system. Also transitions
between states can be defined implicitly — a state of some component may be a
composite state of its subcomponents.

AADL and Error Model Annex together describe not only an architecture, but also
error behavior of systems. It becomes possible to evaluate such properties of models
as safety, reliability, the availability of its various states and ability to recover from
them.

2.2 MASIW

MASIW [5] is an open-source framework for designing and analyzing of integrated
modular avionics systems, that use AADL as a modelling language.

The project designed as plugins for Eclipse IDE, includes a variety of tools for
working with AADL and Error Model Annex models. There is a big number of
different analysis tools, for example, a fault tree analysis tool, but there is no
Markov analysis tool.

2.3 Markov analysis

Any model subjected to Markov analysis must be represented as a Markov chain. A
Markov chain can be represented in the form of a directed graph with vertices
containing system states, and edges labeled with intensities of transitions between
corresponding states. A Markov chain has the property of Markov process — a
probability of a transition to any state depends only on a current state and a moment
in time, and previous transitions are unimportant (can be characterized as
memorylessness).
Markov models can be divided into models with discrete and continuous time, as
well as time-homogeneous (also called stationary) and time-inhomogeneous. In
time-homogeneous Markov chains, the intensities of transitions are constant, while
in time-inhomogeneous Markov chains they depend on time. In time-homogeneous
Markov chains, transitions occur according to the binomial (or fixed) distribution
for discrete-time chains, and according to the Poisson distribution for continuous-
time chains.
To determine the behavior of an analyzing system, it is necessary to specify a
system of differential equations. The equations follow from the Markov chain. For
all Markov processes (and a Markov chain, in particular) we have the Kolmogorov-
Chapman equation [6]:

PE*AD(S;/8;) = Bie=1 PO (S /SHPO(Si/S1) 1)
This equation means that probability of a transition from state S;to state S;for some
time t + dtis equal to a sum of probabilities of passes into the target state S;through
all of intermediate states S.

193

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

Consider a time-homogeneous chain with an intensity of the transition between
states S;and Syequal to A(S;/S;). Then for continuous-time Markov chains, the
Kolmogorov-Chapman equation implies a system of differential equations
aPOG/S) _ _ g ® n ®
= = Xk=1 AS/SOPY(S;/S) + Lie=1 ASk/SOP(S;/Sk) - (2)

dt
And for discrete-time chains, a system of difference equations

P+ (s;/51)-PO(s;/5)
= P = = YR A/ SIOPO(S;/80) + Tieed Ak /SHPD(S;/5))
@)
Denote by S;a certain initial state of the system, and consider equations (2)-(3) in
case when S; = S;. Denote by P;(t)the function P()(S,/S;). Then, the previous

equations takes the following form:
ari(t) _

- = ~ Zk=1 A(Si/Si)Pi(t) + X1 A(Skc/S)Pi (1) 4)
PUCBOZPIO — — 33 ACS/SOPE) + Sikr AGSk/S)P() 5)

In addition, initial conditions appear:
P,(0)=1,P(0)=0,i=-2,n (6)

Thus, we obtain the Cauchy problem [7]. The solution of this problem is a set of
probabilistic functions of being a system in a definite state. This is the result of
Markov analysis.

In this paper, we consider only the analysis of time-homogeneous Markov chains
and models, as the most common ones. However, all results can be applied to time-
inhomogeneous models, with the only difference being that intensities of Markov
chain transitions depend on time, and they need to be stored as formulas, not as
numbers.

3. Problem

The goal of this work is a development and implementation of a Markov analysis
tool for complex hardware-software systems models within the MASIW framework.
The tool takes input of some system model and a set of time points. At the output,
the analyzer provides the probabilities of being the system in each of its possible
states at moments of time, defined by user.

The main problem is to create a Markov chain on the basis of the original model.
First, we need an algorithm that creates a correct Markov chain corresponding to the
input data. Secondly, the result chain should be of acceptable size, so that the
program can work for acceptable time in limited memory.

After a construction of a Markov chain, further action reduces to solving a Cauchy
problem with a system of linear differential equations. An analytical solution of the
Cauchy problem is too complicated, resource-intensive, and result is difficult to
comprehend, so we use numerical methods.

194

Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

4. Solution

4.1 Markov chain

The primary task is to translate an AADL model into a Markov chain. In particular,
it is necessary to find out what to regard as a chain node and what generates
transitions between system states.

Obviously, the node must contain the state of the system, which is a combination of
the states of all system components (the states of the components are described in
the model as behavior states). However, if we take as a node any of all possible
combinations, then the number of nodes will be no less than 2™, where nis the
number of system components. Real systems often contain more than 20
components, that, on the one hand, are few, but on the other hand, results in size of
such Markov chain outside available memory.

We suggest the following solution of this problem. Let us exclude from the chain all
unreachable states of the system, which, as practice shows, are the vast majority.
First, some states of the system are unreachable by definition of ananalyzing model.
For example, the state of some component may completely depend on the states of
its subcomponents. Accordingly, the component can not be in a failed state, while
all its subcomponents are in operational states. Second, the failure of some
components entails an almost immediate failure of others — for example, a
breakdown of a processor entails a failure of all processes running on it. Thus, the
state in which the processor is broken, but the processes on it are still working,
though reachable in theory, at the very moment of the failure, but instantly replaced
by another state.

Thus, we suggest the following approach. We assume that speed of error
propagation between components is extremely small in comparison with time of
system operation (which, in practice, is the case — for a unit of time measurement
usually takes hour and even a day). Let us define a stable state of the sistem as a
state, that does not change until new error events occur in the system and its
components. We consider as nodes of designed Markov chain only the stable states
of the system. The sets of arising events generate transitions between nodes of the
chain.

For the sake of saving memory, we insert only reachable states to the Markov chain,
and build it dynamically, from the initial state of the system, which is a combination
of the initial states of the components. In each new node it is necessary to analyze
transitions from the current state of the system. The state can change for some event
or combination of events. So, we perform complete search for all possible sets of
events — either of them can initiate a new transition. The probability of occurrence
of each set of events is easily calculated, since each event contains information
about its probability distribution. This is a multiplication product of probabilities of
occurrence or negation of occurrence of each of the events, since all events are

195

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

independent. The total probability of all sets of events, according to the law of total
probability, should be equal to 1.
The algorithm is completed when all nodes of Markov chain are analyzed, starting
from the node corresponding to the initial state of the system.
markovChain.addNode(initialStateNode)
gueue.add(initialStateNode)
while not queue.isEmpty() do
analyzeNode(queue.head())
gueue.add(newNodes)
end while
The analysis of each node of Markov chain looks like this: all possible sets of error
events are searched, for each of them we calculate a stable state of the system into
which the given set leads, and then a new transition (and, if necessary, a new node)
is added to the chain.
for each errorEventSet in possibleSets do
state = currentNode.getState()
repeat
watchedStates.add(state)
state = calculateState(state, errorEventSet)
until watchedStates.contains(state)
node = markovChain.addNode(state)
markovChain.addTransition(
currentNode, node, errorEventSet.getProbability())
watchedStates.clear()
end for
In the above algorithm, the state of the system is considered stable if we have
already reached it before. This correctly handles the case when the state of the
system has not changed — we have reached the same state as in the previous step.
However, in theory, in a self-recovering systems, cycling may occur if an event with
a failure and an event with component recovery occur simultaneously. With this
condition, the loop stops, but this situation is not handled correctly. One of the main
opportunities for further improvement of the algorithm is to improve the condition
for achieving a stable state of the system.

4.2 Calculation of new states

In the previous paragraph, a general algorithm for constructing a chain was
described, omitting the details of calculating new states of the system. To find out
exactly how the system has changed, it is enough to go through all its components,
and see what transitions between states are triggered for a given set of events and
the current state of the system. The triggered transition is immediately applied to the
system, and the algorithm step is completed.

196

Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

for each componentState in systemState do
for each compositeState in comp.getCompositeStates() do
if checkStateExpression(compositeState.getExpression())
then
systemState.applyTransition(compositeState)
return
end if
end for
for each transition in comp.getTransitions() do
if transition.getSource() == compState
and checkErrorCondition(transition.getCondition())
then
systemState.applyTransition(transition)
return
end if
end for
end for
The checkStateExpression and checkErrorCondition functions check whether the
transition condition is met. Such conditions can be interpreted as a logical formula,
where variables corresponding to components behavior states, error events, and
propagated errors, have value of true or false, depending on whether the system is in
this state, whether an error event has occurred or whether an error of the specified
type has propagated.
As soon as some component of the system changes its state, it means that we obtain
a new state of the system, and the step of the algorithm is completed. If none of the
transitions is triggered, then the system state has not changed, which is noticed by
the algorithm described in the previous section.

4.3 Construction and solution of the Cauchy problem

After construction of a Markov chain, the final stage of the Markov analysis of the
system is to construct a system of equations and solve the Cauchy problem. As
mentioned earlier, each node of the Markov chain generates a differential equation
(4) (or similar difference equation (5)). To save memory, it is not necessary to store
the system of equations — the equation for any node can be easily constructed
dynamically, passing through all transitions entering into this node and outgoing
from it.

The resulting Cauchy problem can be solved by a numerical method from the
Runge-Kutta [8] family of methods. In the analyzer, two methods are implemented:
the Euler method, for discrete-time Markov chains, and the fourth-order Runge-
Kutta method, for continuous-time Markov chains. The type of the chain is
determined in advance, according to probability distributions of error events. An

197

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

algorithm for calculating the variation of the function P;(t)on each time interval
delta t, taking into account the dynamic construction of the equation (Euler’s
method):

for each node in markovChain.getNodes() do
i = indexOf(node)
res=0
for each transition in node.getInTransitions() do
k = indexOff(transition.getNode())
res += transition.getProbability() * pPrev[k]
end for
for each transition in node.getOurTransitions() do
res -= transition.getProbability() * pPrev[i]
end for
pCur[i] = pPrev[i] + delta t * res
end for
Also, the value of the vector of probability functions P (t) is saved at every time

point defined by user. As soon as values at each necessary time point are calculated,
the algorithm is completed.

4.4 Getting Analysis Results

Since number of system states in Markov chain can be very large, the result of
analysis in the form of probabilities of being the system in each of them is
practically impossible for reading. Considering that each system has its root
component, we group all system states according to the states of the root
component.
In this case, all the probability functions within the same group are summed up:
for each node in chainNodes do
i = indexOf(node)
state = node.getSystemState().get(rootComp)
analysisResult.get(state) += p[i]
end for
After this, for each state of the root component, the probability of being the system
in a this state at given time points is obtained. This is the desired result of the
Markov analysis of the system.

4.5 Algorithm acceleration

Despite a partial solution of the problem of exponential growth of Markov chain
size, the running time of full version of the algorithm still grows exponentially —
due to a thorough search of all possible combinations of error events. Thus, we use
some heuristics in the final program, accelerating the algorithm.

198

Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

First, we limit the search of combinations of events. Since the probability of
occurrence of one event is usually extremely small, the situation in which several
events occur simultaneously is practically impossible. Therefore, a very small
numerical parameter, limiting the probability of the combination of events under
consideration, was added to the program. If the probability of occurrence of the set
of events is less than this parameter, then the effect of the set of events on the
system is not considered. This solution significantly reduced the running time of the
program, without much loss of accuracy of the result.

The second solution relates to system’s ability to self-recovery. In practice, there are
few examples of self-recovering systems, and, in most cases, even a short-term
failure of the system itself means fatal consequences. Accordingly, if the analyzed
system has come to failed state, its further changes are not interesting to us — no
matter what else can fail in the already failed system. Therefore, we introduce a set
of states of the root component, that are considered as «absolutely» failed. If some
node of Markov chain has failed state of the root component, then we do not
analyze transitions from it. If analyzed system is not self-recovering, the result of
the program remains the same, but is obtained in much shorter time.

Both modifications of the program are optional, as they may change final result in
some cases, but their application reduces the operating time by several orders of
magnitude. For example, a complete analysis of a system containing 24 components
revealed 919 states of the Markov chain and took 1 hour. Limiting the frequency of
the events considered by the number 10~3%gave a significant gain — the same set of
states of the Markov chain and the same result of the analysis were obtained in 7
minutes. Since the system under test was not self-recovering system, the analysis
with the stop-on-failed option was correct, and got the same result in 10 seconds.
Setting relevant parameters allows to significantly accelerate work of the analyzer.
One of the further options for improving the tool can be automatic detection and
selection of optimizing parameters.

5. Related works

Markov analysis of AADL and Error Model Annex models is usually applied to
systems consisting of only one component. Such algorithms doesnt consider error
propagation mechanism and composite states, and limited by root component.

The tool from OSATE [9] framework, created for export AADL model into Markov
chain model for PRISM [10] toolset, which provide further steps of Markov
analysis, supports only the first nesting level of the component hierarchyand does
not support different types of propagated errors. In addition, there were some
problems associated with the syntactic correctness of the final PRISM model.

6. Conclusion

In this paper we present a new Markov analysis tool, and in particular, an algorithm
for translating AADL and Error Model Annex models into Markov chains. In

199

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

addition, there were added some improvement for accelerating the algorithm, which
make it possible to effectively use the tool in practice.

The presented tool can be further improved in various ways: adding support for
time-inhomogeneous Markov chains, accelerating the work of the algorithm,
changing some details of algorithm.

References

[1]. “SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment,” Warrendale, USA, Dec. 1996.

[2]. A. N. Shiryaev, Probability (2Nd Ed.). Secaucus, NJ, USA: Springer Verlag New York,
Inc., 1995.

[3]. P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language, 1st ed. Addison-Wesley
Professional, 2012.

[4]. P. Feiler, “SAE AADL error model annex: An overview,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 2014. [Online].
Available: https://wiki.sei.cmu.edu/aadl/images/1/13/ErrorModelOverview-Sept222011-
phf.pdf

[5]. “MASIW framework,” https://forge.ispras.ru/projects/masiw-0ss/.

[6]. S. Kuznetsov, “Mathematical models of processes and systems of technical exploitation
of avionics as Markov and semi-Markov processes,” Civil Aviation High Technologies
[Nauchnyi Vestnik MGTU GA], no. 213, pp. 28-33, 2015 (in Russian).

[7]. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations
(Dover Phoenix Editions). Dover Publications, 2003.

[8]. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM: Society for Industrial and Applied
Mathematics, 1998.

[9]. J. Delange, P. Feiler, D. Gluch, and J. Hudak, “AADL fault modeling and analysis
within an ARP4761 safety assessment,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2014-TR-020, 2014. [Online].
Available: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884

[10]. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585-591.

200

Kaphnos A.A., 3enenos C.B. CroxacTHueckue MeTO/Ibl aHaJIM3a KOMIUIEKCHBIX TPOrPAMMHO-AINapaTHBIX CHCTEM.
Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 r., ctp. 191-202.

CtoxacTuuyeckue Metoabl aHanM3a KOMMJIEKCHbIX
nporpaMMHoO-annapaTHbIX CUCTEM

' 4.4. Kapnos <karnov@ispras.ru>
2 C.B. 3enenos <zelenov@ispras.ru>
1 . -
Mockoeckuii 2ocyoapcmeennuiii ynueepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue copwl, 0. 1.
2 Huemumym cucmemnozo npoepammupoganus PAH,
109004, Poccus, . Mockea, yn. A. Coaxcenuysvina, 0. 25

AnHotammsi. B nmaHHON paboTe paccMarpuBaeTcss MapKOBCKHH —aHaNIW3 — Mojelel
KOMIUIEKCHBIX TPOTPaMMHO-AIIAPATHEIX cHCcTeM. IHCTpyMEHT MapKOBCKOTO aHaIN3a MOXKET
ObIT HCIONB30BaH, B YACTHOCTH, IS BepHU(MUKALMKM MOAENEH CHCTeM HHTErpaabHOM
MOZAYJIbHON aBUOHUKH. BO BBEIEHHU MEPEUNCIISIOTCS OCHOBHBIE TOCTOMHCTBA M HEAOCTATKU
MapKOBcKoro ananuza. K npumepy, MapkoBCKull aHanu3, B OTIMYHME OT APYTUX MOJXON0B —
aHanu3a JepeBa HEUCIIPAaBHOCTH M aHAIN3 AJIOTMYECKOIl CXEMBI, MO3BOJISIET aHAIM3HPOBATh
MOJIEIM CUCTEM, CIIOCOOHBIX K BOCCTaHOB/ICHUIO. OCHOBHBIM HEJOCTATKOM JAaHHOTO ITOJX0/a
SIBJISIETCS] SKCIIOHCHIUAIIBHBIN POCT pa3Mepa MoJiesieil B 3aBUCUMOCTH OT YMC/Ia KOMIOHEHTOB
B aHAIM3UPYeMOH cHcTeMe. DTO CYIIECTBEHHO OIPaHHYUBACT BO3MOXKHOCTh IPHMEHEHUS
MapKOBCKOTO aHAIW3a Ha MpakTuke. [Jpyroi BaxxHoi mpo0ieMoi SBIsieTCs cOo31aHHe HOBOTO
ITOPUTMA TPAHCISIIUM HCXOAHOH MOJETM CHUCTeMbl B MOJENb, HPHUTOHYIO IS
MapKOBCKOTO aHanu3a (MapKOBCKYIO LIeTb), TAK KaK CYIIECTBYIONINE PEIICHNUs HAKIaJbIBAIOT
CYLIECTBEHHBIE OIPaHMYEHHs Ha apXUTEKTypy aHanmuzupyemoil cucremsl. Jlanee wuuer
KpaTKoe OIMCaHHe KOHTEKCTa, B KOTOPOM MHCTPYMEHT JOJDKeH paboTaTb — S3BIK
MozemupoBanusi AADL ¢ 6ubnmmotexoit Error Model Annex, nHab6op macTpymMenToB MASIW,
a TakKe OINMCBIBAETCSA CaM METOJ MAapKOBCKOTO aHaiu3a. B OCHOBHOM 4YacTH Ipejnaraercs
ITOPUTM TPAHCIANH MOJAENN CHCTEMBI B MAapKOBCKYIO II€Mb, YAaCTHYHO pPEIIArOIINit
npoOsieMy 3KCHOHEHIMATbHOTO pOCTa MAapKOBCKOW Ilemu. 3aTeM ClieqyeT OIHCaHHe
JaTbHEHWIINX IIaroB, a TakXkKe IPEATIaraloTcsl 3BPUCTHKU, MO3BOJIOMNE 3HAYUTEIHHO
COKpaTHTh BpeMs pabOTBl WTOTOBOH MporpaMMel. B pabore Takxke paccMaTpHBAIOTCS
CYLIECTBYIOIIME MHCTPYMEHThl MAapKOBCKOI'O aHalu3a M UX HeJocTaTku. B kauecTse
pe3ynbTaTa JaHHOW paboTHl MpPEAiaraeTcsi HOBBIH HHCTPYMEHT MapKOBCKOTO aHAIU3a,
KOTOPBII MOXKET OBITh () (EKTUBHO UCIIONH30BaH HA MPAKTHKE.

KnioueBsbie ciioBa: MapKoBCcKuil aHAU3; OI[EHKAa OE30IACHOCTH CHCTEMBI; MOJICITUPOBAHUE
HEHCIPaBHOCTEH; KOMIUIEKCHbIE IPOTPAMMHO-AIIAPATHbIE CUCTEMBI.

DOI: 10.15514/ISPRAS-2016-29(4)-12

Jnsa umtupoBanmsi: KapHoB A.A., 3emenoB C.B. CroxacTmyeckne METOABI aHaIH3a
KOMIUIEKCHBIX NpOTpaMMHO-anmapaTHeix cucteM. Tpynst MCIT PAH, tom 29, Bem. 4, 2017
r., ctp. 191-202. DOI: 10.15514/ISPRAS-2016-29(4)-12

201

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202.

Cnucok nutepaTtypbl

[1]. “SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment,” Warrendale, USA, Dec. 1996.

[2]. UIupsieB A.H. Beposimnocms. Mocksa: Hayka, 1989.

[3]. P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language, 1st ed. Addison-Wesley
Professional, 2012.

[4]. P. Feiler, “SAE AADL error model annex: An overview,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 2014. [Online].
Auvailable: https://wiki.sei.cmu.edu/aadl/images/1/13/ErrorModelOverview-Sept222011-
phf.pdf

[5]. “MASIW framework,” https://forge.ispras.ru/projects/masiw-0ss/.

[6]. Ky3ueroB, C.B. “Maremarnueckne MOJEIH TPOLECCOB M CHCTEM TEXHHYECKOM
SKCIUTyaTallid aBUOHMKU KaK MapKOBCKHE M IIOJIyMapKOBCKHE Mporecchl,” Haydnsiit
Bectuuk MI'TY T'A, 2015, No 213, ctp. 28-33.

[7]. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations
(Dover Phoenix Editions). Dover Publications, 2003.

[8]. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM: Society for Industrial and Applied
Mathematics, 1998.

[9]. J. Delange, P. Feiler, D. Gluch, and J. Hudak, “AADL fault modeling and analysis
within an ARP4761 safety assessment,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2014-TR-020, 2014. [Online].
Auvailable: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884

[10]. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585-591.

202

Predicate Abstractions Memory Modeling
Method with Separation into Disjoint
Regions

' A. Volkov <arvolkov@inbox.ru>
2M. Mandrykin <mandrykin@ispras.ru>
! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Software verification is a type of activity focused on software quality control and
detection of errors in software. Static verification is verification without the execution of
software source code. Special software — tools for static verification — often work with
program'’s source code. One of the tools that can be used for static verification is a tool called
CPAchecker. The problem of the current memory model used by the tool is that if a function
returning a pointer to program's memory lacks a body, arbitrary assumptions can be made
about this function return value in the process of verification. Although possible, the
assumptions are often also practically very improbable. Their usage may lead to a false alarm.
In this paper we give an overview of the approach capable of resolving this issue and its
formal specification in terms of path formulas based on the uninterpreted functions used by
the tool for memory modeling. We also present results of benchmarking the corresponding
implementation against existing memory model.

Keywords: memory model; predicate abstractions; static verification
DOI: 10.15514/ISPRAS-2017-29(4)-13

For citation: Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method
with Separation into Disjoint Regions. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 203-216. DOI: 10.15514/ISPRAS-2017-29(4)-13

1. Introduction

Software verification is a type of activity focused on software quality control and
detection of errors in software [1]. Static verification is a verification without the
execution of software source code.

203

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

Special software — tools for static verification — often work with program’s source
code. Depending on the tools used for static verification it is possible to conduct
analysis of the source code to search for errors in program’s behavior.

One of the tools that can be used for static verification is a tool called CPAchecker.
It takes program’s source code as an input, creates a CFA (control-flow automaton)
and uses it to run the analysis. One of the analyses the instrument is capable of is a
reachability analysis. In this paper we consider reachability properties that can be
expressed as checking if the call to an error function is reachable. Its strong side is
that the CPA (configurable program analysis) [2] concept allows to use a
composition of several analyses for program verification. The tandem of Value
Analysis and Predicate Analysis produces good results in terms of verification
precision / verification time ratio.

2. Definitions and notations

We will call a model of program’s memory or just a memory model a strategy of
organization and representation of program’s memory. By region we will refer to
the set of lvalues with the following restriction: if two lvalues are taken from two
different regions they necessarily reference disjoint memory locations [3]. For
example, different regions may be safely assigned to the Ivalues referring distinct
structure fields under the following conditions:

o the fields do not occur as an argument to the address taking operator (&);

o the fields do not become targets of some pointers by the usage of pointer
type conversion or address arithmetic.
The situation when a program’s error state is reachable due to the imprecisions of
abstraction employed in the analysis is called a false alarm.

3. CPAchecker’s memory model

Existing memory model employed by Predicate Analysis of the CPAchecker tool
uses uninterpreted functions. Each of those functions has only a name and a number
of arguments. If f (x) is an uninterpreted function, a and b are any of its arguments
for which a = b is true then f (a) = f (b)[4]. Uninterpreted functions in the
CPAchecker tool are used to establish a correspondence between a memory location
and the value stored at this memory location. Depending on the type of the
expression different uninterpreted functions should be used.

Existing memory model of the CPAchecker tool uses typed regions. This means that
all Ivalues of the same type exist in the same region. However, a large number of
Ivalues of the same type is present in any big enough program written in the C
programming language. This leads to the addition of a big number of logical
constraints for each event of a pointer’s memory update. The constraints express
checks for potential equality of the updated Ivalue to each memory location in the
region. Those checks allow to determine precisely what memory should also be
updated but noticeably increase the length of path formulas.

204

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha
Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

The problem of the current memory model used by the tool is that if a function
returning a pointer to program’s memory lacks a body, arbitrary assumptions can be
made about its return value in the process of verification. In other words, it is
considered possible for this pointer to point at any Ivalue in the region. Although
possible, this situation is also practically very improbable. In those cases it is hard to
determine if a path leading to an error label really does or doesn’t exist. One of the
approaches capable of resolving this issue suggests the introduction of smaller
regions that divide a bigger typed region.

4. B&B memory model

4.1 Memory model overview

B&B memory model was proposed by Richard Bornat and had been based on the
work of Rod Burstall [5], [6]. It is used in Frama-C verification tool in Jessie plugin
which is capable of performing verification of the C programs. In its foundation are
assumptions that can introduce regions of smaller sizes instead of having very big
one for a type. These assumptions state that if struct data type fields never occur as
arguments to the address taking operator (&) in program’s source code then those
fields can be placed to separate regions. Otherwise they must belong to the same
region as the normal pointers of the same type.

This memory model has some flaws. It does not take into account that the struct
fields can be accessed through address arithmetic and pointer conversions. It also
needs mentioning that some overhead costs are required for region support. Taking
into account the pros and cons of the model it is possible to say that the B&B
memory model looks promising.

4.2 Formal specification
For ease of specification we will assume the following:

e variables can only be of struct s * types;

e struct s fields can only be of int type;

e struct s has n fields: struct s { int f1, 2, ..., fn; };
Program’s memory location can be represented by an Ivalue expression like pointer
dereference. To model changes to the program’s state when assignments to lvalues
arise the CPAchecker tool uses uninterpreted functions [4].
We assume absence of pointer arithmetic and restrict pointer dereferences to the
applications of the arrow operator (p — f;), where p is a pointer to the struct type
and f; is one of the struct fields).
Let Y be a set of uninterpreted functions. It consists of the uninterpreted function G
that is used for accessing a memory location in global region, a finite number of
uninterpreted functions F;, where each function F; represents the state of the

memory region corresponding to Ivalues of the form b — f;,i = 1,n and the

205

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

uninterpreted function undef ptr with zero arity that models the usage of the
program’s functions returning an unknown pointer.

Let B(e) be an uninterpreted function used for global memory location modeling

and B;(e), i = 1,n — a finite set of uninterpreted functions used for memory
location modeling in regions corresponding to F; uninterpreted functions. For
address representation it is suggested to use expressions like a, where a is a
variable. The axioms of the memory model (positivity of addresses and their non-
intersection within one region) can be represented as follows:

e a>0;

e B(a) =k, where k is a unique number for each such variable.
The tool uses SSA representation to model the varying state of program variables
and memory regions. In this representation usage of a name splits into usages of its
versions. Each time an assignment happens to a program variable or a memory
region represented by the corresponding variable or uninterpreted function in the
path formula, the version number (index) of that variable or an uninterpreted
function increases.
Let Index : Y — N be a mapping of a set of uninterpreted functions Y to a numerical
set of their indices.
Let 4//oc: Y — Addrs be a mapping of a set of uninterpreted functions Y to the set
of subsets of memory locations Addr: Addrs = 24497,
We will use a supplementary function mem_upd:

mem_upd(p, f,m'm)=__ A ((p=a)V(fi(a)= fin(a))

a€Alloc(f)
that defines a check for address equality for all of the Ivalues in the same region as
pointer p (locations in the Alloc(f) region are modeled by the uninterpreted function
f, m = Index(f) is a current version of fand m "= m + 1 is a new version).
We define w(s, f;) as a constant offset of a field f; from the base address of struct
type variable s. Because we assume that there is only one structure type struct s in
our programs, w(s, f;) can be made just w(f;).
In B&B memory model implemented on top of CPAchecker’s existing memory
model the operator of a strongest post-condition is defined as SP(op(¢)) = ¢ A
I'(op), where ¢ is a symbolic abstract state and constraints I'(op) are defined by
table 1.

4.3 Example

The following program will be considered correct if we use either of the memory
models. T constraints in terms of B&B memory model for the program are shown in
table 2. Path formula can be made as a conjunction of all formulas in T" column of
the table 2. It is unsat in terms of either of the memory models. This means that the
tool cannot go by this path (i.e. won’t consider it as a potential error trace
candidate).

206

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha

Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

struct s { int f1, f2; };

struct s * pl;
struct s * p2;
pl = alloc();
p2 = alloc();
pl -> f1 = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

Table 1. I" constraints creation rules

Operation Index Alloc Base | constraints
(op) address
index
k!
\Variable No changes 4’ - new k' - p=A'ANA’>0ABA’) =k
allocation on \variable, new
stack 4lloc’(G) = [index
struct s * p; 4’ U
Alloc(G)
Heap variable|l’ - new index forld’, A; - new k', k;{ - |Gy(p) =A"AA">0AB(4")
allocation G, variables, [new |=k’
p=alloc() [I=Index(G), |Alloc’(G)=[indices,|x mem_upd(p,G,I,l")
fndex’ = Index \ A U /{IloiC((E) =LA (G)+ (f))
{G-}u{G-1%} flﬂoc (F) = A} A Aj> OA BL(A}) =k})
i
L
Alloc(FY),i =
1,n
p=undef_ptr()l - new index for|No changes [No G,/ (p) = undef _ptr, A
G, changesimem_upd(p,G,1,I")

| = Index(G),

m' - new index
for undef_ptr,

m =
Index(undef_ptr),
Index’ = Index \
({G - 1}u
{undef_ptr

—m})u

207

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

{G - l'}u
{undef_ptr —»
m'}

p— fi=e m'- new index [No changes [No Frl;l,((;l(p) + w(f)) =T(e)
for F*, m= changes|,, mem_upd (G,(p) +
Index(F"), w(f,), F,m',m), where
ndex' | = Index(G) and I'(e) can be
= Index \ computed using the following
{F" -»m}u rules:
{Fi > m'} I'(const) : const;
F(®2 - f): K (G@®2) +
w(f;)), where k=Index(F’), |
= Index(G);
['(e; 0p ez), 0p € {*+7, *=,
Gy
['(e;) op I'(ey).
assume(p) [No changes No changes |No ['(p) for predicate p can be
changesjcomputed as following:

I["(const) : const;

['(S) : G,(S), where | =
Index(G);

[(s = fi) : En(Gi(s) + w(f)),
Wwhere

m = Index(F?), | = Index(G);
['(p1 ==p2) : [(p1) == [(p2);
['(p1 <p2) : I(p1) <T(p2);
[(pl <=p2) : [(p1) < T'(p2);
[(p1 | p2): T(p1) v I(p2);
[(pl && p2) : T(pl) A T(p2);
I(!p) 1 ~I'(p).

208

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha
Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

Table 2. Example build of path formula for the correct program

Path Index |Alloc k' [T
instruction
structs * pl; {G-1, |Alloc(G)={4,} 1 |pl=A,AA>0AB(4,)=1
F1—1,
F2 >1}
struct s * p2; {G-1, |Alloc(G)={4,, A,} 2 |p2=4,ANA,>0AB(4,)=2
F1 —>1,
F? -1}
pl=alloc(); KG-2, [Alloc(G)={A;, A, A3}|3,4,5(G,(pl) = A3 A A3>0 A B(43)
F' -1, | Alloc(FY) = {4,} =3
F? -1} Alloc(F?) = {4} A (Gz(PL)+w(f1)) = As N A,
>0 AB(4,) =4
A (G2 (P)*+w(f2)) = As A As >
0 AB(4s) =5
p2 = alloc(); H{G-3, |Alloc(G)={4,, 4,, 6,7,8| G3(p2) = Ag A Ag> 0 A B(Ag)
F1 -1, [45,4.} =6
F* —1}H Alloc(F?) = {A4, 47} A (G3(P2)*+w(fy) = A7 A A,
Alloc(F?) = {A5,Ag} >0AB(4;) =7
A (G3(p2)*+w(f2)) = Ag A Ag >
0 AB(4g) =8
pl->fl=6; HG-3, |Alloc(G)={A4,, 4,, 8 |Fi(Gs(pl)+w(fy)) =6
F' -2, [A3,Aq} A mem_upd(Gs (p1)+w(f),
F2 -1} Alloc(F?) = {A,, A,} F12,1)
Alloc(F?) = {As,Ag}
p2-f2=5; HG-3, |Alloc(G)={4,, 4,, 8 |F2(G5(p2)+w(fy)) =6
F' -2, [A3,A¢} A mem_upd(Gs(p2)+w(f,),
F2 -2} Alloc(F1) = {A,, A,} F221)
Alloc(F?) = {As,Ag}
{G-3, [Alloc(G)={4,, 42, 8 [F2(Gs(pL)+w(f)) =
assume(pl->fLF! -2, 143,46} F7 (G3(p2)+w(f2))
==p2-f2) [F? =2} Alloc(F?) = {A,, A;}

Alloc(F?) = {As,Ag}

Why the conjunction is unsat?

1) In the existing memory model memory allocated for pointers p1 and p2 cannot
intersect because it was allocated using the known alloc() function (the
corresponding path formula is not given).

209

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

2) Inthe given I constraints for this path (using the B&B model) the following
contradicting elements are present:

o F;(Gs(p1) + w(f1)) = F£(Gs(p2) + 0(f2));

o F(G:(pD) + w(f1) =5;

o F}(Gs(p2) + w(f2)) =6.
Let’s take a look at the example program below. In the program’s source code there
are calls to the function undef_ptr() that returns an unknown pointer. The pointer p2
is initialized using this function. IT" constraints in terms of B&B memory model for

the program are shown in table 3. Path formula can be made as conjunction of all
formulas in T column of the table 3.

void * undef ptr();
struct s { int f1, f2; };
struct s * pl;

struct s * p2;

pl = alloc();
p2 = undef ptr();
pl -> fl = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

In B&B memory model p1 — f1 and p2 — f2 exist in the separate memory
regions. In I' constraints for this path the same contradicting elements as for the
previous example are present. Thus, the update of one of them wouldn’t affect the
other one. Because of that the result of verification would be that the error state is
unreachable (path formula is still unsat).

However, in the existing memory model fields f1 and f2 of struct s exist in the
same memory region and it uses only one uninterpreted function for them (see table
2 in [4]). Memory for their base pointers pl and p2 was allocated using known
alloc() function and function undef_ptr() returning unknown pointer respectively. It
cannot be confirmed that an update to a field f2 of the p2 wouldn’t affect the access
to the f1 struct field of pl. In the formula the location for field f2 of the p2 is
(G3(p2) + w(f2)) which is undef_ptr; + w(f2). Locations (G;(p1) + w(f1))
and (Gs(p2) + w(f2)) exist in the same region and may be equal. Thus the formula
is satisfiable. It means that the result of verification with existing memory model
will be a reachable path to the program’s error state.

Usually such situations in practice are false alarms because different fields of
different structures do not normally intersect. Thus, the assumptions related to this
behavior in the existing memory model aren’t really incorrect but they are quite
improbable in practice. Usage of the B&B memory model will be able to reduce the
number of false alarms caused by these assumptions (continued in section 6).

210

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha
Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

Table 3. Example build of path formula for the program with unknown memory function

Path instruction [Index Alloc k' |T
structs * pl; KG-1, Alloc(G) ={A1} 1 |pl=A4;AA;>0AB(4y)
F1 -1, =1
F? -1,
undef_ptr—1}
structs * p2; [{G-1, Alloc(G) ={A4,, A5} | 2 [p2=4,AA,>0AB(4,)
F1 -1, =2
F? -1,
undef_ptr—1}
pl=alloc(); {G-2, Alloc(G) ={A4,, 4,, |3.4,5|G,(pl) =A3 ANA3;>0A
F1 -1, A5} B(43) =3
2 -1, Alloc(F?) = {A,} A (G (PL)*+w(fy)) = 4,
undef_ptr—1} Alloc(F?) = {As} NA, >0AB(A,) =4
A (Go(PL)*w(f3)) = As A
A; > 0AB(45) =5
p2=undef_ptr();{G—-3, Alloc(G) ={4,, A,, | 5 |G3(p2) =undef_ptr,
F1 -1, A3} A mem_upd(p2,G,3,2)
F? -1, Alloc(Ft) = {A,}
undef_ptr—2}| Alloc(F?) = {45}
plofl=6; HG-3, Alloc(G) ={4;, 4,, | 5 |F}(G3(pl)+w(f)) =6
F1 —>2, A3} N
F? -1, Alloc(F1) = {A,} mem_upd(Gs(pl)+w(fL),
undef_ptr—2}f Alloc(F?) = {45} F1,2,1)
p2-f2=5; K{G-3, Alloc(G) ={A,, A4,, | 5 |F2(G;(p2)+w(f,)) =6
Fl —>2, A3} A
F? -2, Alloc(F') = {A,} mem_upd(Gs(p2)+w(fy),
undef_ptr—2}f Alloc(F?) = {45} F2,2,1)
assume(pl-fl {G-3, Alloc(G) ={A, 4,, | 5 |F}(Gs(pl)+w(f))) =
==p2-f2) |F' -2, A} F7 (G5 (p2)+w(f2))
F? -2, Alloc(F1) = {A,}
undef_ptr—2} Alloc(F?) = {As}

5. Implementation notes

The creation of memory regions is an automated process. In CPAchecker
verification tool CFA (control-flow automaton) is used as an inner representation of
the program. It is sufficient to go through it and find in it all of the struct field

211

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

accesses. This allows to distinguish those fields that don’t have their address taken
somewhere in the program.

In the implementation we do not take into consideration the possibility of field
accesses through pointer arithmetic and through the usage of pointer conversions
because of the high improbability of such field accesses in program’s source code.

6. Experiments

To determine the efficiency of B&B memory model implementation in comparison
to existing memory model of the CPAchecker tool a number of launches were
performed on the predefined sets of Linux kernel modules. To use the implemented
memory model one must have:

e CPAchecker verification tool with revision number 23271 or higher from
the branch trunk;
e option cpa.predicate.useMemoryRegions should be set to ’true’.

e The following experiments were made using the revision trunk:23271 of
the tool.

6.1 False alarm set

The review of error traces obtained during the verification of Linux kernel 3.14
allowed to determine situations when reachability of error state was present due to
updates to same-typed pointers’ memory. This set consists of those 26 kernel
modules that caused false alarms due to the updates to pointer’s memory. The goal
of this experiment was to find out what effect the usage of B&B memory model will
have on the tools precision. Tables 4 and 5 hold information about changes of the
tool’s verdicts.

Table 4. B&B applicability

B&B could help B&B could not help
B&B helped 10 0
B&B did not help 0 16
Table 5. Verdict changes
False alarm — Safe False alarm — Unsafe False alarm — False alarm*
3 5 2

* - different error trace and cause of Unsafe

212

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha
Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

6.2 Linux 4.2-rc1 kernel modules

A set of Linux kernel drives (version 4.2-rc1) was selected to study the efficiency of
B&B memory model implementation in comparison to the existing memory model
of the CPAchecker tool.
The launch was performed for rule that checks correctness of functions working
with usb_get * and usb put * functions of usb-system. Launch results can be
found in tables 6, 7.
Launch configuration:

e time limit — 15 minutes;

e memory limit— 15 Gb;

e number of CPU cores — 4;
The differences in the regions the models have led to the difference in program’s
paths that are covered by the tool. This explains Unsafe — Unknown, Unknown —
Safe and Unknown — Unsafe transitions, where Safe means that program’s error
state is unreachable, Unsafe — error state is reachable, Unknown — timeout or
runtime error. This experiment’s results show that the improvement to the tool’s
precision is present while the verification speed remains competitive.

Table 6. Linux 4.2-rc1 statistics

Existing model B&B
Verification time 35.8 hours 35.3 hours
Safe 4245 4241
Unsafe 69 68
Unknown 161 166
Table 7. Transitions
Existing model \ B&B model |[Safe Unsafe Unknown
Safe 4240 0 5
Unsafe 0 67 2
Unknown 1 1 159

6.3 SV-COMP’17 DeviceDrivers64

This set contains files from the DeviceDrivers64 set of the international competition
on software verification SV-COMP’17. It consists of 2795 modules of different
Linux kernel versions. Launch results can be found in tables 8, 9, 10.

Launch configuration:

e time limit — 15 minutes;
e memory limit — 15 Gb;
213

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

e number of CPU cores — 4;
Several of the transitions from the incorrect results can be explained by the
difference in models’ choice of pointer’s may-aliases. The same modules were
present in the earlier mentioned False alarm set. Several transitions to Unknown can
be explained by the additional overhead costs required for B&B usage to the
verification tasks on the verge of timeout.

Table 8. DeviceDrivers64 statistics

Memory models Existing B&B
Total number of files 2795 2795
Correct results 1791 1780
Error state unreachable 1524 1522
Error state reachable 267 258
Incorrect results 7 5
Missed errors 4 4
False alarms 3 1
Unknown 997 1010
Table 9. Time for DeviceDrivers64 set
Memory models Existing B&B
Total time 143.6 hours 143.1 hours
[Time for correct results 14.9 hours 14.1 hours
SMT solver time 10500 sec (2.9 hours) 12400 sec (3.4 hours)
SMT solver time for correct results 660 sec 605 sec

Table 10. Transitions

Existing model \ B&B model |Correct results |Incorrect results [Unknown

Correct results 1775 0 16
Incorrect results 2 5 0
Unknown 3 0 994

7. Conclusion

This paper proposes the specification of B&B memory model and its region-based
reasoning in terms of uninterpreted functions. Its implementation on top of existing
memory model of the CPAchecker verification tool provides better verification

214

Bonkos A.P., Manzpsixkun M.Y. MeTo1 MOJIGTMPOBaHHs MAMSATH B MPEANKATHI aOCTPaKIMAX C Pa3/IeICHHEM Ha
Henepecekatonecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

precision while the verification speed remains competitive. The implementation was
included in the official repository of the CPAchecker static verification tool.

References
1.V. Kuliamin, “Software verification methods,” Vserossiiskii konkursnyi otbor
obzornoanaliticheskikh statei po prioritetnomu napravleniyu

”Informatsionnotelekommunikatsionnye sistemy” [Russian national competitive
selection of review and analytical articles in priority direction “Information and
telecommunication systems™], 117 p., 2008 (in Russian).

2.D. Beyer, T. A. Henzinger, and G. Theoduloz, “Configurable Software Verification:
Concretizing the Convergence of Model Checking and Program Analysis,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, W. Damm and H.
Hermanns, Eds., vol. 4590. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
504-518.

3.M. Mandrykin and A. Khoroshilov, “A memory model for deductively verifying Linux
kernel modules,” A.P. Ershov Informatics Conference, the PSI Conference Series, 11th
edition, 2017 (to appear).

4.M. Mandrykin and V. Mutilin, “Modeling Memory with Uninterpreted Functions for
Predicate Abstractions,” Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 5, 2015, pp.
117-142 (in Russian). DOI: 10.15514/ISPRAS-2015-27(5)-7

5.R. Bornat, “Proving pointer programs in Hoare Logic,” in Mathematics of Program
Construction: 5th International Conference, MPC 2000, ser. Lecture Notes in Computer
Science, R. Backhouse and J. N. Oliveira, Eds., vol. 1837. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 102-126.

6.R. Burstall, “Some techniques for proving correctness of programs which alter data
structures,” Machine Intelligence, vol. 7, pp. 23-50, 1972.

MeToa mogenMpoBaHUA NaMATU B NpeauKaTHbIX
abcTpakumsax c pasgenieHneM Ha HenepeceKarLlmecs
obnactu

! A.P. Boaxos <arvolkov@inbox.ru>
2 M. Y. Manopeixun <mandrykin@ispras.ru>
! Mockosckuii 2ocyoapcmaennulil ynugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwl, 0. 1.
2PIHcmumym cucmemnozo npoepammupoganus PAH,
109004, Poccus, e. Mockea, yn. A. Conxcenuysvina, 0. 25.

AnHoTanusa. Bepudukamus nporpamMmHOoro obecriedeHMs — BHA JIEATENBHOCTH,
HAIpaBJICHHBIH Ha KOHTPOJb KadecTBa IPOTPaMMHOTO obecnedeHHs U OOHapyKeHUS
omm6ok B HeM. CraTtudeckast Bepu(HUKAIHSA - 3TO OAUH U3 CIIOCOO0B BepU(PHKAINH, KOTOPHIHA
npon3BOAUTCA 03 BBINONHEHHS HMCXOJHOTO Koja mporpaMmbl. JIms cTaTH4ecKoi
Bepu(UKALMH HCIOJb3yeTCs CIELHAIbHOE MPOrpaMMHOE O0EeCleYeHHe: WHCTPYMEHTHI
CTAaTUYECKOH BepU(UKAIMK, KOTOpbIE 4acTo paboTalOT C MCXOAHBIM KOAOM HPOTPaMMBbI.
OnHUM W3 TAaKHX HHCTPYMEHTOB SIBISIETCS MHCTPYMeHT mox HasBanmem CPAchecker.
[IpobGiema ero Tekylueil MOIeNH MaMsATH 3aKIIOYaeTCs B TOM, YTO IPH BCTpede (GyHKIMH,

215

Volkov A., Mandrykin M. Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 203-216.

BO3BpaIlaloNel yKkazaTenb Ha 00JacTh MaMATH, y KOTOPOH OTCYTCTBYET TENO, B IIpoliecce
Bepu(dUKamuM O ee BO3BpAaeéMOM 3HAYEHHH MOTYT OBITh CHENaHBl IPOU3BOJBHBIC
npennosnioxeHus. HecMoTps Ha TO, YTO OHHM TEOPETHUYECKH JOIYCTHUMBI, BEPOSTHOCTh X
BBINOJIHEHNUS HA NPAaKTHKE OYEHb HU3KA. VICIONB30BaHHME STHX HPEAIIONOKEHUH MOXKET
HPHUBECTH K JIOKHOMY INPEAYNPEKICHHIO B Ka4eCTBE pe3yibTaTa Bepuukanuu. B nanHoi
CTaThe MBI JeflacM 0030p Ha OJUH U3 MOJIXO0J0B, OJarogapst KOTOPOMY MOXKHO W30aBUTHCA OT
TakoW mNpoOieMsl, a Takke mnpemiaraeM (OpManbHOE OIMCaHHE AAHHOTO IIOAXOJa B
TepMHHaXx (OpMyn IyTeH, COJepiKalluX HEHHTEpIpeTHpyeMble (YHKIHH, KOTOpHIE
HMHCTPYMEHT HCIHONB3YeT IJISI MOIENUPOBAHMS NMaMSATH IPOrpaMMbl. Takke MBI MPHUBOIAUM
pe3yabTaThl CPAaBHUTENBHOTO aHanmm3a S(QQEKTHBHOCTH NPEUIOKEHHOW peatn3anyn
OTHOCHTEJIBHO CYIIECTBYIOIICH MOACIH ITaMsTH.

KiioueBsbie c10Ba: MOseNb IaMATH; IIPEIUKATHBIC a0CTPAKIUK; CTaTHYECKasi BepUBHUKALIHS.
DOI: 10.15514/ISPRAS-2017-29(4)-13

Jasi uurupoBanusi: Bonkos A.P., Mauapsikun M.Y. Meron MoaenupoBaHUs NMaMATH B
MpeaUKaThl a0CTPAKIUAX C pa3zeieHeM Ha Herepecekaronecs oonactu. Tpyosr UCII PAH,
toMm 29, Beim. 4, 2017 ., ctp. 203-216 (na anrmwmiickom si3eike). DOI: 10.15514/ISPRAS-
2017-29(4)-13

Cnucok nutepartypbl

1.B.B. Kynamus, “Metos! BepupuKanuy mporpaMMHOro odecrieuerns” Beepoccuiickuit
KOHKYPCHBIH 0TOOp 0030pHO-aHATUTHYECKHX CTAaTel MO MPUOPUTETHOMY HAIPABICHUIO
"NudopMaImOHHO-TeIeKOMMYHHKAMOHHBIe cucTembl”, 117 ctp., 2008.

2.D. Beyer, T. A. Henzinger, and G. Theoduloz, “Configurable Software Verification:
Concretizing the Convergence of Model Checking and Program Analysis,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, W. Damm and H.
Hermanns, Eds., vol. 4590. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
504-518.

3.M. Mandrykin and A. Khoroshilov, “A memory model for deductively verifying Linux
kernel modules,” A.P. Ershov Informatics Conference, the PSI Conference Series, 11th
edition, 2017 (to appear).

4 Manppeikua M.Y. 1 Mytwue B.C., “MopenupoBaHne NMamsTH C HCTIONB30BaHUEM
HEMHTEpIPETUPYeMbIX QYHKIUH B mpeaukaTHbix abcrpakuusax” Tpyaer VICIT PAH, Tom
27, Beim. 5, 2015, ctp. 117-142. DOI: 10.15514/ISPRAS-2015-27(5)-7

5.R. Bornat, “Proving pointer programs in Hoare Logic,” in Mathematics of Program
Construction: 5th International Conference, MPC 2000, ser. Lecture Notes in Computer
Science, R. Backhouse and J. N. Oliveira, Eds., vol. 1837. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 102-126.

6.R. Burstall, “Some techniques for proving correctness of programs which alter data
structures,” Machine Intelligence, vol. 7, pp. 23-50, 1972.

216

Static Verification of Linux Kernel
Configurations

1S.V. Kozin <kozyyy@yandex.ru>
2V.S. Mutilin <mutilin@ispras.ru>
! National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. The Linux kernel is often used as a real world case study to demonstrate novel
software product line engineering research methods. It is one of the most sophisticated
programs nowadays. To provide the most safe experience of building of Linux product line
variants it is necessary to analyse Kconfig file as well as source code. Ten of thousands of
variable statements and options even by the standards of modern software development.
Verification researchers offered lots of solutions for this problem. Standard procedures of
code verification are not acceptable here due to time of execution and coverage of all
configurations. We offer to check the operating system with special wrapper for tools
analyzing built code and configuration file connected with coverage metric. Such a bundle is
able to provide efficient tool for calculating all valid configurations for predetermined set of
code and Kconfig. Metric can be used for improving existing analysis tools as well as
decision of choice the right configuration. Our main goal is to contribute to a better
understanding of possible defects and offer fast and safe solution to improve the validity of
evaluations based on Linux. This solution will be described as a program with instruction for
inner architecture implementation.

Keywords: Software Product Lines, Linux, Kconfig, Preprocessor
DOI: 10.15514/ISPRAS-2017-29(4)-14

For citation: Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 217-230. DOI: 10.15514/ISPRAS-
2017-29(4)-14

1. Introduction

Nowadays, software is used to solve increasingly important and complex tasks, due
to this fact the complexity of software architectures is also constantly growing. With
the increasing complexity of programs, the complexity of development, analysis and

217

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

maintenance arises. There are many methods that allow you to reduce the costs of
supporting the software life cycle. One such method is the creation of variable
systems (or family of systems, software product families, software product lines).
The superiority over the usual development method is that systems are
manufactured with the condition of multiple elements used for several systems with
a similar set of functions, taking into account a specific target audience of users. At
the same time, a complex and widely known representation of variable software is
the Linux operating system [1-5].

In the development of variable systems, a variability model and a variation
mechanism play a fundamental role. The variability model specifies the space of
possible variants of this family of systems. Usually it is determined by a set of
features or configuration parameters, by the sets of their possible values and
constraints on possible combinations of these values, each variant of the system
corresponds to a certain set of values of all features. The variation mechanism
provides the ability to build all possible system variants from a limited set of created
and followed artifacts. In Linux, the variability model and its relationship to the
variation mechanism is built on the basis of Kconfig files, Makefile files and
additional scripts. Kconfig describes all possible features, as well as their
relationship with each other in a special language. Then on the basis of Kconfig, the
configuration file .config is defined, which describes the version of the system. It
consists of a set of configuration variables described in Kconfig and values that
satisfy the constraints of Kconfig. During kernel assembly, the values of variables
specified in .config are passed to the code as constants for the preprocessor and to
Makefiles, which will be used in the variation mechanism. Makefiles contain
information about objects in kernel: what files are included and which mode of
compilation will be used [5].

In the field of operating systems (hereinafter the operating system we mean the
kernel and the underlying OS libraries, providing the interfaces for work with
computing resources and hardware), a mechanism of conditional compilation of C /
C ++ languages is widely used as a mechanism for variability of the mixed type
(based on macros #ifdef, #if, else #else). Blocks that are surrounded with variability
mechanism macros, are called variable blocks. It allows you to compose code at the
build stage that combines various variables specified by a set of characteristic
values that are conditional compilation parameters in this case (defined by the
#define and #undef macros, as well as preprocessor setup parameters). The
expression after macros is called block precondition, if configuration turns it into
‘true’, block gets compiled [5].

The complexity of variability models for modern operating systems is very high, for
example, the Linux kernel version 2.6.32 has 6319 characteristics, more than 10,000
constraints that can be used up to 22 individual characteristics, with the majority of
characteristics depending on at least 4 others, and the maximum depth of the
dependency tree is 8 [6]. This complexity causes a large number of errors, primarily
due to the difficulty of taking into account all the factors that a developer of a

218

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

separate code element should do. To identify and cope with these errors, it is
necessary to use specialized techniques of analysis and verification. Complexity of
analysis that is typical for systems with such a variability mechanism arise because
of the huge size of the possible variants space (which makes it completely
unrealistic to check them all). Due to using of conditional compilation, each
fragment does not have to be a separate component with a certain behavior that can
be analyzed separately from the rest of the code, usually such fragments are just
insertions into the common code, and can only be checked in certain combinations
with each other. The need to solve these problems imposes special requirements on
the tools and analysis methods used for complex variable operating systems and
system software in general. These requirements are specific for analysis and
verification - the methods used to create such systems, by themselves, do not
facilitate their analysis [7, 8]. The main goal of this work is to propose a method
capable of coping with the verification of the Linux OS taking into account the
variability, to give acceptable accuracy of verification and speed of execution
comparable to the verification of common programs.

An errors analysis of such complex systems as Linux can be done with a lot of
different tools. The most convenient of them are static analyzers and static verifiers.
Static code analysis is the analysis of software produced (as opposed to dynamic
analysis) without real execution of the programs under investigation. Existing static
analyzers (such as Coverity [9] or Svace [10]) and static verifiers (such as BLAST,
CPAchecker [11]) are only designed to work with the code already compiled.
Accurate analysis requires pre-assembling of a specific configuration, and only after
that start of the actual analysis. As a result, the total inspection time becomes
unacceptably large. There is a class of tools that are focused on analysis of a set of
possible configurations, they do not split the phase of building configurations and
code analysis. As the example of such tools we can take a look at TypeChef and
Undertaker. These tools are designed to solve special problems in the sphere of
variability. Undertaker is looking for a "dead code" - such a problems when
different configurations give the same product, besides it has a lot of built-in helper
modules to provide main task, and one more function - assembling the minimal
Linux kernels for individual use cases. TypeChef is looking for linking and compile
errors with a variability-aware method. It is important to say, that TypeChef can not
find difficult problems in code like complex static analysers. Suggested in this paper
tool should analyze code deeply like BLAST or CPAchecker and, on the other hand,
should do it in variability-aware way without all-configuration brute forcing. For
this task we suggest to use CPAchecker due to its outstanding abilities in the error
findings, despite CPAchecker’s expenditure of time [11]. The maximum reduction
in verification time should be achieved through the optimal selection of
configurations that will be directed to the input of the static analyzer.

219

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

2. Configuration Set Selection

The problem of selecting configurations can be considered as a splitting of the
configuration space into equivalence classes. Each of the selected configurations
will belong to one of the classes. To split the configuration space into classes, it is
suggested to use the MC/DC test coverage criterion. The advantage of this choice is
that it allows you to significantly reduce the number of classes, even for large
software systems. In addition, methods of analysis/construction of configurations
for preprocessor directives are similar to methods for test data generation for
coverage of programs in programming language, where the MC/DC criterion has
proven itself well. If we take a look at standard usage of MC/DC for code coverage,
we can find out that conditionals in usual programming language has the same
structure as conditional compilation directives, the difference is in compilation
(conditional compiling directives will not compile code under the block if condition
is not true, which is the same as not giving control to code inside usual conditionals.
There are 2 basic notions in MC/DC: decision and condition. Decision is a
propositional formula which consists of conditions. If it is true, then control will be
given to block with such decision (in the case of preprocessor - code will be
compiled). Otherwise, control will not be given to this block (code will not be
compiled). Condition is a logical part of decision which connects to other conditions
with logical functions.

A set is considered to reach 100% coverage by this metric, if:

1. Each decision takes every possible outcome.

2. Each condition in a decision takes every possible outcome.

3. Each condition in a decision is shown to independently affect the outcome
of the decision.

In other words, in the full test, in accordance with the MC/DC coverage criterion, it
should be demonstrated that every condition that can influence the resulting value of
the decision that includes it actually changes its value regardless of the other
conditions.

Example:

Some module of Linux has variable block inside. For example, consider a decision:
A && B || C; where A, B, C are some boolean constraints of Kconfig.

The decision is applicable for variable block (Fig. 1).
#if (A && B || C)
#endif
Fig. 1. Example of variable block

We can extract the conditions out of the decision: A, B, C.
That means that we have to build such table for this variable block (Table 1).
220

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

Table 1. Truth table for variable block in Fig. 1
A

o8]

Decision

PR POIOO|O

S =11S =1 == {=]le)
=R =R -

RFP OOk, OO

1 1

Now we will find those pairs of conditions values where the change of one of them
affects on decision. For each condition we have to get only one pair, and then
choose minimal amount of them to cover all conditions. This will satisfy third
MC/DC point. Pairs will be (Table 2)

Table 2. MC/DC coverage table

A B C Decision A B C
0 0 0 0 C1
0 0 1 1 C1
0 1 0 0 Al C2
0 1 1 1 Cc2
1 0 0 0 Bl C3
1 0 1 1 C3
1 1 0 1 Al B1

1 1 1 1

According to table we will test only pairs that are marked as A1, B1 and C3 or C2;
These 2 are minimal sets for MC/DC coverage.

We can notice that from 8 possible combinations, we can use only 4 to get full
coverage according to MC/DC method (0-1-0, 0-1-1,1-0-0,1-1-0).

In general, the MC / DC metric allows 2n different situations to be used instead of
n? condition combinations.[14]

3. Kernel Check Stages

For each of the found configurations, you should run a kernel verification. The
program will scan the kernel in 6 stages: configuration, search for a "dead code",
preprocessing, compiling, linking, searching for run-time errors. It is also worth
noting that we will look for not only errors, but also configuration defects. Defects -
is a broader concept, and it includes not only system errors, but also possible errors
of the kernel without processing the interrupt.

221

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

Description of the stages:
A. Search for a “dead code”.
A "dead" code is such a code in which control is not transferred under any
circumstances. This code contributes to a common configuration error
when two different configurations produce the same product at the output.
This problem can be solved using the built-in tools of the Undertaker.

B. Configurations.
At the time of build, Linux itself checks the configuration file, but it's
worth checking it for recursive dependencies and non-existent variables in
the code, but existing in Kconfig (and vice versa).

C. Preprocessing.

Preprocessing is performed just before compilation and at this stage we
will get the code that will be compiled into the final version of the
program. Most of errors at this stage can find by a preprocessor. It remains
for us to inform the user of a possible conflict of names if we see duplicate
names of preprocessor variables and their redefinition, because they have
one nominal space and the developer may not notice the problem of
overriding.

D. Compilation.
Compilation is complete on the compiler side. Here there are such errors
as: detection of an undeclared variable / function, missing punctuation in
the code, etc.

E. Linking.
As well as compilation is completely redirected to the linker. The linker
finds errors in missing libraries or files.

F. Execution Errors.
The most difficult part of the test is using the LDV and CPAchecker tools.
LDV assigns labels to the code of the program according to the preset
rules, while CPAchecker searches for them and builds accessibility graphs
to them so we can see how a label is achieved.

4. Configuration Set Selection

To solve this task we suppose the workflow for a program called OStap (Fig. 2).
This program will find all variable blocks, get all the propositional formulas for
entering each of the variable blocks. After that program will extract all conditions
from those formulas and will use MC/DC metric to get all necessary configurations
that will be checked with static verifier and dead code detector to perform
verification stages A-F.

222

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

-
Faatura modal
extraclion

Linux source filas

ck precondition
(decision) extraction and
ansformation
Pycparser

Dacision in SMT-lib
format + extractad
conditions

MEDC driven

configuration generation
SMT-salver

Configurations

and launch files

- mrw
‘arificatiaon |:|I b
Klaver-LDV 1 [_E‘alas'i,
A —

Fig. 2. OStap workflow.

4.1 Feature model extraction

First of all, we transform Kconfig files using Kconfigdump module of Undertaker
to get feature model of Linux kernel. Feature model is splitted by architectures sets
of formulas. All dependencies implemented in Kconfig file are represented in a
dump as a set of logical formulas. So it is possible to get full precondition for each
feature just looking at line with it’s name in model file. For example: if we have to
turn on option A to turn on option B there will be ...&&A addition to any decision
where config B is have to be turned on.

4.2 Block precondition extraction

4.2.1. Coarse block precondition extraction

Secondary, we need to get all variable blocks in the given code, which is a module
or a set of modules that consists of different .c files. These modules can be compiled
according to Makefiles, where modules are marked as compiled, compiled as LKM,
non-compiled. This mechanism of variability (Kbuild variability) in Linux is made
for modules and helps to organize builds. Due to the fact, that another variability
mechanism in Linux uses preprocessors we can find all #ifdef, #if, #else, #ifndef
blocks to be sure that we have found all the variable blocks in the given code. This

223

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

may be done using standard tools of most of popular operating systems or using
programming language tools for work with file system.
When we have all necessary blocks and their positions in the files we can get
propositional formulas using Undertaker[13] tool for them. As a result of the
undertaker infrastructure we can easily calculate preconditions for preprocessor
blocks in a file, just by specifying the file and line number. If a configuration model
is loaded, it will also fetch all interesting items from the model. Say you want to
have the block precondition for line 359 and line 370 in init/main.c.
Then for each block we use Undertaker’s option -blockpc to get blocks
precondition based on dumped feature model and code. This precondition is a
decision in MC/DC metric theory. It is also necessary to say that later we will use
SMT-solver to work with MC/DC metrics, so we patched Undertaker for providing
output in a SMT-lib way (Polish notation). C expressions with operands, are not
able to be converted due to architecture of undertaker, such code may be marked
with special symbols to be changed in the future.

$ undertaker -3j blockpc init/main.c:359

init/main.c:370
I: Block B20 | Defect: no | Global: O

B20

&

(B18 <-> CONFIG SMP)

§& (B20 (B18) && CONFIG X86 LOCAL APIC)

!
<=>
&& (B22 <-> (B18) && (! (B20)))
&& (B25 <-> (! (B18)))

I: Block B25 | Defect: no | Global: O

B25

&&

(B18 <-> | CONFIG SMP)

&& (B20 <-> (B18) && CONFIG X86 LOCAL APIC)
&& (B22 <-> (B18) && (! (B20)))

&& (B25 <-=> (! (B18)))

Fig. 3. Example of usual Undertaker output without model.

$ undertaker -3j blockpc -m

models/x86.model init/main.c:370

I: loaded rsf model for x86

I: Using x86 as primary model

I: Block B25 | Defect: no | Global: O

B25

&&

(B18 <-> ! CONFIG SMP)

&& (B20 <-> (Bl8) && CONFIG X86 LOCAL APIC)

224

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

&& (B22 <-> (B18) && (! (B20)))
&& (B25 <=> (! (B18)))

&&
(CONFIG X86 32 -> ((!CONFIG 64BIT)))

&&

(CONFIG_X86 32 NON_STANDARD -> ((CONFIG X86 32 &&
CONFIG SMP && CONFIG X86 EXTENDED PLATFORM)))

&&

(CONFIG X86 64 -> ((CONFIG 64BIT)))

&&

(CONFIG_X86 EXTENDED PLATFORM -> ((CONFIG_X86 64)
§& (CONFIG X86 32)))

&
(CONFIG_X86 LOCAL APIC -> ((CONFIG X86 64 ||
CONFIG SMP || CONFIG X86 32 NON_ STANDARD ||
CONFIG_X86 UP_APIC) && (CONFIG X86 64 ||
CONFIG_SMP || CONFIG X86 32 NON STANDARD ||
CONFIG _X86 UP APIC)))

&&

(CONFIG X86 UP _APIC -> ((CONFIG X86 32 &&
ICONFIG_SMP && !CONFIG X86 32 NON_ STANDARD)))

Fig. 4. Example of usual Undertaker output with model.

4.2.2 Detailed block precondition extraction

When we have formula by Undertaker, we have to change all the marked code to
prefix view, in other words: to represent decision in SMT-lib way. Due to the fact
that such code will be in a usual C representation, we can use any C parser that is
able to build expression tree to rebuild the string. For example we can use
Pycparser [15]. Pycparser can parse C code and represent it as ast-tree. Ast-tree is
an expression tree with all operators of C language. Running through the tree, we
can rewrite any C expression from infix to prefix view. To do this thing we need to
apply this algorithm:
Algorithm prefix (tree)
if (tree not empty)
print (tree token)
prefix (tree left subtree)
prefix (tree right subtree)
end if
end prefix

225

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

4.3 MC/DC driven configuration generation

Now we have ready-to-use prefix formula that is the same as ‘decision’ term in
MC/DC metrics so it is time to start extracting conditions from a decision. To pass
this stage we need to get all the single variables inside unary operator or without
unary operator. Those variables will be the same as conditions.

When we have all conditions and decision for a variable block, we need to build a
truth table for conditions. For example, we extracted 3 conditions: a > 0, b == true, a
< 0, and out decision is (a > 0) && (b == true) || (a < 0). We look over all of their
combinations that we got from truth table like it was described in Il chapter (Table
3).

Table 3. Truth table without decision for (a > 0) && (b == true) || (a < 0).

Line A>0 B = true A<0 decision
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Each line of the table reflects set of equalities related to column and value. For our
example line 1 means: a > 0 = false, b == true = false, a < 0 == false, whereas line 6
means: a > 0 = true, b == true = false, a < 0 == true;

To calculate decision column we need to put such equalities and full decision
formula into SMT-solver, so it calculates possible values of variables through
equalities and then put it into decision formula to find solution. In our example in
case of a > 0 = true and a < 0 = true SMT-solver will return error, so these sets of
variables will not be used in future (Table 4).

Table 4. Truth table with decision for (a > 0) && (b ==true) || (a < 0).

Line A>0 B = true A<O0 decision
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 Error
7 1 1 0 1
8 1 1 1 Error

226

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

In classical MC/DC theory we have to say that this example can not be covered by
MC/DC due to the fact that 6 and 8 line gave us impossible conditions to resolve,
but in a real case adaptation we can say that we covered all of possible conditions
[14]. When the table is ready, we can find influencing variables, like it was
described in chapter Il (Table 5).

Table 5. MC/DC coverage table for (a > 0) && (b ==true) || (a < 0).

Line A>0 | B=true | A<O0 decision A>0 B A<O0
==true

1 0 0 0 0 1

2 0 0 1 1 1

3 0 1 0 0 2

4 0 1 1 1 2

5 1 0 0 0 3

6 1 0 1 Error

7 1 1 0 1 3

8 1 1 1 Error

For MC/DC coverage we need A/B and C pairs to check. That means that we have
to extract a and b values related to those lines. These values form configurations that
we will check with help of verifier. Each line for each configuration.

4.4 Verification

Finally, we have got necessary configurations to get 100% coverage using MC/DC
metrics. Now we will push these configurations to static verifier (for example,
CPAchecker). Also we will check code with Undertaker tool to find dead code
blocks (Stage A of kernel check), which is also can be declared as configuration error.
Next step for pushing configurations is to create launch file for LDV-Klever tool and
launch it. Launch file is filled with modules-to-check and rules for finding unsafe
modules [16]. Before the launch, code will be compiled and stages B-E will be passed
with compiler default methods. After that LDV-Klever main activity will be invoked
to check code for a runtime defects (stage F). Output is a module with result: safe,
unsafe or unknown. If module is unsafe, verifier shows error trace for this module.
During verifier launches we push results into the dataset where the structure unite
modules, that we are checking, each module is splitted with configurations and results
of LDV-Klever, LDV-KIlever results are splitted with verdict and unsafe traces.

5. Conclusion

This article describes the method, which allows you to check the Linux operating system
for errors without being depended on the configuration. This approach provides high
code coverage and an improved speed of verification comparing to brute force method.

227

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

The prototype of this program is already implemented. It will be finished and fixed in a
nearest time.

In future work MC/DC will be better adapted to current aim(Linux kernel), also project
will be tested in a real work during ISP RAN researches. There will be also replacement
in used tools, probably or rewriting them. This software product can be used in the
production of distributions, as well as for verification of existing ones. As a result we
will get linear depended amount of configurations for full testing of Linux systems.

References

[1]. Jacobson 1., Griss M., Jonsson P. Software Reuse, Architecture, Process and
Organization for Business Success. Addison-Wesley, 1997.

[2]. Bosch J. Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach. Pearson Education, 2000.

[3]. Clements P., Northrop L. Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering, Addison-Wesley, 2001.

[4]. Pohl K., Bockle G., van der Linden F. J. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-
28901-1.

[5]. Kuliamin V.V., Lavrischeva E.M., Mutilin V.S, Petrenko A.K. Verification and analysis
of variable operating systems. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 3, 2016,
pp. 189-208 (in Russian). DOI: 10.15514/ISPRAS-2016-28(3)-12

[6]. Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[7]. Lavrischeva E. M., Koval G.I., Slabospickaya O.0O., Kolesnik A.L. Features of
management processes when creating families of software systems [Osobennosti
processov upravleniya pri sozdanii semejstv programmnyh system]. Problems of
programming [Problemy programmirovaniya], 3:40-49, 2009 (in Russian).

[8]. Lavrischeva E.M., Koval G.l., Slabospickaya O.0O., Kolesnik A.L. Teoreticheskie
aspekty upravleniya variabel'nost'yu v semejstvah programmnyh sistem. Bulletin of
KSU, a series of physics and mathematics [Vesnik KNU, seriya fiz.—mat. nauk], 1:151-
158, 2011 (in Russian).

[9]. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, Dawson Engler, A “Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World”, Communications of
the ACM, Vol. 53 No. 2, pp. 66-75

[10]. Borodin A.E., Belevancev A.A, A Static Analysis Tool Svace as a Collection of
Analyzers with Various Complexity Levels, Trudy ISP RAN/Proc. ISP RAS, vol 27,
issue. 6, 2015, pp. 111-134. DOI: 10.15514/ISPRAS-2015-27(6)-8 (in Russian).

[11]. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, “The software
model checker BLAST”, Int J Softw Tools Technol Transfer (2007) 9:505-—
525, Springer-Verlag 2007

[12]. Andy Kenner, Christian Kastner, SteffenHaase, Thomas Leich, “TypeChef: toward type
checking #ifdef variability in C”. Proceeding FOSD ’10 Proceedings of the 2"
Internationsal Workchop on Feature-Oriented Software Development, pp. 25-32,
Eindhoven, The Netherlands, Oct. 10, 2010.

[13]. Stephan Henglein. Vampyr configurability aware compile testing of source files. Linux
Plumber Conference, Oct 15-17, 2014, Dusseldorf, Germany. Available at:

228

Kosun C.B., Myrunus B.C. Cratnyeckas Bepudukaimst Kondurypauuii sapa Linux. Tpyoer UCIT PAH, Tom 29, Bbir. 4,
2017 r., ctp. 217-230.

http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2313/original/hengel
ein.pdf, accessed 12.01.2017.

[14]. Kulyamin V., Model-based testing [Testirovanie na osnove modeley]. (online
publication). Awvailable at: http://mbt-course.narod.ru/Lecture03.pdf, accessed
12.02.2017 (in Russian).

[15]. Alber ~ Zever. Pycparcer wiki. (Onine publication). Available at:
https://pypi.python.org/pypi/pycparser/2.14. accessed 7.05.2017.

[16]. I.S. Zaharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, A.V.
Khoroshilov. Configurable Toolset for Static Verification of Operating Systems Kernel
Modules. Trudy ISP RAN/Proc. ISP RAS, vol 26, issue 2, 2014, pp. 5-42 (in Russian).
DOI: 10.15514/ISPRAS-2014-26(2)-1.

Cratuyeckas sepudumkaumsa KoHcpurypaumm agpa Linux

1 C.B. Kosun <kozyyy@yandex.ru>
2B.C Mymuaun <mutilin@ispras.ru>
! Hayuonanvmwiii uccnedosamenvcuii ynusepcumem Boicuwas Ilkona xonomux,
101000, Poccus, e. Mocxaa, yn. Macnuykas, 0. 20.
2HHcmumym cucmemnoz2o npocpammupoganus PAH,
109004, Poccus, . Mockea, yn. A. Coaxcenuysvina, 0. 25.

AHHOTamms. Snpo omepanyoHHOHM cucTeMbl Linux — 3TO 9acTeIf IpHMep COBPEMEHHBIX
WHXXCHEPHBIX pEIIeHHH B 00NacTH CO3MaHMS IPOAYKTOBBIX JIMHEEK IIPOrPAMMHOTO
obecrieuenns. CeromHs 3TO O0JHA M3 HauOOJee CIOXKHBIX MPOrPpaMMHBIX cucTeM. [l Toro,
9TOOBI ObOecreunTh Hambojee Oe30macHOe MOCTPOCHHE BAapHUAHTOB MPOAYKTOBOH JHMHEUKH,
HEeo0XOMMO aHAM3HPOBaTh KoH(UrypanuoHHsli ¢aiin Kconfig momumo mcxomHoro xona.
SInpo conepKUT NecsATh ThICSY BapHaOeNbHBIX IEPEMEHHBIX HECMOTPS Ha COBPEMEHHYIO
urxeHeputo. MccienoBarenu B 00JacTH Bepu(UKALMK MPEUIAraloT OOJbIIOE KOJIMYECTBO
peteHus IpodieMbl aHann3a. CTaHAapTHEIE IPOLEAYPH! BepUBHKAIMN 3/1eCh HE MOTYT OBITH
NpUMEHEHBI H3-3a BPEMEHHM NPOBEPKH MOKPHITHS BCEX KOHOHrypanuid. MblI mpemiaraemMm
MHCTPYMEHT, KOTOPBIH Oa3upyeTrcss Ha CBA3M YK€ CYNIECTBYIONIMX MpOrpaMMmax Uit
MPOBEPKH KoJa ¥ KOH(UTYyparmoHHOTO (paiiia ¢ METPUKON MOKPHITHA. Takod MakeT — 3TO
3G QEeKTHBHBI HWHCTPYMEHT JUIA pacdeTa BceX MAONYCTHMBIX KOHOHTrypammii Uit
npenonpeneneHHoro Habopa koma u Kconfig. IlpemnoxkeHHble MeTOABI MOTYT OBITh
WCIIOJB30BaHbl JUIsl YJIYYIISHUsS] CYIISCTBYIOIIMX HHCTPYMEHTOB aHalW3a, a Takke Uit
BbIOOpa TNpaBUIBHOW KoHGUryparuu. Hamia ocHOBHas wenp — Jydine pa3oOparbes B
BO3MOXXHBIX JIe()eKTax U MPEeIOKUTh ObICTpoe M Ge30IacHOe peleHue Il MPOBEPKH siapa
Linux. D10 pemenne OymeT OMUCaHO Kak IMporpamMMa ¢ WHCTPYKIHEH IO pealn3aluu
BHYTPEHHEH apXHUTEKTYpBL.

KiroueBbie cji0Ba: JTHMHEHKa IpOrpaMMHBIX poaykToB, Linux, Kconfig, mpenpoueccop
DOI: 10.15514/ISPRAS-2017-29(4)-14

Jnsi murupoBanmsi: Kosun C.B., Myrmwmur B.C. Craruyeckas BepubHKanms
koHburypauuii siapa Linux. Tpyow MUCIT PAH, tom 29, Beimn. 4, 2017 1., ctp. 217-230 (Ha
anrmuiickom si3pike). DOI: 10.15514/ISPRAS-2017-29(4)-14

229

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230.

Cnucok nutepaTtypbl

[1].
[2].
[3].
[4].

(5]

[6].

[7].

(8].

[a].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

230

Jacobson 1., Griss M., Jonsson P. Software Reuse, Architecture, Process and
Organization for Business Success. Addison-Wesley, 1997.

Bosch J. Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach. Pearson Education, 2000.

Clements P., Northrop L. Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering, Addison-Wesley, 2001.

Pohl K., Bockle G., van der Linden F. J. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-
28901-1.

B.B. Kymsamun, E.M. JlaBpumesa, B.C. Mytwmn, A.K. [lerpenko. “Bepuduxanus u
aHanu3 BapuabenbHBIX omepannoHHbIx cuctem” Tpyast UCII PAH, tom 28, Bbim. 3,
2016, crp. 189-208. DOI: 10.15514/ISPRAS-2016-28(3)-12

Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

Jlappumesa K.M., Kopanp I'.U., Cnabocnunkas O.0., Konecank A.JI. OcoGeHHOCTH
MPOIIECCOB YNPABICHUS MPU CO3JaHHH CEMEUCTB MPOTPAMMHBIX cHCTeM. [IpoGiembl
nporpammupoBanus, 3:40-49, 2009.

JlaBpumesa K.M., Cnabocnuukuii A.A., Kosanpe I'.11., Konecank A.A. Teopernueckue
aCTIeKTHl YNPABICHHS BapHaOCIbHOCTBI0 B CEMEHWCTBAX MNPOTPAMMHBIX CHCTEM
TeopeTnyeckue acreKThl YIpaBleHHS BapHaOEIbHOCTHIO B CEMEUCTBAX HMPOTPaMMHBIX
cucteM. Bectank KHY, cepus ¢uz.—mar. Hayk, 1:151-158, 2011.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, Dawson Engler, A “Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World”, Communications of
the ACM, Vol. 53 No. 2, pp. 66-75

Bopomun A.E., BeneBanner A.A., “CraThyeckuii aHanm3aTop SVaCe Kak KOJUICKITHS
aHaIM3aTopOB pa3HbIX ypoBHeH cioxkHocTH Tpynet UCIT PAH, tom 27, Beim. 6, 2015,
crp. 111-134. DOI: 10.15514/ISPRAS-2015-27(6)-8

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, “The software
model checker BLAST”, Int J Softw Tools Technol Transfer (2007) 9:505—
525, Springer-Verlag 2007

Andy Kenner, Christian Kastner, SteffenHaase, Thomas Leich, “TypeChef: toward type
checking #ifdef variability in C”. Proceeding FOSD ’10 Proceedings of the 2"
Internationsal Workchop on Feature-Oriented Software Development, pp. 25-32,
Eindhoven, The Netherlands, Oct. 10, 2010.

Stephan Henglein. Vampyr configurability aware compile testing of source files. Linux
Plumber Conference, Oct 15-17, 2014, Dusseldorf, Germany. Available at:
http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2313/original/hengel
ein.pdf, mara o6pamenns 12.01.2017.

Kymsimun B., TectupoBanme Ha ocHoBe mogmeneir. (online publication). http://mbt-
course.narod.ru/Lecture03.pdf, nara o6pamenus 12.02.2017.

Alber Zever. Pycparcer wiki. (Onine publication). Available at:
https://pypi.python.org/pypi/pycparser/2.14. nara o6pamenus 7.05.2017.

U.C. 3axapos, M.Y. Manapsikus, B.C. Mytunus, E.M. Hosuxos, A.K. Iletpenxo, A.B.
Xopoumnos. Konpurypupyemasi cucremMa craTuueckoil BepudUKanuu MoOmyied siipa
onepaunoHublXx cucteM. Tpyasl UCIT PAH, Tom 26, Bem. 2, 2014, ctp. 5-42. DOI:
10.15514/ISPRAS-2014-26(2)-1.

A Technique for Parameterized Verification
of Cache Coherence Protocols

V.S. Burenkov <burenkov_v@mcst.ru>
JSC MCST, 24 Vavilov str., Moscow, 119334, Russian Federation

Abstract. This paper introduces a technique for scalable functional verification of cache
coherence protocols that is based on the verification method, which was previously developed
by the author. Scalability means that verification efforts do not depend on the model size (that
is, the number of processors in the system under verification). The article presents an
approach to the development of formal Promela models of cache coherence protocols and
shows examples taken from the Elbrus-4C protocol model. The resulting formal models
consist of language constructs that directly reflect the way protocol designers describe their
developments. The paper describes the development of the tool, which is written in the C++
language with the Boost.Spirit library as parser generator. The tool automatically performs
the syntactical transformations of Promela models. These transformations are part of the
verification method. The procedure for refinement of the transformed models is presented.
The refinement procedure is supposed to be used to eliminate spurious error messages.
Finally, the overall verification technique is described. The technique has been successfully
applied to verification of the MOSI protocol implemented in the Elbrus computer systems.
Experimental results show that computer memory requirements for parameterized verification
are negligible and the amount of manual work needed is acceptable.

Keywords: multicore microprocessors; shared memory multiprocessors; cache coherence
protocols; model checking; Spin; Promela.

DOI: 10.15514/ISPRAS-2017-29(4)-15

For citation: Burenkov V.S. A Technique for Parameterized Verification of Cache
Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 231-246.
DOI: 10.15514/ISPRAS-2017-29(4)-15

1. Introduction

Shared memory multiprocessors constitute one of the most common classes of high-
performance computer systems. In particular, multicore microprocessors, which
combine several processors (cores) on a chip, are widely used [1]. The number of
cores is constantly increasing. The presence of cache memories that are local to each
core determines the need for ensuring coherent memory state. To satisfy the need,

231

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

microprocessor developers design and implement in hardware cache coherence
protocols [2].

Cache coherence mechanisms are extremely complex. Therefore, both the design
and their implementation are error-prone. Being especially critical, protocol bugs
should be revealed before implementing the hardware. The widely recognized
method for protocol verification is model checking [3]. It is fully automated, but
suffers from a principal drawback — it is not scalable due to the state space
explosion problem. Verification of a cache coherence protocol for five or more
processors is impossible (at least, highly problematic) with the traditional methods
[4].

To overcome the problem and develop scalable verification technologies,
researchers focus mostly on verification of parameterized designs [3]. Previous
articles of the author [5-8] presented a method for parameterized verification of
cache coherence protocols. The author successfully applied the method to
verification of the cache coherence protocol of the Elbrus-4C computing system.
This paper presents an approach to the development of formal Promela models that
can be analyzed by the verification method, describes the development of the tool
that performs transformations of Promela models according to the method and
presents the overall verification technique.

The paper is structured as follows. Section 2 takes a brief look at related work and
provide the necessary links. Section 3 considers the question development of
Promela models of cache coherence protocols. In Section 4, we describe how to
perform parameterized verification of the Promela models in a semi-automatic way.
We examine the development of the tool that automates parts of the verification
method used. We present a technique for cache coherence protocols verification.
Section 5 provides experimental results on using the technique for verifying the
Elbrus-4C protocol. Section 6 summarizes the work and defines further research
directions.

2. Related Work

This work extends the previous works [5-8] by dealing with the question of
practical application of the method for parameterized verification of cache
coherence protocols presented in those works.

Article [5] presents a review of related work and gives the motivation for
development of a new method. The developed method is based upon works [9-13]
that present a method of compositional model checking, which is based on
syntactical transformations of models written in the Mure language and
counterexample-guided abstraction refinement.

The method [5-8] is used in the context of the following verification process:

1) Development of formal models of cache coherence protocols.

2) Parameterized verification by means of the method.

232

Bypenkos B.C. MeTo/nka napaMeTpr30BaHHO# BepH(pHKAIMH IIPOTOKOJIOB KOrepEeHTHOCTH HamsTh. Tpyowet UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

3. Development of Formal Models

It is highly desirable to have a modeling language that allows us to conveniently
describe cache coherence protocols. To choose or develop such a language, we need
to define a mathematical model of cache coherence protocols.

In accordance with the microprocessor system model that is used in work [2] for
representation and analysis of cache coherence protocols, | chose to model cache
coherence protocols as a set of communicating finite-state machines.

An element of this set may be either a cache controller or the system commutator.
Let us define these notions. Each memory device of the microprocessor is operated
by a coherence controller, which is a finite-state machine. Coherence controllers are
coordinated by a special device — the system commutator — that is also a finite-state
machine. A set of these machines constitutes a distributed system, in which the
machines communicate by message passing in order to maintain cache coherence.
Each coherence controller connected with cache memory logically implements a set
of independent and identical finite-state machines, one for each cache line. These
machines are called cache controllers. Due to the independence and identity of
cache controllers, it is customary to reflect only one cache line in the models of
cache coherence protocols.

The states of cache controllers are divided into two classes: Stable states and
transient states. Stable states of cache controllers are often the subset of the common
set Modified, Owned, Exclusive, Shared, Invalid [2]. Transitions between these
states are not atomic and occur through transient states. Transient states are specific
to each microprocessor and their presence is one of the factors that determine high
verification complexity.

Conditions that define correctness of cache coherence protocols are formulated as
statements about stable states, for example: “Cache line can never be in Modified
state in two caches simultaneously” [5]. Such statements belong to the class of
invariant properties [14].

Usage of a set of communicating finite-state machines as the model of cache
coherence protocols and invariant properties for specification defined the choice of
the Promela language for modeling cache coherence protocols:

e In contrast to other languages (for example, Mur¢g and NuSMV), Promela
provides process types and the means of synchronous and asynchronous
interprocess communication (channels).

e Promela provides convenient specification language, which is Linear
Temporal Logic (LTL).

e Spin - the system that implements Promela - provides different
verification algorithms and optimizations, and is a modern and constantly
developing tool.

The question of development of formal models of cache coherence protocols is
insufficiently covered in the literature. Here, | present an approach to the
construction of such models. According to the approach, a formal model of a cache

233

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

coherence protocol of a system with n cores consists of n Promela processes for
cache controllers and one Promela process for the system commutator.

For the considered cache coherence protocols, the following property holds: Only
one initial request may be in process at a given point in time. System commutator
performs a sequence of steps during the request processing, for example, the
reception of the initial request and its analysis, sending of snoop- and other requests
according to the results of the analysis, reception of the answers to these requests.
Initial requests correspond to the memory access instructions that the processor core
is executing. Reception of messages from other devices can only occur at particular
steps. Thus, it is convenient to represent the system commutator as a Promela
process whose body simply consists of operators that follow each other (Fig. 1).

proctype system_commutator() {

again:

<receive initial request>

<analyze the initial request>

<send coherent requests>

<receive answers to coherent requests or the
request completion message>

<finalize the request processing>

goto again }

Fig. 1. Structure of the System Commutator Process.

Cache controllers operate differently. On the one hand, we still may identify a
number of steps, for example, sending an initial request, changing state from stable
to transient, receiving snoop-requests. On the other hand, the relative order of these
steps is often unspecified, and the same messages from other devices may be
processed in different states of a cache controller. Thus, it is convenient to represent
processes of this kind as infinite do-cycles consisting of the guarded commands
(Fig. 2).

proctype cache_controller() {

do

.. <send initial request from main states>
:: <receive and process snoop-requests>
:: <receive answers to coherent requests>
:: <send the completion message>

od }

Fig. 2. Structure of Cache Controller Processes.
234

Bypenkos B.C. MeTtoyka napaMeTpiu30BaHHON BepU(HKALHN IPOTOKOJIOB KOrepeHTHOCTH namstu. Tpyost UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

See papers [5, 6, 8] for more details on how to organize processes and their
communication.

For example, modeling of a situation in which cache controller sends an initial
request and the system commutator receives it, may be performed as follows:

mtype cache[N] = I; // states of cache line
proctype cache controller (byte i) {

do
atomic {cache[i] == 1 —>
// send initial request and change state
if :: ini req chan ! R, 1i; cache[i] = WR;
ini req chan ! RI, i; cache[i] = WRI;
fi }
od }

proctype system commutator (byte i) {

message_t message;

again:

// receive initial request

atomic {ini req chan ? message;
curr command = message.opcode;
curr client = message.requester;

}

if :: atomic {

// send snoop-request as a response

// to the initial request

curr command == ->

coh req chan[0] ! snR, curr client;

}

// receive acknowledgement

final ack chan ? message;

goto again; }
As another example, reception of a snoop-request by cache controller and
generation of the response can be modeled as follows:

235

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

proctype cache controller (byte i) {
do

atomic {nempty(coh req chan[i]) ->
// receive snoop-request
coh req chan[i] ? message;
if ...
// analyze state...
cache[i] == WI O
// ... and the snoop-request type
&& message.opcode == snl —->
// send corresponding answer
coh ans chan ! ack, i;
cache[i] = WRI;
fi }
... od
}
Developers of cache coherence protocols describe and reason about their protocols
in terms of message passing, and, as these examples show, their reasoning can be
directly expressed in Promela. Moreover, the proposed organization of Promela
processes allows verification engineers to perform quick changes that are needed to
reflect the modifications of the cache coherence protocol under verification that
occur in the course of its development.

4. Parameterized Verification of Cache Coherence Protocols

The method for parameterized verification of cache coherence protocols presented
in works [5, 6, 8] consists of two stages:
1. Performing the syntactical transformations of Promela models.

2. Refining the obtained model in accordance with the proposed procedure.

Model transformations have the following effect:

1. Reduction of the number of processes from n+1 (n cache controller
processes and one system commutator process) to 4: two fully functioning
cache controller processes, one abstract cache controller process that
models the environment of the two processes, and the system commutator
process. This transformation is possible due to the symmetry inherent in
models of cache coherent protocols (all cache controller processes are
identical and interchangeable, they do not have behaviors that depend on a
particular process index value) and because the specification of cache
coherence protocols only contains properties that regard the state of cache
line in two caches.

2. Syntactical transformations of Promela operators constituting the model.

236

Bypenkos B.C. MeTo/nka napaMeTpr30BaHHO# BepH(pHKAIMH IIPOTOKOJIOB KOrepEeHTHOCTH HamsTh. Tpyowet UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

These transformations preserve invariant properties. This means that if such a
property is true for the reduced model, then it is true for the initial model. A
mathematical proof of the corresponding theorem is presented in articles [5, 6, 8].

4.1 Performing the Syntactical Transformations

The syntactical transformations presented in [5, 6, 8] may be performed manually.
However, manual model modification is a very tedious, laborious and error-prone
process. Moreover, some of the errors made may go undetected, as they will only
lead to incorrect state space reduction and not to counterexamples. Therefore, it is
highly desirable to perform the transformations automatically. To achieve that, |
have developed a dedicated tool. With this tool, the verification engineer simply
provides their Promela model as input to the tool, and the tool generates the
transformed Promela model.

To automate the syntactical transformations, | have used a widespread approach to
this kind of problems, according to which a tool builds the abstract syntax tree that
represents the syntactical structure of the source code and then performs the
transformations upon the tree traversal (Fig. 3).

Promela translator and model
transformations subsystem

Internal Modified
Concrete . |—__: >| internal
representation .

Promela model epresentatio representation

Fig. 3. Scheme of Automated Model Transformation.

Abstract syntax trees are usually constructed by parsers. There are two ways of
parser implementation: manual and by means of a parser generator tool (for
example, Bison, ANTLR, Boost.Spirit). Due to the unnecessary complexity of the
first approach, I have chosen the second one.

The Boost.Spirit library was chosen as the parser generator, because:

e Boost.Spirit promotes modern usage of the C++ language that allows us to
work with abstractions, which are suitable for a given domain, without
performance loss.

e Boost.Spirit eliminates the need for additional tools like Bison or ANTLR:
The only tools needed are a C++ compiler and the Boost library.

e The grammars that Boost.Spirit accepts are attributed, which results in a
very convenient way of abstract syntax tree generation.

237

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

e Boost.Spirit contains a number of built-in parsers.

e The generated parsers are very efficient [15].

The mechanism of synthesized and inherited attributes allows us to simplify the task
of abstract syntax tree generation by dividing it into two sequentially performed
subtasks:

1. Development of the grammar, testing and debugging of the grammar.
During this step, we only need to focus on the question of whether the
grammar can correctly determine the syntactical correctness of a Promela
model.

2. Development of data structures for the nodes of the abstract syntax tree and
definition of the types of attributes of the grammar rules. The attribute
mechanism allows Boost.Spirit to generate abstract syntax trees
automatically, without any need for the addition of node construction
operators to the grammar.

Usage of the abstract syntax tree generated by Boost.Spirit as an intermediate
representation of Promela models allowed us to divide the task of performing the
syntactical transformations automatically into three subtasks:
1. Development of Promela grammar in the C++ language by means of
Boost.Spirit.

2. Development of data structures for abstract syntax tree representation.

3. Development of algorithms for abstract syntax tree traversal and abstract
model generation.

Promela grammar is presented in [16]. Its implementation in C++ using Boost.Spirit
looks similarly to that description. However, as Boost.Spirit generates recursive
descent parsers, | have eliminated left recursion from the grammar.

Data structures for the nodes of abstract syntax tree are developed according to the
information that we want the nodes to represent and attribute propagation rules
defined in Boost.Spirit’s documentation. In the developed tool, data structures that
correspond to the synthesized attributes of the Promela grammar rules, contain
information about nonterminals that are part of the rules. This is a very
straightforward and convenient way of implementation of these data structures. For
example, the following rule that describes the nonterminal “module” of the Promela
grammar

238

Bypenkos B.C. MeTtoyka napaMeTpiu30BaHHON BepU(HKALHN IPOTOKOJIOB KOrepeHTHOCTH namstu. Tpyost UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

gi::rule<Iter, module (), Skipper> module;
module =
proctype
| init
| 1tl
| utype
| mtype
| decl 1st
(A
has a synthesized attribute of type module, which is implemented as follows:
using module = boost::variant<
proctype,
init,
1t1,
utype,
mtype,
decl 1st
>;
All the other nonterminals mentioned in this example have synthesized attributes of
types implemented in a similar way.
The abstract syntax tree, which is generated automatically by Boost.Spirit based on
the grammar and the attribute mechanism, consists of nodes of different types.
Traversal of such tree is performed uniformly by means of visitors, as advocated by
the Boost.Spirit documentation.
The syntactical transformations are performed during the abstract syntax tree
traversal. | classified the transformations, most of which turned out to be in one of
the three categories (transformations of assignments, transformations of
expressions, transformations of communication actions), and precisely described
them. To automatically carry them out, | have developed a number of abstract
syntax tree modification algorithms and implemented them as part of the visitation
mechanism. Printing out the modified syntax tree gives us the abstract Promela
model.
For example, when generating the code for the abstract process, the following piece
of Promela code
proctype cache controller (byte 1) {

do
(cache[i] == M MAU || cache[i] == M MAU I)
&& (message.opcode == wb ready) ->
final ack chan ! data, 1i;
cache[i] = I

is transformed into
proctype cache controller abs(byte i) {
do

true ->

239

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

final ack chan ! data, 1i;
This example demonstrates the transformations of expressions and the assignment
operator.

4.2 Abstraction Refinement

Execution of each type of initial requests consists of a particular sequence of events

presented in the cache coherence protocol documentation. Considerations about the

ordering of the events inspired the following refinement procedure:

1. For each type of initial requests define (according to the documentation) a
partially ordered set (4, <) of events (< is a strict partial order):

Va,,a, € A:a, < a,, if action a; occurs earlier than action a,.
2. While there are false counterexamples:

2.1. Find action a that lead to the appearance of the counterexample. Find set
A that contains action a: a € A. In set A find action b such that b < a.

2.2. Introduce a logical variable aux, with the initial value false. In the
model, replace b with the atomic sequence b; aux;, := true.

3. By means of the logical AND, add aux, to the guard of the command that
contains action a. Replace a with the atomic sequence a; aux, = false.

For example, for one type of initial requests defined for the Elbrus-4C
microprocessor, the set (4,<) is as follows. Here, cc; denotes the ith cache
controller.

{a, = processing of the previous request from process cc;,1 <i<n is
finished,

a,; = requester cc; sends an initial request,

a, = system_commutator receives the initial request,

az = system_commutator sends snoop-requeststo all cc;,1 < j <n,j # i,

a, = cc; receives a snoop-request, 1 < j < n,j # i,

as = cc; sends an answer to the snoop-request to the requester,

ae = the requester receives the coherent answer from cc;,

a, = the requester sends the operation completion message to
system_commutator,

ag = system_commutator receives the operation completion message}.
The relation < is defined as follows: Vi,j =0,..,|A|-1:i<j = a; < a;. We
identify the auxiliary variables with the elements of the set A.
Refinement of the abstract model of the Elbrus-4C cache coherence protocol
required us to introduce two auxiliary variables, because there were two spurious
counterexamples. Let us examine the introduction of the first variable.

240

Bypenkos B.C. MeTo/nka napaMeTpr30BaHHO# BepH(pHKAIMH IIPOTOKOJIOB KOrepEeHTHOCTH HamsTh. Tpyowet UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

The analysis of the first counterexample showed that the abstract process had sent
the operation completion message to system_commutator before
system_commutator received a coherent answer. Examination of the set A allows
us to conclude that action a, happening at the wrong time led to the
counterexample. According to the refinement procedure, in the set A we find action
ae and introduce an auxiliary variable ack received with the initial value false.
Then we replace the operator that corresponds to a, with the atomic sequence
consisting of this operator and the operator that assigns true t0 ack received.
After this, we add ack received to the guard of the command of the abstract
process that contains a, and replace the operator that corresponds to a, with the
atomic sequence consisting of this operator and the operator that assigns false to
ack_received. Thus, we guarantee that the behavior of the abstract process that
led the false counterexample will no longer be exhibited.

4.3 Verification Technique

According to the results obtained by the author in this and the previous works, the

proposed verification technique consists of the following steps (Fig. 4):

1. Development of a concrete Promela model of the cache coherence protocol
under verification. Using the proposed approach to model description,
verification engineer develops Promela processes that model cache controllers
and the system commutator and the necessary infrastructure elements (channel
definitions, process creation). Specific actions performed by the processes
correspond to the cache coherence protocol documentation.

2. Development of the abstract Promela model of the cache coherence protocol
under verification. This step is performed automatically by the developed tool.

3. Verification of the abstract model. This step is the usual verification process of
Promela models using the Spin model checker [17].

4. Analysis of the verification report generated by Spin. If there are no errors, then
the verification process is finished with the conclusion that the cache coherence
protocol is correct. If the report states the presence of an error, then the
verification engineer should analyze the corresponding counterexample. If the
engineer concludes that the counterexample is spurious because the
corresponding sequence of steps is impossible in a real system, then the
engineer refines the model in accordance with the proposed procedure and goes
to step 3. Otherwise, if the counterexample represents an actual error in the
cache coherence protocol, then the error is reported. When the protocol
developers fix the error, the verification engineer incorporates the changes into
the model and starts the verification process again (goes to step 1).

This sequence of steps is repeated until there are no counterexamples.

241

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

System for the
abstract model
construction

Spin

Initial Promela| Tnternal . | del model checker
model representation - AST romela moce

Abstract

L

Verification

Transformed AST

I‘:

False report
counterexample:

Error in the protocol: Refine the @ No errors:
1. Report it to the abstract model Verification

developers Complete
2. Fix the initial model

Human verifier

Fig. 4 Scheme of the Verification Process.

5. Experimental Results

The proposed method was used to verify the MOSI family cache coherence protocol

implemented in the Elbrus-4C computer system. The abstraction refinement step

was completed after the introduction of two auxiliary variables.

Table 1 and Table 2 show resources consumed for checking the property
G{—(cache[1] = M A cache[2] = M)},

respectively, on the original and the refined abstract model. Spin’s optimization

COLLAPSE was used. The experiments were performed on an Intel Xeon E5-2697

machine with a clock rate of 2.6 GHz and 264 Gb of RAM.

Table 1. Required resources — initial model

State space Memory Verification

Number of cores . . .
size consumption time

3 5.1 x10° 328 Mb 15s

4 1.3 x 10° 81 Gb 15h

Table 2. Required resources — abstract model

Number of cores S_tate space Memory _ _/erlflcatlon
size consumption time

any > 2 2.2 x 10° 108 Mb 6.2s

Tables 1 and 2 show that even for n = 3 there is a gain in state space size and
memory consumption. The needed amount of manual work is acceptable.
Meanwhile, verification of the constructed abstract model means verification of the

242

Bypenkos B.C. MeTo/nka napaMeTpr30BaHHO# BepH(pHKAIMH IIPOTOKOJIOB KOrepEeHTHOCTH HamsTh. Tpyowet UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

protocol for any n > 3. The task has been reduced to checking of ~10° states,
which consumes ~100 Mb of memory.

6. Conclusion

Many high-performance computers and most multicore microprocessors use shared
memory and utilize complicated caching mechanisms. To ensure that multiple
copies of data are kept up-to-date, cache coherence protocols are employed. Errors
in the protocols and their implementations may cause serious consequences such as
data corruption and system hanging. This explains the urgency of the corresponding
verification methods.
The main problem when verifying cache coherence protocols (and other systems
with a large number of components) by a fully automated method of model
checking is state explosion. The article proposes a technique to overcome the
problem for cache coherence protocols and make verification scalable. The price
paid for scalability is acceptable, because the main ingredient — the verification
method — is highly automated by the developed tool. Part of the method that
requires manual work, namely, model refinement, can be done with a reasonable
amount of effort, as shown by means of the Elbrus-4C protocol verification
example. An approach to describing protocol models in Promela, a widely spread
language in the verification community, is proposed. This approach lets us reflect
the way protocol designers talk about protocols by representing protocols as a set of
communicating finite-state machines.

The technique was successfully applied to the verification of the MOSI family

cache coherence protocols implemented in the Elbrus-4C computer system.

Directions for future research include:

1. Development of methods and tools for verification of cache coherence
protocols that are implemented by multiple levels of cache. The newest
microprocessors (for example, Elbrus-8C, which employs the second- and
third-level caches to implement cache coherence) define the need for such
methods and tools.

2. Development of methods and tools for verification of hardware
implementations of cache coherence protocols. In this direction, | have
developed a tool that generates assembly code based on Promela models of
cache coherence protocols. With this tool, | have found several dozen errors in
the implementation of cache coherence in Elbrus microprocessors. Still, further
research is needed to increase the level of confidence in design correctness.

References

[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.

[2]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

243

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

(3]
[4].

[5].

[6].

[71.

(8].

[a].

[10].

[11].

[12].
[13].

[14].
[15].

[16].
[17].

244

Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999. 314 p.
Burenkov V.S. Analiz primenimosti instrumenta Spin k verifikacii protokolov
kogerentnosti pamyati [An analysis of the Spin model checker applicability to cache
coherence protocols verification]. Voprosy radioehlektroniki. Ser. EVT. Issues of
Radioelectronics, the series EVT], 2014, issue. 3, pp. 126-134 (in Russian).

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache
Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 57-76.
DOI: 10.15514/ISPRAS-2016-28(4)-4

Burenkov V.S., Kamkin A.S. Metod masshtabiruemoi verifikacii PROMELA-modelei
protocolov kogerentnosti kesh-pamyati [A Method for Scalable Verification of
PROMELA Models of Cache Coherence Protocols]. Sh. trudov VII Vserossiiskoi
nauchno-technicheskoi konferencii “Problemi razrabotki perspectivnih micro- i
nanoelektronnih sistem” [Proceedings of the VII All-Russian Scientific and Technical
Conference "Problems of Development of Advanced Micro- and Nanoelectronic
Systems"]. 2016, part Il, pp. 54-60 (in Russian).

Burenkov V.S., Kamkin A.S. Applying Parameterized Model Checking to Real-Life
Cache Coherence Protocols. Proc. of IEEE East-West Design & Test Symposium. 2016.
pp. 1-4.

Burenkov V.S., Ivanov S.R. Metod postroeniya abstraktnih modelei, ispolzuemih dlya
verifikacii protocolov kogerentnosti kesh-pamyati [A Method for Construction of
Abstract Models Used for Verification of Cache Coherence Protocols]. Vestnik MGTU
im N.E. Baumana [Herald of the Bauman Moscow State Technical University], 2017,
issue 1, pp. 49-66 (in Russian).

McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and
Verification Methods, 2001. pp. 179-195.

Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
Vol. 3312, pp. 382-398.

Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State
Systems, 2005.

Talupur M., Tuttle M.R. Going with the Flow: Parameterized Verification Using
Message Flows. Formal Methods in Computer-Aided Design, 2008. pp. 1-8.

O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009. pp. 172-179.

Baier C., Katoen J.-P. Principles of Model Checking. The MIT Press. 2008. 984 p.

de Guzman, J. Fastest numeric parsers in the world! http://boost-
spirit.com/home/2014/09/03/fastest-numeric-parsers-in-the-world/.

Spin Version 6 — Promela Grammar. http://spinroot.com/spin/Man/grammar.html.
Holzmann, G. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley. 2004. 608 p.

Bypenkos B.C. MeTtoyka napaMeTpiu30BaHHON BepU(HKALHN IPOTOKOJIOB KOrepeHTHOCTH namstu. Tpyost UCIT PAH,
Tom 29, Bbim. 4, 2017 1., cTp. 231-246.

MeToaunka napameTpusoBaHHOM Bepudukaumm
NPOTOKONOB KOrepeHTHOCTN NaMATU

B.C. Bypenxos <burenkov_v@mcst.ru>,
AO «MIL[CT», 119334, Poccus, . Mockea, ynr. Basunosa, 24

AHHOTamMsi. B craTee mpencTaBieHa METOIUKA MacITabUpyeMoil (YHKIMOHAIBHOMN
BepU(UKaIUM TPOTOKOJIOB KOTEPEHTHOCTH IIAMATH, KOTOpas OCHOBaHa Ha MeTone
BepH(UKanuy, KOTOPEIH paHee ObLT pa3paboTaH aBTOPOM cTaThbH. MacmraGHpyeMoCTb IpH
BepH(UKanuy 03HaYaeT HE3aBUCHUMOCTE paboT 1o BepH(UKALMK OT pa3Mepa MOJEIH, TO eCTh
OT KOJIMYECTBa IPOIIECCOPOB BepUpUIMpyeMOil cuCTeMEl. B cTaThe mpeuroxkeH IMoaxo K
pa3paboTke (popMaTbHBIX MOJEICH MPOTOKOJIOB KOTEPEHTHOCTH MaMsTH Ha si3bike Promela.
IIpuBeneHs! mpuUMephl OMMCAHUM, B3ATbIE M3 MOJEIM INPOTOKONA KOTEPEHTHOCTU MaMSTH
cucrembl Dnp0pyc-4C. Pesynprupyronme GpopMansHble MOIETH OTPaXKaroT MPelCTaBICHHE
MPOTOKOJIOB KOT€PEHTHOCTH MaMsTH, HCIIOIb3yeMoe pa3paboTunKkaMi TaKUX IIPOTOKOJIOB — B
BUJIC MHOXKECTBA B3aMMOJCHCTBYIONIMX KOHEYHBIX aBTroMaroB. OmmcaHa pa3paboTka
HPOrPaMMHOTO MHCTPYMEHTA, HAIlMCAaHHOTO Ha s3blke C++ ¢ HCIonb30BaHUEM OHOIMOTEKH
Boost.Spirit B kauecTBe TeHepaTropa CHHTAKCHYCCKHX aHanW3aTopoB. IIporpaMMHBIH
HMHCTPYMEHT ITO3BOJISIET aBTOMAaTH3UPOBATh BBIIIOJIHEHHE CHHTAKCHYECKUX HpeoOpa3oBaHMil
Promela-mopeneii. BoinonHeHne JaHHBIX CHHTAKCHYECKUX MPEOOPa3oBaHUIl MPOUCXOIHUT B
COOTBETCTBHH C METOJOM BepHu(uKkanuu. B cTaThe mpeacTaBieHa MpoLexypa yTOTHEHHUS
MOANGUIPOBAHHBIX MOJEJeH, OCHOBaHHAas Ha BBEACHHHM B MOJENb BCIOMOTATENbHBIX
nepeMeHHbIX. Mcrmonp30BaTh 3Ty MHpoLexypy MHpeiiaraercs B TOM Clydae, KOrja HpH
Bepu(UKAIUU BO3HUKAIOT JIOKHBIE COOOMmEHUss 00 omuOKax, AN YCTPaHCHHS TaKUX
cooOmenuid. IIpencraBieHa Meronnka BepH(HKAIMH, KOTOPas COCTOUT M3 CIEIYHOLINX
IaroB: pa3paboTKa HCXOJHON MOJIENH IPOTOKOJIa KOTEPEHTHOCTH MaMSITH Ha si3bike Promela,
aBTOMATH3UPOBAHHOE NPeoOpa3oBaHUE JAHHOW MOJENH COIJIACHO METONy BepH(HUKaINH,
BepubuKanus MoJUGHIMPOBAHHON MOJIEIHN C MOMOIIBI0 HHCTPYMEHTAIBLHOTO cpencTBa Spin,
aHaNMM3 OT4YeTa O BepH(HKALUM, CTCHEPUPOBAHHOTO WHCTPYMEHTOM Spin. M3znoxeHHas
METOJMKa ObIIa YCHENIHO MPUMEHEHa JUIsl BepHU(PHUKAINK IPOTOKOIA KOTEPEHTHOCTH MaMsITH
cemeiictrea MOSI, peann3oBaHHOTO B MHKPOIPOIECCOPHOI cucteMe DmpoOpyc-4C.
OKCIepuMeHTaNIbHbIE Pe3yNbTaThl ITOKA3ald, YTO 3aTPaThl MPOIECCOPHOTO BPEMEHH U
NaMsATH Ha NPOBEJCHHE MapaMeTPU30BaHHON BepU(HKAIMN HE3HAYUTENbHBI, a TPEOYyeMBbIi
00beM pyuHOit paboThl mpuemiieM. [t yTouHeHUs: MOU(UIMPOBAHHONW MOJIENH POTOKOJIA
cucteMbl Dnb0pyc-4C MoHag0OMIIOCh BBECTH JIUIIE IBE BCIIOMOTATEIbHBIC TIEPEMEHHEIE.

KnioueBble c10Ba: MHOTOSIEPHBIE MUKPOIPOIIECCOPHI; MYJIBTHIIPOLIECCOPHI C Pa3lIesieMoit
MaMAThIO; IPOTOKOJIBI KOTEPEHTHOCTH MaMATH; TIPOBepKa Moeeii; Spin; Promela.

DOI: 10.15514/ISPRAS-2017-29(4)-15

Jns uurupoBanmsi: bypenkoB B.C. Mertoanka mapamMeTpH30BaHHOH BepH(UKAIUH
MPOTOKOJIOB KOTEPEHTHOCTH MamATH. 1pyowr UCIl PAH, tom 29, Bem. 4, 2017 ., cTp. 231-
246 (ua anrnmiickom s3eike). DOI: 10.15514/ISPRAS-2017-29(4)-15

245

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 231-246.

Cnucok nutepatypbl

[11.
[2].
[3].
[41.
[5].

[6].

[7].

[8l.

[9].

[10].

[11].

[12].
[13].

[14].
[15].

[16].
[17].

246

Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.

Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999. 314 p.
Bypenkos B.C. AHaM3 IPUMEHUMOCTH HHCTPYMEHTA SPIiN K Bepu(HKALHU TPOTOKOJIOB
KOTepeHTHOCTH mnamMsaTH. Bompocsl paauosnekrponuku. Cep. DBT. 2014. Bem. 3.
cTp. 126-134.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache
Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS. vol. 28, issue 4, 2016, pp. 57-76.
DOI: 10.15514/ISPRAS-2016-28(4)-4

Bypenkor B.C., Kamkun A.C. Merox macirabupyemoii Bepudukanuu PROMELA-
MoJenel MPOTOKOJIOB KOTepeHTHOCTH kam-namsatu. CO. tpynos VII Bceepoccuiickoit
Hay4YHO-TeXHHYECKOH KoH(pepeHnuu «I[Ipobiaemsl pa3paboTKu MEPCHEKTUBHBIX MUKPO-
U HAHOAJIEKTPOHHBIX cucTem». 2016. Yacts II. ctp. 54-60.

Burenkov V.S., Kamkin A.S. Applying Parameterized Model Checking to Real-Life
Cache Coherence Protocols. Proc. of IEEE East-West Design & Test Symposium. 2016.
pp. 1-4.

bypenkoB B.C., HsanoB C.P. Merog mnocTtpoeHus aOCTpaKTHBIX MOJEINeEH,
UCTIOJIB3YEMBIX JJIsI BEpUPHUKALUN MPOTOKOJIOB KOTEPEHTHOCTH KAII-TaMATH. BecTHHK
MI'TY um. H.D. Baymana. 2017, Beim. 1, ctp. 49-66.

McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and
Verification Methods, 2001. pp. 179-195.

Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
Vol. 3312, pp. 382-398.

Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State
Systems, 2005.

Talupur M., Tuttle M.R. Going with the Flow: Parameterized Verification Using
Message Flows. Formal Methods in Computer-Aided Design, 2008. pp. 1-8.

O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009. pp. 172-179.

Baier C., Katoen J.-P. Principles of Model Checking. The MIT Press. 2008. 984 p.

de Guzman, J. Fastest numeric parsers in the world! http://boost-
spirit.com/home/2014/09/03/fastest-numeric-parsers-in-the-world/.

Spin Version 6 — Promela Grammar. http://spinroot.com/spin/Man/grammar.html.
Holzmann, G. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley. 2004. 608 p.

Test Generation for Digital Hardware Based
on High-Level Models

! M.M. Chupilko <chupilko@ispras.ru>
123 A S, Kamkin <kamkin@ispras.ru>
1 M.S. Lebedev <lebedev@ispras.ru>
1S.A. Smolov <smolov@ispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
% Lomonosov Moscow State University (MSU),
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
¥ Moscow Institute of Physics and Technology (MIPT),
9, Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. Hardware testing is a process aimed at detecting manufacturing faults in integrated
circuits. To measure test quality, two main metrics are in use: fault detection abilities (fault
coverage) and test application time (test length). Many algorithms have been suggested for
test generation; however, no scalable solution exists. In this paper, we analyze applicability of
functional tests generated from high-level models for low-level manufacturing testing. A
particular test generation method is considered. The input information is an HDL description.
The key steps of the method are system model construction and coverage model construction.
Both models are automatically extracted from the given description. The system model is a
representation of the design in the form of high-level decision diagrams. The coverage model
is a set of LTL formulae defining reachability conditions for the transitions of the extended
finite state machine. The models are translated into the input format of a model checker. For
each coverage model formula the model checker generates a counterexample, i.e. an
execution that violates the formula (makes the corresponding transition to fire). The approach
is intended for covering of all possible execution paths of the input HDL description and
detecting dead code. Experimental comparison with the existing analogues has shown that it
produces shorter tests, but they achieve lower stuck-at fault coverage comparing with the
dedicated approach. An improvement has been proposed to overcome the issue.

Keywords: digital hardware; hardware description language; manufacturing testing; stuck-at
fault; high-level decision diagram; extended finite state machine; model checking; fault
propagation.

DOI: 10.15514/ISPRAS-2017-29(4)-16

247

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

For citation: Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for
Digital Hardware Based on High-Level Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 247-256. DOI: 10.15514/ISPRAS-2017-29(4)-16

1. Introduction

Functional verification and test generation are resource-consuming activities of the
hardware design process [1]. To automate these activities, models are frequently
used. Models are mathematical abstractions that describe system structure and
behavior. There is a variety of verification and test generation problems that can be
solved with the help of models: checking system behavior in simulation-based
verification [2], directed test generation [3], etc.

The essential stage of the hardware design process is register-transfer-level (RTL)
design. This stage results in code in a hardware description language (HDL), such
as VHDL and Verilog [4]. The RTL model is automatically synthesized into a gate-
level netlist represented in an HDL or a special language, such as BLIF [5]. Finally,
the place-and-route stage is applied to produce a chip layout.

Functional verification, including functional test generation, deals with RTL
models, while generation of manufacturing tests uses gate-level netlists. In this
paper, we analyze applicability of functional tests for manufacturing testing. The
motivation is clear: the simpler the model, the easier to get tests. We extract high-
level models from HDL descriptions and generate tests from them. The approach
allows reaching good code coverage with short tests [6].

This paper continues research initiated in [7], where we compared fault detection
abilities of different test generation methods. A test is said to detect a fault, if the
mutant, i.e. the design with the injected fault, and the original design return different
outputs for the test’s input sequence. Fault detection ability is measured as the
amount of faults having been detected.

The rest of the paper is organized as follows. Section 2 defines formalisms used in
the work and gives a brief overview of a fault model. Section 3 summarizes works
on applying model-based techniques to manufacturing testing. Section 4 describes
the proposed approach. Section 5 reports experimental results. Section 6 suggests a
possible approach improvement. Section 7 discusses the results of the work and
concludes the paper.

2. Preliminaries

Let V be a finite set of variables. A valuation is a function that associates each
variable with a value from the corresponding domain. Let D, be the set of all
possible valuations of V.

A guard is a Boolean function defined on valuations: D, — {0,1}. An action is a
transformation of valuations: D, — Dy. A pair y — &, where y is a guard and § is an
action, is called a guarded action. It is implied that there is a description of every

248

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

function in an HDL-like language (thus, we can reason not only about semantics,
but about syntax as well).
An extended finite state machine (EFSM) is a tuple M = (S, Vi, Ty), Where S, is a
set of states, V,, = (I, U Oy U R,) is a set of variables, consisting of inputs (1),
outputs (0,,) and registers (R,,), and Ty, is a set of transitions. A transition t € T,
is a tuple (s;,y: = 6 5{), where s, and s{ are respectively the initial and the final
state of t, whereas y; and &, are respectively the guard and the action of t.
A pair (s,v) € Sy x Dy,, is referred to as a configuration. A transition t is said to
be enabled in a configuration (s,v) if s, = sand y,(v) = 1.
An EFSM operates in discrete time. In the beginning, it resets the configuration:
(s,v) = (sg,vy), Where (sq,v,) is a predefined configuration. On every tick, it
computes the set of enabled transitions:

Ty = {t € Tyl(s; = s) A (y:(v) = D}.
A single transition t € Ty (chosen nondeterministically) fires: (s, v) = (sg, St(v)).
A netlist is a tuple N = (Vy, Gy, Ly), Where Vy is a set of variables, Gy is a set of
gates, and Ly is a set of latches. A gate g € Gy is a tuple (I, 0,, f,), where I, S Vy
and o4 € Vy are respectively the inputs and the output of g, and f;: Dom,, - {o,1}
is the function of g. A latch | € Ly, is a tuple (i;, 0;), where i; € Vy, and o, € V,, are
respectively the input and the output of [.

A netlist operates as follows. In the beginning, it initializes the latches’ outputs with
some predefined values. On every tick, it computes the gates’ output values based
on the input values and transmits the latches’ input values to the outputs.

To compare test generation methods, the well-known stuck-at fault model is used.
We consider the following variation of the model. There is a stuck-at fault if some
gate is “corrupted” so as its function, which is not identically equal to a constant,
always returns a constant, either 0 (stuck-at-0) or 1 (stuck-at-1).

3. Related work
This section overviews the existing model-based test generation methods aimed at
covering stuck-at faults.

In [8], an approach to functional test generation for VHDL designs is proposed. The
method consists of the following stages:

1) translation of an HDL description into binary decision diagrams (BDD);
2) insertion of a stuck-at fault into the BDD;
3) generation of a distinguishing test for the original BDD and the faulty one.

For the HDL-to-BDD translation, the approach uses a method described in [9].

In [10], a combined approach is suggested. It uses two kinds of models: a high-level
decision diagram (HLDD) and an EFSM. Both models are automatically extracted
from an HDL description. HLDD is a generalization of BDD: non-terminal nodes of

249

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

a diagram are marked not only by 0 and 1 but by arbitrary expressions. First, a test
is generated that covers all branches of the diagram. Then, the test is passed to the
EFSM simulator to measure the transition coverage. To cover the uncovered EFSM
transitions, a special backjumping technique is applied.

In [6], another EFSM-based approach is proposed. It fixes several issues of the
previously mentioned method and uses a different EFSM extraction technique. The
experiments have shown that new tests are shorter, while code coverage is the same.
In [7], the method [6] is experimentally compared with another one, which uses the
ABC equivalence checker [11] to generate a distinguishing sequence for two BLIF
descriptions. The EFSM-based method demonstrates higher HDL code coverage
and shorter tests, while the ABC-based one achieves higher stuck-at fault coverage.

4. Proposed approach

In this paper, we continue our work on applying the model-checking techniques for
test generation [12]. The approach allows achieving high HDL code coverage with
very short tests. Our current goal is to evaluate how good the approach is in terms of
the stuck-at-fault coverage. The method flow is shown in Fig. 1.

System model
(HLDD)
Y
HDL description Internal . Model checker Tests
representation
A
Coverage model
(EFSM)

Fig. 1. Model checking-based approach to test generation for HDL descriptions

The method uses two models extracted from an HDL description: a system model,
which is based on the HLDD formalism, and a coverage model, which utilizes the
EFSM concept (see [12] and [13] for more details). The system model represent the
system functionality, while the coverage model defines a set of conditions, so-called
coverage items, to be covered by tests.

Let us say a few words about the coverage model. For each HDL process, a separate
EFSM is extracted. The EFSM states are mutually disjoint constraints on state-like
registers (SLR). The SLR are chosen automatically with the help of dataflow-based
heuristics. The EFSM transitions are constructed from the process execution paths.
Coverage items are reachability conditions for the EFSM transitions. Let s be an
EFSM’s state, c(s) be the corresponding constraint, and t be an outgoing transition,
i.e. s; = s. In terms of the linear temporal logic (LTL), the reachability condition is
as follows: F{c(s) A y,}, where F{x} means that x will eventually be true.

In accordance with [12], the system model and the coverage items in the negated
form (=F{c(s) Ay;}), are translated into the input format of a model checker. For

250

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

each item, the model checker constructs a counterexample, i.e. an execution that
violates the corresponding formula. Since coverage is formulated in the negated
form, the counterexamples are executions that reach the related EFSM transitions.
Counterexamples are translated into testbenches and executed by an HDL simulator.
The method is aimed at covering EFSM transitions. However, being rather flexible,
it can be applied to various coverage models.

5. Experiments
The proposed approach has been implemented in the Retrascope 0.2.1 tool [14]. The
implementation uses the Fortress library [15] and the nuXmv model checker [16].

The method has been tested on some designs from the ITC’99 benchmark [17].
Three test generation methods were compared:

1) the method described in this paper (nuXmvy);
2) the method based on EFSM traversal (RETGA) [6];
3) the method based on equivalence checking (ABC) [7].

The third method uses the ABC tool [11] to generate distinguishing sequences for
design represented in the BLIF format.

Two metrics were used for test comparison: the length in ticks and the number of
killed mutants (detected faults).

To generate mutants, a DTESK prototype was used. Given a fault model and an
HDL description, the tool generates a number of mutants along with testbenches.
Each testbench contains the original design and the mutant; it reads input values
from the file, passes them to both designs, and compares the outputs’ values; if there
is a mismatch at some tick, then the mutant is considered to be killed.

Table 1 shows information about the ITC’99 designs: the source code size (in lines
of code), the system model size, and the number of stuck-at fault mutants.

Table 1. ITC 99 designs

Design Source code | System model Number of mutants
BO1 102 207 88

B02 70 143 48

B04 101 809 1342

B06 127 442 94

BO7 92 370 784

B08 88 315 324

B09 100 263 284

Table 2 shows the test-related information: the length in ticks and the percentage of
the killed mutants.

251

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Table 2. Test generation methods comparison

Design A_BC R_ETGA nl_Jva ABC RETGA | nuXmv
(ticks) (ticks) (ticks) (%) (%) (%)

BO1 227 49 37 90.91 98.86 90.9

B02 86 33 28 0 0 0

B04 — 36 56 — 99.93 99.93

B06 100 76 63 100 100 100

BO7 133 166 162 0 0 0

B08 2745 52 31 98.77 79.94 44.44

B09 777 231 55 97.18 0 0

Comparison results are as follows. For some designs (B02 and B07), all methods
achieve 0% stuck-at fault coverage. Such designs are classified as untestable [18];
their outputs are calculated in such a way that the internal stuck-at faults cannot
affect their outputs. For some designs (B0O1, B04, and B06), the proposed method
reaches the same or comparable stuck-at fault coverage as the leading one. Note that
in such cases model-checking-based tests are usually shorter than tests produced by
other methods. Finally, there are some designs (B08 and B09), where both nuXmv
and RETGA reach lower stuck-at fault coverage than ABC. Additional efforts are
needed to cope with this issue. A possible improvement is described below.

6. Future improvements

In our opinion, the main drawback of the proposed method and similar approaches
is a lack of fault propagation. Broadly speaking, an EFSM model contains a stuck-at
fault if some assignment (v := RHS) of some transition is “corrupted” (RHS is
substituted by 0 or 1). To activate the fault, a test should cause the transition to fire;
however, this is not enough. The erroneous values should be propagated to the
model outputs. Thus, the coverage model should be extended.

Given an EFSM model M, let us make some definitions. A variable v is defined in a
transition x (v € Def,) if §, contains an assignment to v. A variable v is used in a
transition y (v € Use,,) if v appears either in y, or in the right-hand side of §,,. A
transition y depends on a transition x (y € DEP(x)) if Def, nUse, # 0.
Depending on how v is used, in y, or in &,, they say about a control dependency
(y € DEP.(x)) or a data dependency (y € DEP4(x)) respectively.

A propagation path for a transition ¢ is a sequence of transitions {¢t;}7-, such that:

1) t, =t

2) tiy1 € DEPy(t), forall 0 <i < n;
3) Def,, N0y # 0.

252

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mozeneit. Tpyoet UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 247-256.

Given a propagation path {(s;,y; = &;,s{)}/=,, the propagation condition can be
expressed as follows:

¢ = F{(c(s0) A¥o) AF{(c(s1) Av2) AF(. F{c(s) Ay} - 1}
Note that the notion of propagation path and the propagation condition can be
refined so as to avoid variable redefinitions and other undesirable effects.
If there are no propagation paths for a given transition, the original coverage item,

o = F{c(sy) Ay,}, is removed. If there are multiple propagation paths, two main
strategies can be applied:

1) try all of the propagation paths:
a. split the coverage item ¢, into the set of all possible fault
propagation conditions: {¢, ..., @ };
2) try at least one of the propagation paths:
a. replace the coverage item ¢, with the disjunction V%, ¢,,.

7. Conclusion

The primary scope of this work is reusing functional tests for manufacturing testing.
The paper describes a high-level test generation approach and analyzes whether it is
effective in detecting low-level faults. The approach implements two important
facilities: automatic extraction of models from HDL descriptions and directed test
generation based on model checking. The method is extremely flexible and can be
customized by choosing a proper coverage model. The presented implementation
tends to produce short tests with mediocre stuck-at fault coverage. We think that
fault detection abilities of the approach can be increased by adding fault propagation
conditions into coverage items. This may serve as a topic for future research.

Acknowledgment

The authors would like to thank Russian Foundation for Basic Research (RFBR).
The reported study was supported by RFBR research project Ne 15-07-03834.

References

[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

[2]. Ivannikov V.P., Kamkin A.S., Kossatchev A.S., Kuliamin V.V., Petrenko A.K. The Use
of Contract Specifications for Representing Requirements and for Functional Testing of
Hardware Models. Programming and Computer Software, 33(5), 2007, pp. 272-282.
DOI: 10.1134/s0361768807050039.

[3]. Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

[4]. Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

253

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

[5].
[6].

[7].

[8].

[9].

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].
[18].

254

Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs.
Proceedings of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-
12.

Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing
Logic Circuits at Different Abstraction Levels: An Experimental Evaluation.
Proceedings of IEEE East-West Design Test Symposium (EWDTS), 2016, pp. 189-192.
DOI: 10.1109/ewdts.2016.7807687.

Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the
Combined Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-
West Design and Test Symposium (EWDTS), 2007, pp. 503-508.

Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6_5.

Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp.60-63.
DOI: 10.1109/ewdts.2016.7807736.

Smolov S., Kamkin A. A Method of Extended Finite State Machines Construction From
HDL Descriptions Based on Static Analysis of Source Code. St. Petersburg State
Polytechnical University Journal. Computer Science, Telecommunications, 1(212),
2015, pp. 60-73 (in Russian). DOI: 10.5862/jcstcs.212.6.

Retrascope site. http://forge.ispras.ru/projects/retrascope

Fortress library site. http://forge.ispras.ru/projects/solver-api

Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,
Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), No.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

ITC'99 benchmark site. http://www.cad.polito.it/tools/itc99.html

Liu X., Hsiao M.S. On lIdentifying Functionally Untestable Transition Faults.
Proceedings of the Ninth IEEE International High-Level Design Validation and Test
Workshop, 2004, pp. 121-126. DOI: 10.1109/hldvt.2004.1431252.

Kamkun A.C., JIe6ene M.C., Cmoinos C.A., Yynmiko M.M. I'enepanust TecToB [UIs Lu(ppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBBIX Mojeneit. Tpyost UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

FeHepaumsa TecToB Ans uucdpoBon annapaTypbl Ha OCHOBe
BbICOKOYPOBHEBbIX MoAeren

Y M.M. Yynunxo <chupilko@ispras.ru>
123 4 C. Kamkun <kamkin@ispras.ru>
L M.C. Jlebeoes <lebedev@ispras.ru>
1 C.A. Cuonos <smolov@ispras.ru>
1PI}Ltcmumym cucmemnozo npoepammuposarnusi PAH,
109004, Poccus, . Mockea, yn. Anexcanopa Condcenuyvina, 0. 25.
2 Mockosckuii 2ocyoapcmeenbili ynusepcumem um. M.B. Jlomonocosa,
119991, Poccus, e. Mocksa, Jlenunckue eopewt, 0. 1.
¥ Mockosckuii Qusuxo-mexHueckull uHCMumym,
141701, Poccus, Mockoeckas 06x., 2. [loneonpyoustii, Uncmumymckuii nep., 0. 9.

AnHotamms. TecTHpoBaHHUE ammapatypbl — 3TO INPOLECC, HALENCHHBIII Ha OOHapyKeHHUE
HEUCIPaBHOCTEH, BHECCHHBIX B HHTEIPAIbHBIC CXEMbl B IIpolecce Npou3BoxacTa. Jlis
OLICHKM Ka4yecTBa TAKUX TECTOB HCIOJIB3YIOT J[BE OCHOBHBIE METPUKH: CHOCOOHOCTBH
oOHapyXuBaThb OIIMOKK (IIOKPHITHE OMIMOOK) M BpeMs TECTHPOBAaHHA (JUIMHA TeECTa).
VI3BeCTHO MHOXXECTBO METOJIOB T'CHEPAIMH TECTOB, OJHAKO MAacIITabMpyeMOro pELICHHMS,
NPUMEHHMOT0 K CJIOKHOM HudpoBOH ammaparype, HeT 10 cuxX Hop. B maHHOW craThe
AQHAIM3UPYETCSI BO3MOXKHOCTD HMCIHOJB30BaHUS (DYHKIIMOHAIBHBIX TECTOB, IIOCTPOCHHBIX II0
BBICOKOYPOBHEBBIM MOZEISIM (TIPEX/Ie BCEro, MOJEISIM YPOBHS PETHCTPOBBIX Iepenad), Uil
HH3KOYPOBHEBOTO IIPOMU3BOJICTBEHHOTO TECTHPOBaHH. PaccMaTpuBaeTcss KOHKPETHBIH METOJ
reHepalliy TECTOB, HCIIOIB3YIOIIHIA TeXHUKY poBepku Mozeneit (model checking). BxoaHoi
nHpopmarmeit BeicTynaer HDL-omucanme. MeTon COCTOMT M3 JABYX KIIIOUEBBIX ILIAroB:
HOCTPOCHHE MOJEIH CHCTEMbl U IIOCTPOCHHE MOJENM IOKPBITHS. YKa3aHHbIC MOJEIH
aBTOMaTHYeCKH H3BiekatoTcs u3 HDL-omucanus. Moaens cHCTEMBl NpPECTAaBICHA B BHJC
BBICOKOYPOBHEBBIX pEMIAIOMINX JHarpaMM. Mojens TOKPBITHS — 3TO MHOXecTBo LTL-
(dhopMyI1, ONpeneNsIoIUX YCIOBHS JOCTH)KUMOCTH IIEPEXOJ0B PACIIMPEHHOTO KOHEYHOTO
aBTOMAaTa, OMKCHIBAIOLIEr0 CHCTeMYy. [loCTpOEHHBIE MOJAENH TPAHCIUPYIOTCS BO BXOIHOU
(bopmar uHCTpyMeHTa npoBepku Mozesteit (model checker), kotopsrit st kaxa0it Gopmyisl
MOJIENH MOKPBITUSI TEHEPUPYeT KOHTPIPUMEP — BBIYHCICHHE, Hapyalomee 3Ty GopMyIy,
TO €CTh NPUBOJALIEE K CPabaThIBAHUIO COOTBETCTBYIOLIETO Mepexoa aBToMara. M3Ha4ansHO
paccMaTpuBaeMblii METOJ NpeIHa3Havalcs Ul HOKPBITHsS Beex myTeil mcnonnenus HDL-
omMcaHus 1 0OHAPYKEHHST HEAOCTHKHUMOTO KoJia. DKCIEPUMEHTAIBHOE CPaBHEHHE METo/ia ¢
CYILIECTBYIOIMMHU aHAJIOTaMH IOKa3allo, YTO OH CTPOUT 0oJiee KOPOTKHE TECThI, OAHAKO TH
TECTBI JOCTUTAIOT MEHBIIEr0 YPOBHS MOKPHITUS KOHCTAHTHBIX HEHCIIPABHOCTEH, YeM TECTHI,
MOCTPOCHHBIE C MOMOUIBIO CIIENUATBHBIX CPEeNCTB. B crathe mpeyiaraercs MoangHKarys
MeTo/1a JUTsl IPEO/I0JICHUs] YKa3aHHOTO HeJJOCTaTKa.

KiroueBble ciioBa: nudpoBas anmaparypa; sS3bIK OMHCAHUS allapaTypbl; POM3BOJICTBEHHOE
TECTHPOBAaHME; KOHCTAHTHas OIIMOKa; BBHICOKOYPOBHEBas — pellarolias Jdarpamma;
pacuIMpeHHbIH KOHSYHBIH aBTOMAT; IIPOBEPKa MOJIEIIH; JIEPEBO PaCPOCTPaHEHHUS.

DOI: 10.15514/ISPRAS-2017-29(4)-16

Jnst murupoBanms: Yynuiko M.M., Kamkun A.C., Jle6enes M.C., Cmono C.A. Meron
TeHepaluy TecTOB Ui LU(POBOM ammaparypbl, OCHOBaHHBIH Ha BBICOKOYPOBHEBBIX
mozensix. Tpyoet MUCIT PAH, Tom 29, Bemm. 4, 2017 1., ctp. 247-256 (Ha aHTTIHMHACKOM S3BIKE).
DOI: 10.15514/ISPRAS-2017-29(4)-16

255

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Cnucok nutepaTtypbl

(1]

[2].

[3].

[4].
[5].
[6].

[7].

[8l.

9.

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].
[18].

256

Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

NBannukoB B.II.,, Kamkun A.C., KocaueB A.C., Kymamun B.B., Ilerpenxko A.K.
Vcnonb3oBaHne KOHTPAKTHBIX cHeUUMGUKAUWN Ui TPEeNCTaBICHUS TpeOOBaHHUN U
(YHKIIMOHAJIBHOTO TECTUPOBAHMS Mojeield anmaparypsl. [IporpammupoBanue, 1. 33,
Ne 5, 2007 r., ctp. 272-282.

Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs. Proceedings
of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-12.

Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing
Logic Circuits at Different Abstraction Levels: An Experimental Evaluation.
Proceedings of IEEE East-West Design Test Symposium (EWDTS), 2016, pp. 189-192.
DOI: 10.1109/ewdts.2016.7807687.

Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the
Combined Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-
West Design and Test Symposium (EWDTS), 2007, pp. 503-508.

Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6_5.

Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp.60-63.
DOI: 10.1109/ewdts.2016.7807736.

CwmonoB C., Kamkun A. MeToJ MOCTpOEHHs PAaCHIMPEHHBIX KOHEUHBIX aBTOMATOB I10
HDL-ommcannio Ha OCHOBE CTAaTHYECKOrO aHamu3a Kona. HaydHo-TexHHWYeckue
Benomoctu CIIGITIY. Undopmaruka. TenekommyHukanuu. Ynpasnenue, 1(212), 2015,
crp. 60-73. DOI: 10.5862/jcstcs.212.6.

Crpannna uHcTpymenta Retrascope. http://forge.ispras.ru/projects/retrascope (mara
obpamenus: 18.07.17)

Crpanuiia Oubmuorekn Fortress. http://forge.ispras.ru/projects/solver-api (mara
obpammenust: 18.07.17)

Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,
Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), No0.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

Crpannna nHabopa tectoB ITC'99. http://www.cad.polito.it/tools/itc99.html (mara
obpamenust: 18.07.17)

Liu X., Hsiao M.S. On lIdentifying Functionally Untestable Transition Faults.
Proceedings of the Ninth IEEE International High-Level Design Validation and Test
Workshop, 2004, pp. 121-126. DOI: 10.1109/hldvt.2004.1431252.

Verification of 10 Gigabit Ethernet
controllers

M.V. Petrochenkov <petroch_m@mcst.ru>
R.E. Mushtakov <mushtakov_r@mcst.ru>
I.A. Stotland <stotl_i@mcst.ru>
MCST, 1 Nagatinskaya st., Moscow, 117105, Russia

Abstract. This article proposes approaches used to verify 10 Gigabit Ethernet controllers
developed by MCST. We present principles of the device operation — they provide a set of
memory-mapped registers and use direct memory access, and their characteristics. We
describe a set of approaches used to verify such devices — prototype based verification,
system and stand-alone verification. We provide the motivation for the chosen approach —
combination of system verification with stand-alone verification of its single component. The
structure of the test systems that we used to verify devices and their components are
presented. Test system of the controller transmits Ethernet frames to the network and receives
frames from it. Algorithms to transfer packet to representation used by the device were
implemented. Stand-alone test system was developed for a connector module between
internal device buses and its external interface. Test systems were developed using UVM.
This methodology and structure of test systems allowed to reuse components in a different
systems. A set of test scenarios used to verify the device is described. The examination of
network characteristics of the controller is very important in the verification process. Some
approaches and techniques for throughput measuring and modes of device operations for the
measurement are described. We present measured throughput in different modes. In
conclusion, we provide a list of found errors and their distribution by different types of
functionality they affected.

Keywords: 10 Gigabit Ethernet; network interface controller; verification; throughput;
UVM,; test system

DOI: 10.15514/ISPRAS-2017-29(4)-17

For citation: Petrochenkov M. V., Mushtakov R. E., Stotland I. A. Verification of 10 Gigabit
Ethernet controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.
DOI: 10.15514/ISPRAS-2017-29(4)-17

1. Introduction

Development of modern computer networks provides the demand for high-speed

communication without sacrificing reliability. The evolution of Ethernet standard
257

mailto:mushtakov_r@mcst.ru
mailto:stotl_i@mcst.ru

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

(IEEE 802.3 [1]) is an example of ever-rising demand for higher speed networks.
Network interface controller (NIC) is the device that connects a computer to the
network. Reliability and performance of the controller is very important for
organization of modern networks. Network performance and accuracy of its work
as a whole depends on the quality of implementation of NICs. To ensure that the
controller satisfies all requirements for performance and reliability, it should be
thoroughly verified.

Various methods of verification are used at all phases of NIC design flow. Common
approaches for the device verification are physical prototype verification, system
verification and stand-alone verification.

Process of physical prototype verification uses the device implemented in FPGA as
a NIC in a “real” machine. Characteristics of the approach:

e Test stimuli are generated using operating system network drivers and
signals from physical network (in our case - third-party 10 Gigabit Ethernet
controllers).

e The fastest approach by a wide margin.

e Ability to execute “real life” scenarios and gather information to improve
the device performance for most important use cases.

e Ability to debug network drivers.

o Difficulty in localization of detected errors.

e Slow iteration cycle due to slow recompilation to FPGA process.

In the system, verification approach a NIC is simulated as a part of whole System
on a Chip (SoC). NIC is configured according to required settings and then it
executes network transactions. Characteristics of the system verification approach
for the Ethernet controller:

e Test stimuli are memory access operation to the device registers and
received Ethernet packets - very similar to typical mode of device
operation.

e Simpler localization of detected errors and better error detection tools than
using physical prototyping.

e Ability to implement directed scenarios from a physical prototype.

e Difficult and time consuming to cover all possible situations, especially for
complex internal components.

e Requires all device components to be in working state.

In stand-alone verification, a single device component is simulated. Typically, it is
used for components with (1) high internal complexity and (2) which reliability is
crucial for the device [2]. Properties of the approach:

e Test stimuli are transactions on the external interfaces of the component.

e Could be start as soon as only RTL-model of device component is ready
(not the whole device).

258

Tlerpouenkos M. B., Mymtakos P.E., Crotnana U. A. Bepudukauus kourposiepos 10 ruraburaoro Ethernet. Tpyow:
HUCII PAH, Tom 29, Boim. 4, 2017 r., ctp. 257-268.

e Faster simulation for smaller device subset.

e Itis easier to create specific test cases and more complex test scenarios for
component under test.

e Information about internal interfaces of the device is required.

e Cannot eliminate the need of system verification completely and thus
always requires extra labor and other resources.

In our previous projects, we used only physical prototyping and system verification
to verify NICs. However, there are types of errors that are hard to find using only
these approaches. In this regard, all aforementioned methods we used during
verification process of 10 Gigabit Ethernet controllers. Separate team used physical
prototype verification approach, and further discussion of it is beyond the scope of
this article.
In this paper, we present a case study for functional verification of 10 Gigabit
Ethernet controllers developed by MCST. The paper addresses the problem and
methods of stand-alone verification of 10 Gigabit Ethernet controllers.
The rest of the paper is organized as follows. In the Section 2, we describe the
devices under test: RTL-models of the 10 Gigabit Ethernet controllers, their features
and intended methods of implementation. Section 3 presents different test systems
developed for components of the controller and the complete controller. In Section 4
we give further insight into the process of examination of the device network
properties - most importantly its throughput. Section 5 presents the results of
verification and plans of future work.

2. Device Under Test for Different 10 Gigabit Ethernet Controller
Implementation

Model of the 10 Gigabit Ethernet Controller is implemented using Verilog
Hardware Description Language (HDL). It is RTL (register transfer level)
description that is used in different implementation (Device Under Test, DUT):

e FPGA-based network controller (based on Altera Cyclone V [3]). This
FPGA provides a set of components that were used in the device: PCI
Express Hardware IP module that implements physical and data link layer
of the protocol, and a set of configuration space registers, and XAUI
Hardware IP module to transform 10 Gigabit Media Independent Interface
(XGMII) signals. It is connected to the other parts of the system using
standard interface Avalon [4].

e ASIC-based network controller - a part of a currently developed Elbrus-
16C System on Chip (SOC). Controller is connected to the rest of the
system using in-house interface (SLink) to transfer packets based on PCI
Express transaction layer packets.

General schemes of both DUT are presented in figure 1. Both types of the DUT
share the Ethernet Control Module and implement the same programming interface.
This interface is typical for PCI and PCI-Express devices. A set of memory-mapped

259

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

registers are used to control device behavior. Those registers can be separated into
four groups:

1.

260

PCI Express registers - common set of registers of PCI Express devices.
They are used to control access to internal memory of the devices and from
the device to system memory. It also implements basic interrupt control.

Media Access Control (MAC) registers allow to control the Ethernet
physical layer. They are used to control pause frames, control sum (CRC)
calculation, non standard-compliant frames and limit the speed of packet
transmission.

Transceiver (TX) registers control the transmission of packets from the
system to the network, calculation of CRCs for higher-level protocols
supported by the controller (IPv4 and IPv6, TCP and UDP).

Receiver (RX) registers control the reception of packets from the network,
packet filtering and control sum checking for IP, TCP/IP and UDP/IP
packets.

FPGA System ‘ ‘ ASIC

PCIE Serial
Interface
Slink Interface

Altera PCIE IP

Avalon Interface

avie sl2e
Interface Interface
Ethernet Caontrol Ethernet Control
Module Module
h
KGEMI Interface XGMI Interface
A 4
Altera Ethemet PHY SoC Ethemet PHY

!
I
!
I
I
I
I
!
I
I
I
I
!
I
I
I
' [y
Packet Bus | Packet Bus
I
I
I
I
I
!
I
I
I
I
!
I
I
I
I
!
I
1

Fig. 1. Devices under test for FPGA and ASIC-based in SoC implementation.

Tlerpouenkos M. B., Mymtakos P.E., Crotnana U. A. Bepudukauus kourposiepos 10 ruraburaoro Ethernet. Tpyow:
HUCII PAH, Tom 29, Boim. 4, 2017 r., ctp. 257-268.

To allow multiple processes to work in parallel with a single controller TX and RX
registers contain several identical groups of registers (descriptor queues).

Ethernet Control module uses universal packet bus interface. This interface provides
convenient access to large continuous areas of memory where Ethernet packet data
are stored. Altera PCI Express and SLink interfaces work with packets of size up to
64 bytes. To increase the rate of data transmission and reduce the CPU involvement
into device operation it used direct memory access (DMA). Devices use different
modules to connect packet bus to Avalon and SLink interfaces. Internal names of
those connector modules are av2e (avalon to everything) and sl2e (SLink to
everything). Those connectors implement DMA by splitting packet bus transactions
and transforming them into memory access operations.

3. Test Systems for 10 Gigabit Ethernet Controller Verification

As stand-alone verification could be started as soon as RTL-model of device
component is ready, without waiting RTL-model of the whole device. Verification
of the 10 Gigabit Ethernet Controller process was started at the same time as the
development of the FPGA-based controller and system on chip (SoC). This
approach allowed identifying errors earlier, and reducing total development time of
the device. To check correctness of the controller model, it is included in a test
system — a program that generates test stimuli, checks validity of reactions and
determines verification quality.

There are several verification methodologies in order to develop constraint-random
coverage-driven verification test systems. A verification methodology provides
guidelines, class libraries and macros libraries. The Universal Verification
Methodology (UVM) [5] is currently the most widespread verification
methodology. UVM allows automating test system design process and makes it
easier to add new components and collecting the functional coverage [6]. In paper
[7] the approach to UVM test system developing for Gigabit Ethernet is presented.
However, Gigabit Ethernet has some differences in protocol and interfaces from 10
Gigabit Ethernet. Moreover, in our case we have to verify in-house Slink interface
communication.

For stand-alone verification of the 10 Gigabit Ethernet Controller, we developed
two stand-alone UVM test systems based on two different DUTs for FPGA and
ASIC-based implementation. The structures of the test systems and approaches used
to process verification both of DUTSs are presented below.

3.1 Test Systems for FPGA-based 10 Gigabit Ethernet Controller
Verification
The top-level module of the 10 Gigabit Ethernet Controller is called XGBE (10

GigaBit Ethernet). The structure of the test system for XGBE stand-alone
verification is provided in figure 2.

In the controller, packet is represented as one or multiple (split) descriptors and a
payload stored in the system memory. Each transmit and receive descriptor queue in

261

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

the device works with continuous area of memory where descriptors are stored. The
controller implements head and tail pointer registers used to determine descriptors
currently in use. Each descriptor contains a payload pointer. XGBE driver
transforms Ethernet packet between representation used by the controller and
representation in the test system - UVM-base transaction class.

Fix, TX Ethernet Packeis

v t

XGBE Driver

¢ F Y
XGBE
Register Interupts
Model

v :

PCIE Agent Packet Checker
Serial PCIE Interface t

k.

DUT (XGBE)

AU Interface l T

Ethernet Agent

')

Tx, RX Ethemnet Packets

Fig. 2. Structure of XGBE test system.

Algorithm for packet transmission:

e Allocate memory for payload.

e Form corresponding packet descriptor.

e Write descriptor(s) to first free memory location in a queue.

e Change queue head pointer value.

e Wait until tail value becomes equal to head.

e Collect packet transmission information and free used memory resources.
Packet reception algorithm works in a similar way, but because we do not have an
information on expected packets sizes, algorithm works in two threads: descriptor
preparation and packet reception.

Descriptor preparation works as follows:
e Wait when test system requests additional space for packet reception
(conditions of this request are generally test-specific and determined by test
system settings).

262

Tlerpouenkos M. B., Mymtakos P.E., Crotnana U. A. Bepudukauus kourposiepos 10 ruraburaoro Ethernet. Tpyow:
HUCII PAH, Tom 29, Boim. 4, 2017 r., ctp. 257-268.

e Allocate memory for the number of descriptors and fill corresponding
descriptor memory.
e Increase RX queue head value.
Packet reception algorithm:
e Wait for change of RX queue tail value.
o Collect received packet data from descriptor and payload.
e Free resources used allocated in descriptor preparation routine.
To simplify access to device registers and abstract away details of register access
operations, UVM register model (XGBE Register Model) of the controller was
developed. This model uses a bus adapter to transform generic register access
operations to the required bus format (in our case - transactions for PCIE agent).
Other features of PCIE agent used by device driver are direct access to system
memory and interrupt notifications.
Test system was used to verify the device on various test sequences, directed at
different device functions. Test can be separated into four large groups: data flow
tests, filtering tests, packet parsing tests and throughput tests. The general goal of
the first group is to ensure that data processed by the controller will stay correct. At
first, maximum possible packet flow through the device was tested. Later we started
introducing different bottlenecks (by means of Ethernet Pause frames, PCI Express
credits, limiting the size of transmission and reception buffers, available amount of
receive descriptors etc...) to achieve different events in the internal components of
the controller. The goal of the second group is to ensure correctness of filtering
capabilities of device. A set of packets are generated in a way to be test all available
packet filters. For the third group, higher-level protocol packets are encapsulated in
the basic Ethernet frame and the ability of the device to handle them correctly
(packet type detection, automatic checksum calculation etc.) was tested. Throughput
tests will be discussed separately later in the article.
It also was decided that the stand-alone verification was necessary for a single type
of module in the device - connector between multiple internal packet buses and the
external PCl Express like interface (Altera Avalon Interface of PCl Express
module), due to several reasons:
e These modules are relatively independent from the rest of the system, its
early completion allowed for early verification start.
e High complexity of this module is due to complex rules of transaction
splitting.
e Different interactions between all packet bus requesters are difficult to
achieve in a complete system.
Its structure is provided in a figure 3. Connector module communicates through
Altera PCIE module with the memory inside the PCI Express agent. Information
about Ethernet packets is stored in this memory. These data can be separated into
two groups: packet descriptors (which are used by the controller to facilitate data

263

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

transfer) and payload of packets themselves. Connector module solves several
problems. First, it transforms requests from packet bus to PCIE memory access
transactions. Second, it transforms the responses to those requests, to format
convenient for the rest of the devices. It was decided to include third party PCIE
module that (we presume) is well-tested and bug-free because we have access to
PCI Express agent, but do not have one for the Avalon interface. Additional
performance gained through exclusion of this module is compensated by the time
and other resources needed for development of Avalon agent.

PCIE Agent | Memory |e—

FCIE Serial Interface i
Altera PCIE Module
o
Awalon Interface : -
[
[:5]
[V
Packet Bus o Avalon Conneclor (avia) E
=
Packet Bus # [A w
Interface
L L v
et
Intermpt Fayload Descriptor
Agent Agents Agents

Fig. 3. Structure of av2e module test system.

To verify av2e module (connector to Avalon interface) as a part of 10 Gigabit
Ethernet controller a test system was designed. The test system is also designed
using UVM and consists of the set of components, which are inherited from
standard classes of UVM library.

The exchange between these components is carried out by transactions that
facilitates scaling and configurability of system. Developed components could be
adapted for use in system for verification of a whole controller to speed up its
development.

3.2 Test System for ASIC-based 10 Gigibit Ethernet Controller
Verification

Test system for connector between packet buses and system SLink interface module
(sl2e) is similar to one used for verification of av2e module. PCI Express agent and

264

Tlerpouenkos M. B., Mymtakos P.E., Crotnana U. A. Bepudukauus kourposiepos 10 ruraburaoro Ethernet. Tpyow:
HUCII PAH, Tom 29, Boim. 4, 2017 r., ctp. 257-268.

(and Altera PCI Express module) were replaced with SLink agent which provides
similar interface for other parts of test system;

e Transformation of transaction-level PCI Express operations into interface

signals.

e Access to internal memory of the agent.

e Automatic generation of the completions for upstream requests.

¢ Notification mechanism for special requests.
The test system for ASIC-based 10 Gigabit Ethernet controller was developed by
replacing PCIE Agent with SLink agent.
Usage of various test system components by different test systems is summarized in
table 1. Only limited part of device register model (PCI Express Configuration
space registers) was actively used in av2e and sl2e test systems.

Table. 1. Test system component reuse.

FPGA XGBE | av2e | ASIC XGBE | sl2e
Bus Agent - + - +
PCIE Agent + + - -
SLink Agent - - + +
Register Model + +/- + +/-
XGBE Driver + - + -

3. Throughput Analyzing

Throughput is one of the most important characteristics of any network controller.
In our case, the controller should support throughput of 10 Gigabit per second for
packet transmission and reception. Therefore, tests system must support the
development of special scenarios for throughput testing. It is implemented in the test
system by limiting the test system and device configuration in a way that it will not
introduce new “bottleneck”.
To achieve necessary controller throughput it is essential to ensure that every
component satisfy the requirement. In the controller, PCI Express Gen2 x4 bus was
used as a connection to the system. Maximum possible value of throughput for this
bus is 16 Gigabit per second. Thus, this bus satisfies the requirements. Throughput
of av2e module was measured after its verification was complete. To do that, the
throughput analyzer was developed. It executes all necessary calculations using the
information about the start time of first packet’s data transmission and the end time
of the last one. Initial value of av2e module was ~11.2 Git/s in both directions. This
value is higher than maximum packet flow from the network, so this module will
not serve as a “bottleneck”.
Measurements of throughput of whole controller started after the verification of
single packet transfer. Separate packet analyzers were designed for transmission to
265

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

network and reception from it. Principle of measurement is similar to the one
described above: analyzer collects the information on transmission start time, end
time and size of transferred data. A set of tests were developed to determine
throughput for different packet flows: (1) transmission, (2) reception, (3) mixed and
(4) loopback. In addition, for each of these tests it is possible to select mode of
operation: either raw Ethernet packets of mixed UDP/TCP flow to ensure that
packet parsing will not slow down the device.

The first measured value of throughput was 0.36 GBit/s in loopback mode. This, of
course, does not satisfy the requirements. After multiple performance improvements,
the goal to achieve maximum possible throughput for separate transmission and
reception packet flow was achieved. At this moment, throughput value for mixed
mode 10Ghit/s for reception and 4GBit/s for transmission and 7 GBit/s for both values
in loopback mode. Work to further improve the performance is ongoing.

4. Results

To verify the 10 Gigabit Ethernet Controllers four separate test systems were
designed using a set of components. Test sequences were developed to test the
correctness of the device for each test system.

A total of 49 test scenarios were used to verify all functions of av2e module: read
and write operations with different parameters, sequentially and in parallel. Total
number of bugs detected by the av2e test system is 14. Found errors are the
corruption of transmitted or received data and complete loss of packets by the
components.

Number of test for the whole 10 Gigabit Ethernet controller is 31.They thoroughly
check that the device works as described in the specification. Different test
scenarios check different modes of operation: transmission of packets from system
to network, reception of packets from network, mixed flow and loopback mode. The
check proper handling of different types of payload (Raw Ethernet, or encapsulated
IPv4, IPv6, UDP, TCP, Runt Frames, PTP packets), working with packets with
different priorities, working with packets with vlan tags, pause frames, checking of
packet filtering capabilities and automatic calculation of checksums. Different ways
of interaction with the system are also checked: correctness of interrupts and
mirroring of certain device registers in memory.

As a result of verification of the controller, 74 errors were discovered and corrected.
Those can be divided into 3 groups:

e Errors in data transmission is the biggest group of 49 errors. Those errors
caused the transmission of incorrect data in packets by the controller. This
group includes such errors as: partial loss of data, duplication of received
data, “merging” of different packets into one and incorrect calculation of
checksum.

e Number of errors in packets parsing and filtering is 9. They caused
incorrect detection of types of packets, incorrect placement of CRCs in
packet and incorrect filtering of received packets.

266

Tlerpouenkos M. B., Mymtakos P.E., Crotnana U. A. Bepudukauus kourposiepos 10 ruraburaoro Ethernet. Tpyow:
HUCII PAH, Tom 29, Boim. 4, 2017 r., ctp. 257-268.

e Group of 16 miscellaneous errors have not caused errors in packet transfer.
Those errors appeared during accessing internal registers of the device or
caused suboptimal utilization of the device resources.

All above-mentioned errors were corrected. ASIC-based version of the device and
its test system are currently under active development. Our future works is aimed at
further verification of ASIC-based version of the 10 Gigabit Ethernet Controller,
developing UVM-based reusable components (UVC) for PCIE, Avalon, Slink
interfaces for using in test system for other network controllers.

References

[1]. IEEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

[2]. Petrochenkov M., Stotland 1., Mushtakov R. Approaches to Stand-alone Verification of
Multicore Microprocessor Caches. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 3, pp.
161-172. DOI: 10.15514/ISPRAS-2016-28(3)-10

[3]. Cyclon V - Overview. URL: https://www.altera.com/products/fpga/cyclone-
series/cyclone-v/overview.html (accessed 09.04.2017).

[4]. Avalon Interface Specification. Altera. MNL-AVABUSREF. 2015.12.10. 101 Innovation
Drive. San Jose, CA 95134. URL: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf (accessed 09.04.2017).

[5]. Standard Universal Verification Methodology. URL:
http://accellera.org/downloads/standards/uvm (accessed 09.04.2017).

[6]. Stotland 1., Shpagilev D., Petrochenkov M. Osobennosti funkcional'noj verifikacii
kontrollerov vysokoskorostnyh kanalov obmena mikroprocessornyh sistem semejstva
"Elbrus" [Features of High Speed Communication Controllers Standalone Verification
of “Elbrus” Microprocessor Systems]. Voprosy radioelektroniki, seriya EVT [Issues of
Radioelectronics, the series EVT], 2017, 3, pp. 69-75.

[7]. S. Chitti, P. Chandrasekhar, M. Asha Rani. “Gigabit Ethernet Verification using Efficient
Verification Methodology”. Proc. of International Conference on Industrial Instruments and
Control (ICIC), College of Enginnering Pune, India. May 28-30, 2015, pp.1231-1235.

Bepudukauma koHtponnepoB 10 rurabutHoro Ethernet

M.B. [lempouenrxos <petroch_m@mcst.ru>
P.E. Mywmaxos <mushtakov_r@mcst.ru>
H.A. Cmomanano <stotl_i@mcst.ru>
AO «MI]CT», 117105, Poccus, e. Mocksa, yn. Haecamunckas, 0.1, cmp. 1

AuHoTaMs1. B crathe NpUBEIEHBI TIOX0/IBI, HCTIOIL30BABIINECS B MPOIECCE BEPUPHUKALIUN
KoHTpoyutepoB 10 rurabutHoro Ethernet, paspaboranusix B AO «MIICT». OmnwucaHbt
IPUHLUUIBI pabOThl YCTPOICTB — OHM MHPEAOCTABIAIOT MPOrPAaMMUCTY HabOp PErHCTPOB,
oToOpaXkaeMbIX B MaMsTh, a TAK)Ke HCIONB3YIOT MPAMOM mocTyn K mamstu. IIpencrasien
Habop MOJXO0J0B, MPHUMEHSIEMBIX MPH BEPHU(HUKAIIMK MOJAOOHBIX YCTPOUCTB — BepU(HKAIHS
(hU3MYEeCKOro MPOTOTHIIA, CHCTEMHAsh M aBTOHOMHas Bepubwukaiws. OmnucaHa MOTHBAIIHS
BBIOOpA MOAXOJa — KOMOWHAIIMM CHCTEMHOW BepU(HKAIMH IIEIOr0 YCTPOWCTBA U

267

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
http://accellera.org/downloads/standards/uvm
mailto:mushtakov_r@mcst.ru

Petrochenkov M. V, Mushtakov R. E., Stotland I. A., Verification of 10 Gigabit Ethernet Controllers. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 257-268.

ABTOHOMHOI1 BepU(HKaIuK OJHOTO U3 €ro KOMIOHEHTOB. B craThe gaHO onmcaHue TeCTOBBIX
CHCTEM, HCIIONb30BAaBIIMXCS Uil Bepudukanum ycrpolctB. TecroBas cucremMa BCero
ycTpoiicTBa ocymiecTBisier nepepady Ethernet makeTtoB B ceThb M MX NpPHEM M3 CETH.
Pa3paboTaHbl W ONMCAaHBl AITOPUTMBI IPEOOpa3OBaHUSA IIAKETOB B IPEACTABICHHE,
UCHOJIb3yeMoe yCTpoHcTBOM. J[isi Mopmyineil CBsI3M MEXAy BHYTPCHHUMH ITaKETHBIMU
IIMHAM{ U BHEIIHUM HHTep(eiicoMm Oblia papaboTaHa aBTOHOMHAs TECTOBas cucreMa. [Ipu
pa3pabOTKe TECTOBBIX CHCTEM HcHoib3oBanack Meromonorusi UVM. BeiOpannas
METOJIOJIOTHS, a TaKXkKe MpPEUIOKEHHbIE CTPYKTYPEl TECTOBBIX CHCTEM IIO3BOJIMUIIN
UCIIOB30BaTh OJHHM W T€)K€ KOMIIOHEHTHI B Pa3IMYHBIX TECTOBBIX cHCTeMax. lIpuBemeH
Ha0Op TECTOBBIX CIICHapHeB, pa3pabOTaHHBIX IJIsI TECTOBHIX cHcTeM. Ocob0 BaKHBIM
SIBJIICTCS TIPOIIecC BepH(UKaK MPOITYCKHON CIIOCOOHOCTH ycTpoiicTBa. OmNMCcaHBI METOABI,
HCHOJIb30BABIIMECS JUIL M3MEPEHUSI IPOIYCKHOH CIIOCOOHOCTH YCTPOWCTBA, a TaKke
pPEeXUMBI pabOTBHl KOHTpOJUIEpPa, B KOTOPBIX IPOBOAWIIOCH H3MepeHHe. IIpencraBieHsl
TEKyIIUE 3HAYCHHs MIPOIYCKHONH CIOCOOHOCTH YCTPOMCTBA, KOTOPBIX YAAIOCh JOCTHTHYTh B
Pa3NIMYHBIX pEKMMaxX. B 3akiIoueHHe NPHBEIEH CIHMCOK HAWACHHBIX OIIMOOK, a TaKke
omucaHbl Te (YHKIMM YCTpPOMCTBAa, Ha KOTOpbIE OHHU BIMSIM, a TaKXKe HaIlpaBJICHUS
JanpHenIei paboThL.

Kuarouesbie caoBa: 10 ruraburHeiii Ethernet; kouTpommep cereBbix HHTEP(DEHCOB;
BepHduKkanus; nporyckHas crnocooHocts; UVM; TectoBas cuctema

DOI: 10.15514/ISPRAS-2017-29(4)-17

s uutuposBanus: IlerpouenkoB M.B., Mymrakos P.E., Crotnang U.A. Bepuduxamus
koHTposuiepoB 10 ruraburaoro Ethernet. Tpyowt UCIT PAH, tom 29, Beim. 4, 2017 r., cTp.
257-268 (na anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2017-29(4)-17

Cnucok nutepaTtypbl

[1]. IEEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

[2]. Petrochenkov M., Stotland 1., Mushtakov R. Approaches to Stand-alone Verification of
Multicore Microprocessor Caches. Trudy ISP RAN, vol. 28, 3, pp. 161-172. DOI:
10.15514/ISPRAS-2016-28(3)-10

[3]. Cyclon VvV — Overview. URL: https://www.altera.com/products/fpga/cyclone-
series/cyclone-v/overview.html (zara o6paruenus 09.04.2017).

[4]. Avalon Interface Specification. Altera. MNL-AVABUSREF. 2015.12.10. 101 Innovation
Drive. San Jose, CA 95134. URL: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf (mata oGparenus
09.04.2017).

[5]. Standard Universal Verification Methodology. URL:
http://accellera.org/downloads/standards/uvm (mara o6pamienns 09.04.2017).

[6]. Crotnann W.A., Ilnarunes J.U., TlerpoueHkor M.B. OcoGeHHOCTH (hyHKIHOHATBHON
BEepU(UKAIIMK KOHTPOJUICPOB BBICOKOCKOPOCTHBIX KAaHAIOB OOMEHa MHKPOIPOLIECCOPHBIX
cucrteM cemelicTaa «nbpopyc». Bonpocs! paguosnextponuky, cepust OBT, 2017, 3, ctp. 69-75.

[7]. S. Chitti, P. Chandrasekhar, M. Asha Rani. “Gigabit Ethernet Verification using
Efficient Verification Methodology”. Proc. of International Conference on Industrial
Instruments and Control (ICIC), College of Enginnering Pune, India. May 28-30, 2015,
pp.1231-1235.

268

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
http://accellera.org/downloads/standards/uvm

Creating Test Data for Market Surveillance
Systems with Embedded Machine Learning
Algorithms

0. Moskaleva <olga.moskaleva@exactprosystems.com=>
A. Gromova <anna.gromova@exactprosystems.com>
Exactpro, LSEG,
20A Building 4, 2nd Yuzhnoportovy Proezd, Moscow, 115088, Russia

Abstract. Market surveillance systems, used for monitoring and analysis of all transactions in
the financial market, have gained importance since the latest financial crisis. Such systems
are designed to detect market abuse behavior and prevent it. The latest approach to the
development of such systems is to use machine learning methods that largely improve the
accuracy of market abuse predictions. These intelligent market surveillance systems are based
on data mining methods, which build their own dependencies between the variables. It makes
the application of standard user-logic-based testing methodologies difficult. Therefore, in the
context of intelligent surveillance systems, we built our own model for classifying the
transactions. To test it, it is important to be able to create a set of test cases that will generate
obvious and predictable output. We propose scenarios that allow to test the model more
thoroughly, compared to the standard testing methods. These scenarios consist of several
types of test cases which are based on the equivalence classes methodology. The division into
equivalence classes is performed after the analysis of the real data used by real surveillance
systems. We tested the created model and discovered how this approach allows to define its
weaknesses. This paper describes our findings from using this method to test a market
surveillance system that is based on machine learning techniques.

Keywords: test data; equivalence classes; market surveillance systems; machine learning
DOI: 10.15514/ISPRAS-2017-29(4)-18

For citation: Moskaleva O., Gromova A. Creating Test Data for Market Surveillance
Systems with Embedded Machine Learning Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 269-282. DOI: 10.15514/ISPRAS-2017-29(4)-18

269

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

1. Introduction

1.1 Market surveillance systems

Electronic trading platforms have become an increasingly important part of the
financial market in recent years. They are obligated to take legal responsibilities [1],
[2] and correspond to the law and the regulatory requirements. Therefore, all market
events in the contemporary electronic trading platforms are monitored and analysed
by market surveillance systems.

Such systems are designed to detect market abuse behavior and prevent it. Their
main goals are detection and prevention of such market abuse cases as insider
trading, intentional and aggressive price positioning, creation of fictitious liquidity,
money laundering, marking the close, etc. [3]. Different data mining methods are
used for improving the quality of the surveillance systems’ work [4], [5], [6], [7],

(8], [9].

1.2 Quality assurance for market surveillance

The standard quality assurance (QA) methods and technologies seem to be
powerless in regard to machine learning (ML) applications. C. Murphy, G. Kaiser,
M. Arias even introduced a concept of "non-testable” applications [10]. From the
QA perspective, we do not have to test whether an ML algorithm is learning well,
but to ensure that the application uses the algorithm correctly, implements the
specification and meets the users’ expectations. In this paper, we employ the term
“testing” in accordance with the QA theory.

It is clear that a sufficient input data set is needed for high-quality testing coverage.
Furthermore, the testing data set should be as close as possible to the real data or
should even be real. So, which approach should be used for creating data to verify
the implementation of an ML-algorithm more fully?

We can test a market surveillance system in the following ways:

e Dby creating test cases which are based on the knowledge of the business
rules from the specification. Such test data are similar to the real users’
behaviour;

e Dby generating various datasets which contain different combinations of
variable.

Both variants are suitable for the surveillance systems that use standard control
flows, like loops or choices. For standard systems, there is a set of rules, which
allows getting a clear output result for specific input data. When it comes to
intelligence systems, it is not normally obvious what will happen as a result of
certain input because an ML algorithm builds its own dependencies between the
variables and human interpretation of such dependencies is impossible. Because of
this, it is important to be able to create a set of test cases that will generate obvious

270

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

and predictable output. Therefore, the second approach to generating the test data
allows for the creation of output that is easily interpretable.

1.3 Contribution
This paper introduces the following contribution;

e creating a model for classifying the transactions. This model can be used
for the detection of market manipulations;

e test cases generation for defining the weaknesses of the created model. The
test cases are based on the equivalence classes;

e testing the prototype based on the created model and the analysis of the
received results.

2. Related work

2.1 Ongoing problems in the quality assurance of the modern
surveillance systems

It is known that the system containing ML algorithms should learn using a dataset
that is real or close to real. Obviously, for testing purposes, it is necessary to use a
dataset with a similar structure.

Moreover, during the creation of this dataset, it will be helpful to emphasize the
variability of values of the attributes included in the sampling. By generating a
variety of combinations with different values, we will create test cases to find out
the weaknesses in the ML algorithm, which are related to the separation of classes.

2.2 Existing approaches

C. Murphy, G. Kaiser, M. Arias proposed to divide the data into equivalence classes
to generate test cases for testing the "non-testable" software [10]. It should be noted
that forming equivalence classes is a standard approach in quality assurance [11].
However, C. Murphy, G. Kaiser, M. Arias suggest to follow three steps in testing
this kind of software. Firstly, the data should be divided into several classes, taking
into account the size of the dataset, the potential ranges of the attributes and the
label values, etc. Then, the test cases, that are based on the investigation of the ML
algorithm used in this system, should be created. At last, several testing datasets
should be generated.

Supposing that a dataset for QA purposes has been defined, based on the knowledge
of the method used in the machine learning system. For solving the problem of the
dataset sufficiency, C. Murphy, G. Kaiser, M. Arias propose a “parameterized
random data generation” methodology. This methodology enables us to generate
large datasets and randomly control them [12], [13], [14].

In their paper, J. Zhang et al. suggest to use predictive mutation testing, as it allows
to make decisions without executing the costly mutation testing [15].

271

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

Thus, it becomes clear that new methodologies for testing ML applications are
being developed. However, the contemporary market surveillance systems impose
additional requirements on them. These systems should be able to self-detect the
incorrect behavior and classify alerts, and further point at the initiator of this
behavior. This should always be noted during the process of creation of test
scenarios.

3. Definitions and assumptions

3.1 Structure of the transaction log
A transaction is an event that happens on the financial market and changes any
financial instrument, for example:

e submitting a buy-order for security S with price P and volume V;

e cancelling an order with id I;

e trading on security S at price P with volume V, etc.
Transaction logs are the data that are used by the ML surveillance system. Each
transaction is stored as an object and has a set of input parameters (transaction
characteristics) and one output parameter (presence or absence of the alert):
I ={iy, iy .., ij, ..., in}, Where i = {1,n};
i; ={TID,B,1ID,Side,CP,ExP,ExS,TV, S, TInt, Alert};
Where:
TID € N,
B = {Broker,, Broker,, ..., Broker; }, where k is the number of brokers that are
available in the configuration file,

IID = {Instrument,, Instrument,, ..., Instrument,, },where m is the number of
instruments that are available in the configuration file,

Side = {Buy, Sell},

CP e,

ExP € Q and ExP = 0,

ExS e Z,

TV € Z,

S ={0AC,RT,CAC,Re0AC, ResumeAC, Halt},
Tint €N,

Alert = {0,1}M.

For more attribute details, please refer to Table 1.

Table 1. Attribute details

Parameter Type Comment

272

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

Transaction ID [numerical |Unique identifier of transaction

Broker categorical | Company to which the trader belongs

Instrument ID | categorical | Identifier of the instrument to be traded

Side categorical | Side of the order

ChangePrice numerical |ChP = LastTradedPrice — CurrentPrice

Executed Price |numerical |Price of the trade

Executed Size numerical | Volume of the Trade

Total Volume numerical | Total volume traded on the instrument

Session categorical | Current session on the instrument

Time Interval interval Time interval between transactions

The output: 0 - regular transaction,1 - suspicious

Alert boolean '
transaction

Each transaction can cause several different alerts, that is why every alert should be
classified. This type of classification is called a classification with overlapping
classes.

3.2 Market abuse alert

The following type of behavior can be considered as abusive: a broker tries to raise
or bring down the price on several trades. The alert will be triggered if the price
deviation and the traded volume reach the threshold values. If the price goes up, the
buy-orders should be checked, if the price goes down — the sell ones.

4. Background
As each transaction is stored as an object and has a set of independent variables and
one dependent variable, for testing purposes, these data should be divided into
several equivalence classes. All the objects in one equivalence class have the same
characteristics of certain attributes [11] and trigger the same system behavior.
It is important to analyze the transactions, the system behavior and the meaningful
parameters before forming the classes. We can use the following types of test cases
which are based on equivalence classes. These classes are defined after the analysis
of real data used by the surveillance systems:

1) Consistency checks with consideration of categorical transaction attributes

(Firm, Session, Action, etc.):

a) Let a=a; and class=1, and a =a, and class =0. The
categorical attribute gets a concrete value for several test cases,

273

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

but the other transaction attributes have different values. For such
combinations, the class value is set to 1. This is a check for how
strongly the class value correlates with the concrete value of the
I-th attribute.

b) Let a categorical attribute get any values, always leaving the
class set to 1. Let attribute Let b = b, or b = b, or b = bs,
class = 1. It checks that the system can assume that this attribute
is inessential.

c) Let0<c <10, class = 1. The same as for (b), but for numeric
variables.

d) Let ¢ >0, class =1. The same as for (b), but for numeric
variables.

2) Checks for empty values. Due to the fact that a surveillance system
analyses all the transactions on the financial market and that the considered
transaction can be different for each type of alert, it is possible that some
values will be empty.

3) Checks for the presence of noise. We perform checks for the presence of
noise using the equivalence classes for numeric transaction attributes.
Some attributes can have values in the concrete range, but mostly they take
the average value. For example, the price percentage variable takes the
values from 0 to 100 with the mean of 50 and has a low variance. Even if
the border values (0 and 100) are included in the acceptable range, they
appear so rarely that we treat them as frequency emissions.

5. Approach

5.1 Classification model of market abuse

To prove that the proposed methodology is effective, we have created a model
which allows to classify the transactions by one type of abusive behavior. It should
be noted that we have to deal with rather specific data, i.e. financial transactions.

It is important to make a thorough analysis of the data related to the business logic,
the system requirements and the structure of transaction logs, to be able to define
the attributes and their particular qualities. The correct outcomes can only be
provided when considering all these factors. Thus, this particular dataset structure,
as it is presented in Table 1, was selected for this type of abusive behavior.

We extracted 639 transactions from the messages of one of the electronic trading
protocols and manually classified them, using these data to build the classifier. We
used a decision tree algorithm for our research. After that, the classifier was trained
on a set and its performance was evaluated.

274

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

Precision, recall, and F-measure are the evaluation metrics that we used for our

calculations. Values of these metrics that we received are represented in Table 2.

Table 2. Values of metrics

Precision Recall F-measure
0.615 0.678 0.645

Table 3. Detailed examples of test cases
Scenario 1: Consistency checks 1.a. Instrument
Test case 1 Test case 2 Test case 3
B = Broker; B = Broker, B = Broker;
IID = Instrument; IID = Instrument, IID = Instrument,
Side = Buy Side = Sell Side = Sell
CP =CP, CP=cCpP,—1 CP=CP, +2
ExP = Py ExP =P, ExP = P,
ExS =5 ExS =S, ExS =S4
TV =TV, TV =TV, TV =TV,
S =RT S =RT S =RT
Tint =TI, Tint =TI, Tint =TI,
Alert =1 Alert =1 Alert =1
Scenario 2: Consistency checks 1.b. Broker
Test case 1 Test case 2 Test case 3
B = Broker, B = Broker; B = Broker;
IID = Instrument; IID = Instrument, IID = Instrument,
Side = Buy Side = Buy Side = Buy
CP =CP; CP =CP, CP =CP;
ExP =P, ExP =P, ExP =P,
ExS =S5, ExS =S5, ExS =35,
TV =TV, TV =TV, TV =TV,
S =RT S =RT S =RT
TInt =TI, TInt =TI, TInt =TI,
Alert =1 Alert =1 Alert =1
Scenario 3: Consistency checks 1.c. Executed Price
Test case 1 Test case 2 Test case 3
B = Broker, B = Broker, B = Broker,
IID = Instrument, IID = Instrument, IID = Instrument,
Side = Buy Side = Buy Side = Buy
CP =CP, CP =CP, CP =CP;

275

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

ExP =P, ExP =P, ExP = P;
ExS =S5, ExS =S5, ExS=5;
TV =TV, TV =TV, TV =TV,
S =RT S =RT S =RT
Tint =TI, Tint =TI, Tint =TI,
Alert =1 Alert =1 Alert =1

Scenario 4: Consistency checks 1.d. Total Volume

Test case 1 Test case 2 Test case 3

B = Broker, B = Broker, B = Broker,
IID = Instrument, IID = Instrument; IID = Instrument,
Side = Buy Side = Buy Side = Buy
CP =CP, CP =CP, CP =CP,
ExP = P, ExP = P, ExP =P,
ExS =5, ExS =5, ExS =35,
TV =TV, TV =TV, TV =TV,

S =RT S=RT S =RT

Tint =TI, Tint =TI, Tint =TI,
Alert =1 Alert =1 Alert =1

Scenario 5: Checks for empty values. Executed Price

Test case 1 Test case 2 Test case 3

B = Broker, B = Broker; B = Broker;
IID = Instrument, IID = Instrument, IID = Instrument;
Side = Buy Side = Sell Side = Buy
CP=CP, CP=CP, CP =CP,
ExP = empty ExP = empty ExP = empty
ExS =35, ExS =S, ExS = S,

TV =TV; TV =TV, TV =TV,

S =RT S =RT S =RT

Tint =TI, Tint =TI, Tint =TI,
Alert =1 Alert =1 Alert =1

Scenario 6: Checks for the presence of noise. Executed Size.

Test case 1 Test case 2 Test case 3

B = Broker, B = Broker, B = Broker,

IID = Instrument, 11D = Instrument, IID = Instrument,
Side = Buy Side = Buy Side = Buy
CP=CP, CP=CP, CP =CP;

ExP = P; ExP =P, ExP =P,

ExS =35, ExS =S, ExS =S,

276

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

TV =TV, TV =TV, TV =TV,
S =RT S =RT S =RT
Tint =TI, Tint =TI, Tint =TI,
Alert =1 Alert =1 Alert =1

5.2 Prototype Testing

To test our prototype, we have created a dataset with the same structure as the
training dataset and performed all the validations described in Section 4. For each
type of the validation, we created the test cases based on the equivalence classes.
Please refer to Table 3 for detailed examples.

Figure 1 illustrates the proposed approach. Test Data is the whole set of data that
will be used to test ML-based surveillance system. Then these data are divided into
equivalence classes, as proposed in Section 4. The generated test cases are used for
testing Market Surveillance Systems based on ML.

Test Case n i
<: Division into

equivalence classes
|| restcase n

(((

Test Data

Fig. 1. Prototype Testing

6. Results

After testing our prototype, we received the values of the evaluation metrics that are
presented in Table 4.

Table 4. Values of the evaluation metrics

Precision Recall F-measure

1.000 0.662 0.797
After a detailed analysis of the instances where the model detected an error, it was
observed that errors occurred in:

o different Brokers - Scenario 2: Consistency checks;

e empty values - Scenario 5: Checks for empty values;

e border values - Scenario 6: Checks for the presence of noise.

277

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

Thus, the test that we performed revealed some weaknesses in the ML
algorithm:

An error occurred in one of the categorical attributes during the
consistency checks. It may indicate that the model does not take into
account the categorical attribute in the algorithm.

Classification errors occurred in empty values, so the algorithm may miss
some abnormal behavior when encountering them. For example, all
manipulations at the start of the day may be missed by the surveillance
system.

Some errors were detected in the border values used for the Executed Size
variable. According to the general quality assurance theory, we should
validate the border values for numeric variables. But in our experiment,
unlike what was expected, we saw that the algorithm failed to validate such
test cases. The reason is possibly linked with the distribution of the training
sample.

Errors in the tests took place due to thoughtless randomization. After
analyzing the results, we can conclude that it is crucial to randomise the
dataset with the business logic in mind.

According to these results, it is clear that some details of the dataset and the model
need to be considered in the future work.

7. Conclusions and future work
This paper presents the following conclusions:

The analysis of transactions extracted from an electronic trading protocol
allowed us to successfully create a model for the classification of market
abuse behavior.

The proposed scenarios allowed to test the model more thoroughly. The
following checks were included: consistency checks, checks for border
values, checks for empty values, etc.

The prototype testing revealed some weaknesses that manifested
themselves through unexpected behavior in the case of empty values, in the
case of border values (for some of the attributes) and also in the case of
different values for one of the categorical attributes.

As focus of our future research, we propose to generate the test cases using the
equivalence classes methodology. We advise that the equivalence classes be set
according to the types of data (categorical, numeric, etc.) and their border values.
Such an approach enables us to parameterize the equivalence classes and to further
develop an automatic tool that generates the test data.

278

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

References

[1]. FCA (financial conduct authority) (online). Available at: https://handbook.fca.org.uk/

[2]. SEC (Securities and Exchange Commission) (online). Available at:
https://www.sec.gov/

[3]. FINMAR Financial Stability and Market Confidence Sourcebook (online publication).
Auvailable at: https://handbook.fca.org.uk/handbook/FINMAR/

[4]. Cao L., Ou Y., Yu P.: Detecting Abnormal Coupled Sequences and Sequence Changes
in Group-based Manipulative Trading Behaviors. In Proc. of KDD’10, Washington, DC,
USA, July 25-28, 2010, pp. 85-93

[5]. Donoho S.: Early Detection of Insider Trading in Option Markets In Proc. of KDD’04,
Seattle, Washington, USA, August 22-25, 2004, pp. 420-429

[6]. Luo C., Zhao Y., Cao L., Ou Y., Zhang C.: Exception Mining on Multiple Time Series
in Stock Market. In Proc. of International Conference on Web Intelligence and
Intelligent Agent Technology, IEEE/WIC/ACM, 2008, pp. 690-693

[7]. Nasdag and Digital Reasoning Establish Exclusive Alliance to Deliver Holistic Next
Generation Surveillance and Monitoring Technology (online publication). Available at:
http://www.digitalreasoning.com/buzz/nasdaqg-and-digital-reasoning-establish-exclusive-
alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-
technology.1884035, 23.02.2016

[8]. Ou Y., Cao L., Luo C., Liu L.: Mining Exceptional Activity Patterns in Microstructure
Data. In Proc. of International Conference on Web Intelligence and Intelligent Agent
Technology, IEEE/WIC/ACM, 2008, pp. 884-887

[9]. Ou Y. Cao L., Yu T., Zhang C.: Detecting Turning Points of Trading Price and Return
Volatility for Market Surveillance Agents. In Proc. of International Conferences on Web
Intelligence and Intelligent Agent Technology - Workshops, IEEE/WIC/ACM, 2007, pp.
491-494

[10]. Murphy C., Kaiser G., Arias M.: An Approach to Software Testing of Machine Learning
Applications. Proc of the 19th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Boston MA, Jul 2007, pp. 167-172

[11]. Nautiyal L, Preeti: A Novel Approach of Equivalence Class Partitioning for Numerical
Input. ACM SIGSOFT Software Engineering Notes. VVolume 41 Issue 1, 2016, pp. 1-5

[12]. Murphy C., Kaiser G., Arias M.: Parameterizing Random Test Data According to
Equivalence Classes. Proc of the 2nd International Workshop on Random Testing
(RT'07), Atlanta GA, Nov 2007, pp. 38-41

[13]. Murphy C., Kaiser G., Arias M.: A Framework for Quality Assurance of Machine
Learning Applications. Columbia University Computer Science Technical Reports, New
York, 2006

[14]. Murphy C., Kaiser G., Hu L., Wu L.: Properties of Machine Learning Applications for
Use in Metamorphic Testing. Proc of the 20th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Redwood City CA, Jul 2008, pp.
867-872.

[15]. Zhang J., Wang Z., Zhang L., Hao D., Zang L., Cheng S., Zhang Lu.: Predictive
Mutation Testing. In Proc. of ISSTA’16, Saarbriicken, Germany, July 18-20, 2016, pp.
342-353

279

https://handbook.fca.org.uk/
https://www.sec.gov/
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

Co3aaHue TeCcTOBbIX AaHHbIX ANIsi CACTEM KOHTPONSA U
MOHUTOPUHra pPblHKA, CogepXKaluX BCTPOEHHbIe
anropuTMbl MaWMHHOIO 06y4YeHus

0. Mockanéea <olga.moskaleva@exactprosystems.com>
A. I'pomosa <anna.gromova@exactprosystems.com>
Exactpro, LSEG,
115088, Poccus, Mocksa, 2-ii FOxcrnonopmosuiii npoeso, 204, c4

AnHoTammsA. Jlng npaBuibHOH 00pabOTKM HHPOpPMAIMM O BO3MOXHBIX —CIEJKaXx,
HPOXOSIIUX Yepe3 TOPTroBbIe IUIAT(HOPMBI, BBIIBICHUS W IMPEAYNpeXAeHHUs (UHAHCOBBIX
MaHUITYJISIIUH, OMp)KH yCTAaHABIMBAIOT CHCTEMBI KOHTPOJIS M MOHUTOPHMHTA JAHHBIX. OTH
CHCTEMBI MOJIYYMJIM IIMPOKOE PACIpPOCTPAHEHHE 3a MociieqHue roasl. OObEMbl U TEMITBI
TOPrOBJIM HOCTOSIHHO BO3PACTAIOT, YBEJIMYMBACTCS YUCIO Pa3HOBMAHOCTEH IEHHBIX OyMar.
@DUHAHCOBBIEC PETYJATOPHI MPEIBSBILIIOT BCE HOBBIC TPEOOBAHUS K TOPTOBBIM ILIATGOpPMaM.
VI3 BBIIIECKa3aHHOTO CIEAYET, YTO COBPEMEHHbIC (PMHAHCOBBIC HH(OPMAIIMOHHBIE CUCTEMBI B
Ompxaiime Toxsl OyIyT IPOROIDKATh COBEPIICHCTBOBATHCS M AKTHBHO HCIIOIB30BATh
cpelcTBa MAaIIMHHOrO 00yueHus. [103ToMy B MOCIIeIHIE HECKOIBKO J€T CUCTEMbI KOHTPOJIS
U MOHHMTOPUHra pBIHKA HAYMHAIOT BHEAPATh MOJAYJIM HHTEIUIEKTYaJbHOTO aHaln3a
TpaH3akuuid. TakuM 00pa3oM, HMHTEICKTyaJIbHbIE CHCTEMBI KOHTPOJSI M MOHHUTOPHHIA
pbIHKa TPEOYIOT yCOBEPLICHCTBOBAHMUS MOIXOA0B K MX TECTHPOBAHMIO. DTO CBSA3AHO C TEM,
YTO METOJbl HHTEUICKTYyaIbHOTO aHaJlM3a JaHHBIX (OPMUPYIOT CBOU COOCTBCHHbIC
3aBHCHMOCTH MEXIy NepeMeHHbIMU. TecToBbIe CLIeHApHH JOJDKHBI pa3padaThiBaThCsl TAKUM
00pazom, 4TOOBI OXHAAEMBIH pe3yibTaT ObUI MOHATEH W mIpeackazyeM. OueBHIHO, HYTO
CTaHIApTHBIE METOJbI TECTHPOBAHUS TPeOYIOT MOJEpHM3auMH. B mpexcraBineHHOW craThe
paccMOTpeHbI 0OCOOCHHOCTH COBPEMEHHBIX MHTEIUIEKTYalbHBIX HH)OPMAIIMOHHBIX CHCTEM, a
TaKoKe 0COOGHHOCTH MX TECTUPOBaHMs. B naHHOM mccneoBaHny ObUT pa3paboTaH MPOTOTHIT
Moayist kinaccuukanuyu (UHAHCOBBIX MaHUMYJsinMi. Takke NpeIOKEeHB TECTOBBIS
CLICHApHH, IO3BOJSIOIIHE TECTHPOBATh pPa3pabOTaHHBI NPOTOTHI. J[aHHBIC ClEHAPHH
COCTOSIT M3 HECKOJBKHX THIIOB, OCHOBAHHBIX Ha METOJOJIOTHH KJIACCOB SKBHBAJICHTHOCTH.
Pa3zeneHre Ha Kiacchl SKBUBAJIECHTHOCTH OBLJIO BBINOJHEHO IMOCIE aHANM3a PeaslbHBIX
JaHHBIX. [IpOTOTHN OBUT MPOTECTUPOBAH C TOMOIIBIO BbIIE OOO3HAUCHHBIX CLICHAPHEB.
IIpemoXKeHHbI METOJX TO3BOJIMI BBIIBUTH HENOCTAaTKM MOAYIS — KiacCH(UKAIMN
(bMHAHCOBBIX MAHHUITYJIALMIL.

KnoueBble cjI0Ba: TECTOBBIC JaHHBIC, KJIACChl 3KBUBAJICHTHOCTH, CHUCTEMBI KOHTPOJIA U
MOHUTOPHUHI'A PbIHKA; MAIIMHHOC 06yquMe.

DOI: 10.15514/ISPRAS-2017-29(4)-18

Jns uutupoBanusa: Mockanésa O., ['pomoBa A. Co3aHue TeCTOBBIX JaHHBIX IS CHCTEM
KOHTPOJII M MOHHUTOPHHTA PBIHKA, COJEPXKANIMX BCTPOCHHBIC AITOPUTMBI MAITHHHOTO
obyuenus. Tpyovt UCII PAH, Tom 29, B 4, 2017 1., ctp. 269-282 (Ha aHITIMIICKOM S3BIKE).
DOI: 10.15514/ISPRAS-2017-29(4)-18

280

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Tpyoer UCIT PAH, tom 29, Beim. 4, 2017 1., ctp. 269-282.

Cnucok nutepaTtypbl

[1].
[2].
[3].
[4].

(51
[6].

[71.

[8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

FCA (financial ~conduct authority) (online). JoctymHO 1m0 CChUIKE:
https://handbook.fca.org.uk/

SEC (Securities and Exchange Commission) (online). JloctymHo 10 cChIIKE:
https://www.sec.gov/

FINMAR Financial Stability and Market Confidence Sourcebook (online publication).
HocrymHo o cepuike: https://handbook.fca.org.uk/handbook/FINMAR/

Cao L., Ou Y., Yu P.: Detecting Abnormal Coupled Sequences and Sequence Changes
in Group-based Manipulative Trading Behaviors. In Proc. of KDD’10, Washington, DC,
USA, July 25-28, 2010, pp. 85-93

Donoho S.: Early Detection of Insider Trading in Option Markets In Proc. of KDD’04,
Seattle, Washington, USA, August 22-25, 2004, pp. 420-429

Luo C., Zhao Y., Cao L., Ou Y., Zhang C.: Exception Mining on Multiple Time Series
in Stock Market. In Proc. of International Conference on Web Intelligence and
Intelligent Agent Technology, IEEE/WIC/ACM, 2008, pp. 690-693

Nasdaq and Digital Reasoning Establish Exclusive Alliance to Deliver Holistic Next
Generation Surveillance and Monitoring Technology (online publication). JoctynHo 1o
cesuike: http://www.digitalreasoning.com/buzz/nasdag-and-digital-reasoning-establish-
exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-
technology.1884035, 23.02.2016

Ou Y., Cao L., Luo C., Liu L.:Mining Exceptional Activity Patterns in Microstructure
Data. In Proc. of International Conference on Web Intelligence and Intelligent Agent
Technology, IEEE/WIC/ACM, 2008, pp. 884-887

Ou Y., Cao L., Yu T., Zhang C.:Detecting Turning Points of Trading Price and Return
Volatility for Market Surveillance Agents. In Proc. of International Conferences on Web
Intelligence and Intelligent Agent Technology - Workshops, IEEE/WIC/ACM, 2007, pp.
491-494

Murphy C., Kaiser G., Arias M.: An Approach to Software Testing of Machine Learning
Applications. Proc of the 19th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Boston MA, Jul 2007, pp. 167-172

Nautiyal L, Preeti: A Novel Approach of Equivalence Class Partitioning for Numerical
Input. ACM SIGSOFT Software Engineering Notes. Volume 41 Issue 1, 2016, pp. 1-5
Murphy C., Kaiser G., Arias M.: Parameterizing Random Test Data According to
Equivalence Classes. Proc of the 2nd International Workshop on Random Testing
(RT'07), Atlanta GA, Nov 2007, pp. 38-41

Murphy C., Kaiser G., Arias M.: A Framework for Quality Assurance of Machine
Learning Applications. Columbia University Computer Science Technical Reports, New
York, 2006

Murphy C., Kaiser G., Hu L., Wu L.: Properties of Machine Learning Applications for
Use in Metamorphic Testing. Proc of the 20th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Redwood City CA, Jul 2008, pp.
867-872.

Zhang J., Wang Z., Zhang L., Hao D., Zang L., Cheng S., Zhang Lu.: Predictive
Mutation Testing. In Proc. of ISSTA’16, Saarbriicken, Germany, July 18-20, 2016, pp.
342-353

281

https://handbook.fca.org.uk/
https://www.sec.gov/
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035
http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035

Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning
Algorithms. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 269-282.

282

Using modularization in embedded OS

12 K A. Mallachiev <mallachiev@ispras.ru>
123 N V. Pakulin <npak@ispras.ru>
1234 A V. Khoroshilov <khoroshilov@ispras.ru>
! D.V. Buzdalov <buzdalov@ispras.ru>
! Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
® Moscow Institute of Physics and Technology (State University)
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
* National Research University Higher School of Economics (HSE)
11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Modern embedded OS are designed to be used in control solutions in various
hardware contexts. Control computers may differ in the architecture of the CPU, the structure
of communication channels, supported communication protocols, etc. Embedded OS are
often statically configured to create an OS image, which intended to be executed on some
specific control computer. System integrator usually performs this configuration. Embedded
OS are often developed by many companies. Joint development and integration is very
complex if OS doesn’t support modularity. Support of modularity and component assembly
reduces the need of communication among companies during development and integration.
This allows customers to create minimal solutions that are optimally adapted to the particular
task and hardware platform. Furthermore, customers may be interested in adding their own
low level components without OS maodification. In this article, we present an approach to
building modular embedded solutions from heterogeneous components based on the RTOS
JetOS. The mechanism of components binding developed by us allows uniting heterogeneous
components from different manufacturers within the same section of the address space. This
mechanism allows component developer to independently develop their components. And
system integrator can independently from developers configure what component he likes to
see in OS image and how components should interact.

Keywords: embedded systems, components, RTOS.
DOI: 10.15514/1ISPRAS-2017-29(4)-19

For citation: Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using
modularization in embedded OS. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp.
283-294. DOI: 10.15514/1SPRAS-2017-29(4)-19

283

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

1. Introduction

Embedded operating systems are built to provide specific functionality on specific
hardware. Development of a new OS from scratch for every task and hardware is
unwise and operating systems are designed to support several CPU architectures and
a lot of peripheral devices in a single distribution. Therefore, OS distribution
contains many drivers to support a large number of different hardware. Most of the
drivers are not needed for correct OS execution on a specific board. Moreover,
many embedded systems are aimed to run in restricted environment, for example
with limited memory.

Static OS configuration is used in cases when it is known in advance, on which
hardware the OS image is going to be executed. OS configuration is commonly
performed by the system integrator. They choose OS features suitable for OS task
and drivers for hardware. Only chosen parts will get into final OS image. System
integrator doesn’t change OS source code. Static configuration allows keeping final
image small.

Safety-critical systems must be certified. For airborne systems there is a standard for
certification called DO-178C [1], where OS kernel must be certified by highest level
of reliability. Certification is complex and lengthy process. Small change in one part
of system leads to recertification of the whole system.

We develop an open-source real-time operating system for civil aircraft airborne
computers called JetOS. JetOS is ARINC-653 [2] compliant, supports static
configuration and aimed to DO-178 certification.

ARINC-653 specifies interfaces that RTOS (real-time operating system) should
provide to avionics software, also the standard specifies some design constrains to
the OS. The most pertinent constraint is that application code is executed inside
partitions that are isolated from each other by resources and in time.

To simplify and minimize OS kernel and therefore to simplify OS certification
process we moved drivers and some services from kernel to special ARINC-653
partitions, called system partitions [3]. Besides drivers system partition contains
services such as network stacks, file systems, logging, etc.

System partitions should be certified as well as the kernel. Certification for highly-
critical software requires absence of unreachable code. Usage of static configuration
of the system partition allows to static selection of required drivers and services, and
therefore getting rid of unused code.

It is common that there are many vendors involved in building a specific embedded
solution: OS vendor, BSP vendor, device driver developers, system integrator, etc.
When services or drivers they are developing are strongly coupled, developers have
to interact a lot.

Therefore splitting system partition to independent isolated components seems to be
suitable solution. Each driver and service will be in dedicated component. Each
component would have a single developer.

284

Mainaunes K.A., ITakyiaun H.B., Xopommnos A.B., By3nanos JI.B. Mcnone3zoBanue MOJIyJIBHOTO MOAX0/a BO
BCTPAMBAEMbIX ONEPALOHHBIX cucTeMax. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 283-294.

Component should interact with each other. Appearance of fixed interface between
components would make component development easer. Moreover fixed interface
can make system flexible. Statically configured component-based system (in our
case system partition) can be flexible in several aspects:

e When there are several components implementing the same interface (e.g.
several file systems) and system integrator can choose which component
will get into final image.

e When there are several components implementing the same interface, and
they all can get into final image. System integrator configure on static,
which components interact. For example, if there are two file systems,
some component would work with one file system and others with the
second one.

e When system integrator can add new component between two interacting,
if the new component has a suitable interface. This is useful and can be
used, for example, to insert traffic analyzer between protocol stack and
network card driver.

Another use-case is to reuse a device driver in an applications stack, such as
network card driver in the network stack. Isolated into component the same driver
code might serve multiple device instances due to different sets of internal states
and configuration parameters. All copies of the component share same driver code,
so that each component copy would work with assigned device, would make system
scalable and flexible.

Certification of system includes, among others, unit and integration tests. Splitting
system partition to components makes certification easier. Component-level tests
can be run by component developer. And system integrator doesn’t need to rerun
unit tests, he only needs to run integration tests.e.

2. Related Works

Classical distributed components models like Enterprise JavaBeans, CORBA, Corba
Component Model and DCOM [4,5,6] define components and interfaces between
them. Models allow substituting one component with the other one with the same
interfaces. Components configuration dynamically configured by brokers. This
approach is not suitable for embedded systems with static configuration.

Ideas to separate OS appeared long ago in microkernels. Microkernel architecture’s
[7,8,9] primary goal is to separates OS into independent servers that could be
isolated from each other. Servers interact through inter-process communication
(IPC). IPC calls are typed and servers with the same interface can substitute one
another. But there cannot be two servers with the same interface; therefore this
model is not suitable for our tasks too.

VxWorks is a popular embedded operating system. VxWorks board support
package (BSP) is divided into components. Components interface is declared in
component description language (CDL). BSP developer can construct BSP from

285

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

existing component and can add their own components. But this system is not
flexible; for example, each component has hardcoded in it a list of names of
components it interact with, therefore one component cannot be easily substituted in
a configuration with another one with the same interfaces.
We are not aware of any component based model with the following set of features:
e Static configuration,
e Low overhead,
e Flexible configuration (in all aspects from introduction),

e Low mishit probability, when component interact with component it not
designed to (runtime addressing checks)

3. Basic Capabilities of Component-Based Model

Our model aimed to have small overhead, so it can be suitable for RTOS. In its raw
form, our model assumes that there is a lot of similar code written by component
developers in C language. To reduce the amount of hand work we generate helper
code, based on configuration files. Language, which is used to write configuration
files, can be any declarative language; we use YAML for these purposes.

3.1 Component developer view

Model defines component types and component instances. Each component has a
unique component type and assigned implementation and any number of instances.
Component type is similar to term “class” from object oriented languages and
component instance is similar to “class objects”. Component instances share code,
but sharing does not apply to some private data, called instance state.

Components interact. The ability of one component to use services of the others is
achieved through typed ports. There are two kinds of component ports:

e Input ports, which show that the component provides some functionality.
Input ports have assigned handlers implemented by the component, which
will be called when some other component calls the interface of the
component.

e Output ports, which are used by a component when invokes behavior of
another component. The component calls others indirectly, through output
ports.

Ports are typed, input port of one component and output of the other one can be
connected only if they have the same port type. Port type is called interface.
Interface is the set of functions, which input port provides or output port require.
Since interface can have several functions, then output port that implements this
interface has several assigned handlers, one for each function in interface.

Interface declares as the set of triple of function names, signature, and return types.
Example of simple interface declaration can be seen at fig.1.

286

Mainaunes K.A., ITakyiaun H.B., Xopommnos A.B., By3nanos JI.B. Mcnone3zoBanue MOJIyJIBHOTO MOAX0/a BO
BCTPAMBAEMbIX ONEPALOHHBIX cucTeMax. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 283-294.

- name: data sender
functions:
- name: send
return type: ret t
args_t§pe: [int]

Fig 1. Data_sender interface with one function ret_t send(int)

Component type declaration contains component name, component instance state
structure, and component ports. Output ports are declared as pair of port name and
port interface. Input ports are declared as triple (n, I, m): port name n, port interface
I, and m a list of pairs of interface function and assigned implementation specified
by components function name.

You can see example of component type configuration at fig. 2.

name: Filter
state struct:
edge: int

input ports:
- name: in
type: data sender
implementation:
send: filter send

output ports:
- name: out
type: data sender

Fig 2. Component type Filter. Component state contains one field edge. Componet type has
single input port called in, port interface is data_sender, fucntion send of data_sender
interface is implemented by filter_send function.

During system build configuration files are parsed and corresponding C code is
generated:
e C-structure describing component, with name identical to component
name. (e.g. structure rilter for component Filter)

o Declaration of functions specified in input ports (e.g. declaration of
function filter send for component Filter). This declaration enforces
naming convention.

e Special function for calling output ports.

Component developers should use only ports to communicate with other
components. Direct call of another component might work but is not guaranteed.
The component developer is guaranteed only the interfaces. The developer chooses
names for ports. Input ports are an entry point to component. Component developer
does not use names on input ports. Output ports are used when component should

287

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

use service of another component. To call the output port a developer should specify
output port name, output port function name, and function arguments. Developer
should not assume what real function of which component will be called. You can
see an example of calling function from output port at fig. 3

ret t filter send(Filter *self, int data)
{

res = Filter call out send(self, data);

Fig 3. Call of function send of port out.

3.2 System integrator view

System integrator decides how many instances of each component should be
created, and how they are connected. For each component, they choose unique
name, and how to initialize its state. System integrator uses instance names and
names of their ports to link ports of different instances. All of this information
integrator specifies in configuration file. Graphical view of example configuration
use can see at fig. 4.

Sensor_1 #> """")dl> Filter_1 £|>“
Sensor 2 |£l> -------- >I£l> Filter 2 i>"

Fig 4. Example linkage configuration. Sensor_1 and Sensor_2 are instances of Sensor
component type. Filter_1 and Filter_2 are instance of Filter component type. Sensor_1 ouput
port connect to Filter_1 input port. Filter_1 input port connected to Printer. Same for
Sensor_2 and Filter_2

§d|> Printer

4. Advanced capabilities of component based model

4.1 Init function

Instances can have init function: component developers should declare init function
name in configuration. At system partition start all init functions of all instances are
called sequentially. There is no way to specify dependencies on init (i.e. init of open
component should be called before init of the other one) because we assume that
components are independent and should not have any dependency.

288

Mainaunes K.A., ITakyiaun H.B., Xopommnos A.B., By3nanos JI.B. Mcnone3zoBanue MOJIyJIBHOTO MOAX0/a BO
BCTPAMBAEMbIX ONEPALOHHBIX cucTeMax. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 283-294.

4.2 Active and reactive components

All components with input ports are reactive, i.e. get control by call from other
component. Some components are active, i.e. the component gets control from OS
by some regularities (periodically or by event). Component can be active and
reactive at the same time.

There are two types of active components in our model:

e Components which have a special entry point — activity. This type of active
components is useful when component instances should do some simple
work from time to time (for example, checking whether there are any new
networks packets). Component developer declares activity name in
configuration. All activities are called sequentially. This type of active
components has a big disadvantage: if some instance will freeze in its
activity then all instances of this type in the system are going to freeze, so
component developer should not use any wait objects in activity.

e Components, which instances create their own threads inside init function.
In this case freezing of the instance, which is running in the dedicated
thread, will not cause freezing other instances.

4.3 Array of ports

Sometimes component developers need to create configurable number of ports of
the same type. We support array of ports, but only for output ports. For calling
function of output port array developers should specify index in the array besides
port name, function name and function arguments.

Arrays of ports are useful in components like router (at the fig. 5). Router sends data
to configurable of instances. Integrator in the configuration specifies number of
elements in port array and their linkage with instances.

v handier 1
0 router |2 427> randier 2 |
a2 hander 3|

Fig. 5. Router has an array of out port which are connected to instances handler_1,
handler_2 and handler_3

4.4 Memory blocks

Component instances in our system cannot use system heap, because there can be
heap underflow with many instances and not enough heap size.

Access to heap and physical (for drivers) memory is done through ARINC-653
memory blocks. For each memory block component developer specifies:

e memory block name suffix

289

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

e memory size
e memory alignment

o flag, that shows if this memory block used by single instance or shared
between instances.

e physical address for drivers working with memory mapped devices.
Memory blocks with fixed physical address must be shared.
Name of shared memory blocks is identical to name suffix from configuration.
Name of non-shared memory block is concatenation of instance name and memory
block name suffix. Instances can access memory blocks by ARINC-653 API
specifying memory block name.

4.5 Memory ownership

This part of the paper does not describe a feature of our approach. Here is some
consideration on memory ownership.

Let us consider a component based system partition, which implement networking.
There can be a track of components: Message sender >UDP_IP_sender ->
Eth_sender-> Network_card_driver. Message sender sends pointer message to
UDP_IP_sender; UDP_IP_sender prepends message with UPD and IP header and
sends message to Eth_sender; Eth_sender prepends message with Ethernet header
and sends to Network_card_driver. Should be specified how own memory and
responsible for memory allocations.

If UDP_IP_sender and Eth_sender components would allocate buffers in their own
memory, then this would greatly complicate their code, as they should also free
buffers. Our real time C library does not support memory freeing because memory
freeing can make indeterminate amount of time.

To simplify implementation and reduce overhead we used an approach when
Message_sender allocates enough memory for all headers (component gets this
value from configuration), copies message at the needed offset and pass to next
layer pointer to message, message size, prepend and append values. Prepend
describes how many bytes before message are allocated. Append describes how
many bytes after message are allocated.

UDP_IP_sender to add header moves pointer it gets from Message sender and
decreases prepend value to header size.

5. Future work

We are going to work on supporting component distribution by binary images. This
can be used to protect intellectual property of component developer, who does not
want to share component source code.

Currently system integrator should specify component instances and their linkage in
YAML language. We are going to support AADL language, which allows system
integrator to graphically create and link instances. To work with AADL we are

290

Mainaunes K.A., ITakyiaun H.B., Xopommnos A.B., By3nanos JI.B. Mcnone3zoBanue MOJIyJIBHOTO MOAX0/a BO
BCTPAMBAEMbIX ONEPALOHHBIX cucTeMax. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 283-294.

going to use MASIW framework. MASIW [10, 11] (MASIW — Modular Avionics
System Integrator Workplace) is s an open source Eclipse-based IDE for
development and analysis of AADL models.

In addition, we are going to research possibility of using dataflow language to
specify component, so that there will be no need to write component
implementation in C language

6. Conclusion

In the paper, we presented a component-based approach that was created for JetOS,
but can be used in other systems. The approach turned out to be efficient; it has low
overhead and make system flexible and scalable while statically configured.

References

[1]. DO-178C, Software Considerations in Airborne Systems and Equipment Certification,
January 5, 2012

[2]. Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

[3]. Mallachiev K.M., Pakulin N.V., Khoroshilov A.V. Design and architecture of real-time
operating system. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 181- 192.
DOI: 10.15514/ISPRAS-2016-28(2)-12

[4]. J. Siegel, Corba 3 fundamentals and programming, John Wiley & Sons, 2000

[5]. Nanbor Wang, Douglas C. Schmidt, and Carlos O'Ryan. 2001. Overview of the CORBA
component model. In Component-based software engineering, George T. Heineman and
William T. Councill (Eds.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA 557-571.

[6]. Distributed Component Object Model (DCOM) Remote Protocol Specification (online)

[7]. Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone,
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The
SawMill multiserver approach. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating system (EW 9).
ACM, New York, NY, USA, 109-114. DOI=http://dx.doi.org/10.1145/566726.566751

[8]. J. Liedtke. 1995. On micro-kernel construction. In Proceedings of the fifteenth ACM
symposium on Operating systems principles (SOSP '95), Michael B. Jones (Ed.). ACM,
New York, NY, USA, 237-250. DOI: http://dx.doi.org/10.1145/224056.224075

[9]. Boule I, Gien M, Guillemont M. CHORUS Distributed Operating Systems, Computing
Systems, Vol. | No. 4 Fall 1988

[10]. D. V. Buzdalov, S. V. Zelenov, E. V. Kornykhin, A. K. Petrenko, A. V. Strakh, A. A.
Ugnenko, and A. V. Khoroshilov. Tools for system design of integrated modular
avionics. Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230 (in
Russian). DOI: 10.15514/ISPRAS-2014-26(1)-6
[11]. Alexey Khoroshilov, Dmitry Albitskiy, Igor Koverninskiy, Mikhail Olshanskiy,

Alexander Petrenko, and Alexander Ugnenko. AADL-based toolset for IMA system
design and integration. SAE Int. J. Aerosp., 5:294-299, 10 2012.

291

http://dx.doi.org/10.1145/224056.224075

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

Ucnonb3oBaHue MoOA4yINnbHOro noaxoana Bo BCTpanBaeMbIX
onepaunoHHbIX CUCTemMmax

L2 g A. Mannauues <mallachiev@ispras.ru>
123 H.B. Hakymun <npak@ispras.ru>
1234 4. B. Xopowunos <khoroshilov@ispras.ru>
' J1.B. Byzoanoe <buzdalov@ispras.ru>
1PI}Ltcmumym cucmemnozo npoepammuposarnusi PAH,
109004, Poccus, . Mockea, ya. Anexcanopa Conscenuyvina, 0. 25.
2 Mockosckuii 2ocyoapcmeennwili ynusepcumem um. M.B. Jlomonocosa,

119991, Poccus, e. Mocksa, Jlenunckue eopewt, 0. 1.

¥ Mockosckuii Qusuxo-mexHueckull uHCMumym,

141701, Poccus, Mockoeckast 06x., 2. [loneonpyonstii, Hncmumymckuii nep., 0. 9.
* Hayuonanshwiii uccnedosamensekuti ynusepcumem «Bolcuias mkoia 5K0HOMUKIY

101000, Poccus, 2. Mockea, yn. Msacnuykasi, 0. 20

AHHoTanusi. COBpEeMEHHBIE OINEPAllMOHHBIE CHCTEMBI AT BCTPOEHHBIX CHCTEM MOTYT
HCIIONB30BAThCS Ul PEIICHHs 3ajad YIpaBICHHUS B Pa3sIMYHBIX aNIIapaTHBIX KOHTEKCTaX.
Vopasisitomue OBM Moryt pasiauuaThCs apXUTEKTYpOl IEHTpalbHOIO Ipoleccopa,
COCTaBOM KAaHAJIOB CBSI3H, IOJJICP)KUBAEMBIMH MPOTOKOJIaMH CBS3H M T. 1. OOBIYHO
BcTpanBaeMble OC KOHOQUTYypHpYIOTCS Ha 3Tame CcOOpPKH, MO3BOJAL co3maTh obpa3 OC,
NpeAHA3HAuYCHHBI JJIsI BBINOJNIHEHHS Ha OIpEIeJCHHOW ammapaTHoil mmatdopme. OTy
KOHQUTYpaluio OCYIIECTBISET KOMaHJA, Ha3blBaeMasl TPYINON CHCTEMHON HWHTETpaldh.
3agactyro OC 11 BCTPOCHHBIX CHCTEM pa3pabaThIBAIOTCA MHOXKECTBOM KoMITaHUH. Ecim
OC =He sBmsercs MOIYIbHOW, TO COBMECTHBIE NPOEKTHpOBaHHE, pa3paboTka U
koHOurypupoBanne OC mpeAcTaBIAIOT co0OH OdYeHb CIIOXKHBIM 3amaud. [lomnmepikka
MOAYJIBHOCTH W KOMIIOHEHTOH COOpKM 3HAYMTEIbHO YMEHBIIAeT HEoOXOIHUMOCTh BO
B3aHMOJICHCTBUM MEXAYy KOMIaHHWsAMH-padpabortunkamu. KimeHtam 53T0 mo3Bousier
CO371aBaTh MUHUMAJBHBIC PEIICHHsI, ONITUMAIIBHO aJalITHPOBAHHBIE MO 0COOCHHOCTH 331a4n
U ammapatHoil miatdopmsl. KpoMe Toro, pa3nudHbIe MPOW3BOJUTENH CHCTEM MOTYT OBITh
3aMHTEPECOBAaHBI B TOM, 4YTOOBI BHEAPATH B pENICHHE CBOM CIENHAIM3MPOBAHHBIC
KOMIIOHEHTBl, B TOM YHCJIe W B OWHApHOM BHJE, 3AMUINAIONIEM HHTEIUICKTyalbHYIO
COOCTBEHHOCTH pa3pabOTYMKOB. B maHHOU CTaThe MBI NPENCTABIISEM MOAXOA K MTOCTPOSHUIO
MOAYJBHBIX pELIEHHH W3 TeTepOreHHbIX KoMmoHeHToB Ha 6aze OC PB JetOS.
Pa3paGoTaHHbIii HaMHM MeXaHHM3M CBS3BIBAHHMS KOMIIOHEHTOB TMO3BOJSET OOBEIMHSITH
TeTepPOreHHbIe KOMIIOHEHTBI OT Pa3iM4YHBIX MPOM3BOJWTENECH B paMKax OJHOTO pasziena
aJIPeCHOTO TPOCTPAHCTBA. ITOT MEXaHM3M HO3BOJSIET pa3pabOTYMKaM KOMITIOHEHTOB
OCYIIECTBIISITh HE3aBUCHMYIO pPa3pabOTKy. A CHCTEMHOMY WHTETpaTopy IO3BOJISIET
HE3aBUCUMO OT pa3paborunkoB KoHpurypupoBats OC, BBIOMpas Kakne KOMIOHEHTHI
MOMaayT B KOHeuHbIH 00pa3 OC, 1 KaKk 3TH KOMIIOHEHTHI OYAyT B3aUMO/ICHCTBOBATD.

KiroueBble c10Ba: BEICTpauBaeMble CUCTEMBI, MOAYIbHOCTh, KOMIIOHEHTHI, OCPB

DOI: 10.15514/ISPRAS-2017-29(4)-19

292

Mainaunes K.A., ITakyiaun H.B., Xopommnos A.B., By3nanos JI.B. Mcnone3zoBanue MOJIyJIBHOTO MOAX0/a BO
BCTPAMBAEMbIX ONEPALOHHBIX cucTeMax. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 283-294.

Ja nurupoBanus: Mamnauues KA., ITakynun H.B., Xopommunos A.B., Byznanos JI.B.
Hcnonb3oBanne MOMYIBHOTO MOAXO/AA BO BCTPAHBAGMBIX ONEPALIOHHBIX CHCTEMaX. Tpymel
UCII PAH, Ttom 29, Bbm. 4, 2017 r., ctp. 283-294 (ua aurnumiickom). DOI:
10.15514/ISPRAS-2017-29(4)-19

Cnucok nutepaTtypbl

[1].
[2].
[3].

[4].
(5]

[6].
[71.

(8].

(€1
[10].

[11].

DO-178C, Software Considerations in Airborne Systems and Equipment Certification,
January 5, 2012

Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

Mallachiev K.M., Pakulin N.V., Khoroshilov A.V. Design and architecture of real-time
operating system. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 181- 192.
DOI: 10.15514/ISPRAS-2016-28(2)-12

J. Siegel, Corba 3 fundamentals and programming, John Wiley & Sons, 2000

Nanbor Wang, Douglas C. Schmidt, and Carlos O'Ryan. 2001. Overview of the CORBA
component model. In Component-based software engineering, George T. Heineman and
William T. Councill (Eds.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA 557-571.

Distributed Component Object Model (DCOM) Remote Protocol Specification (online)
Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone,
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The
SawMill multiserver approach. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating system (EW 9).
ACM, New York, NY, USA, 109-114. DOI= 10.1145/566726.566751

J. Liedtke. 1995. On micro-kernel construction. In Proceedings of the fifteenth ACM
symposium on Operating systems principles (SOSP '95), Michael B. Jones (Ed.). ACM,
New York, NY, USA, 237-250. DOI: 10.1145/224056.224075

Boule I, Gien M, Guillemont M. CHORUS Distributed Operating Systems, Computing
Systems, Vol. | No. 4 Fall 1988

J.B. Bysnanos, C.B. 3enenos, E.B. Kopubixun, A.K. [lerpenko, A.B. Crpax, A.A.
Vruenko, A.B. XopommioB. MHcTpyMeHTa bHBIE CPEACTBA MPOEKTUPOBAHUS CHCTEM
UHTErpupoBaHHON MonyinbHOU aBuoHuku. Tpynel UCII PAH, Tom 26, Bemn. 1, 2014 r.,
ctp. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

Alexey Khoroshilov, Dmitry Albitskiy, Igor Koverninskiy, Mikhail Olshanskiy,
Alexander Petrenko, and Alexander Ugnenko. AADL-based toolset for IMA system
design and integration. SAE Int. J. Aerosp., 5:294-299, 10 2012.

293

Mallachiev K.A., Pakulin N.V., Khoroshilov A.V., Buzdalov D.V. Using modularization in embedded OS. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 283-294.

294

Debugger for Real-Time OS: Challenges of
Multiplatform Support

L3 A.N. Emelenko <emelenko@ispras.ru>
L2k A. Mallachiev <mallachiev@ispras.ru>
L23N.V. Pakulin <npak@ispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
% Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
¥ Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. In this paper, we present our work in developing a debugger for multiplatform real-
time operating system Jet OS designed for civil airborne avionics. This system is being
developed in the Institute for System Programming of the Russian Academy of Sciences, and
it is designed to work within Integrated Modular Avionics (IMA) architecture and implement
ARINC-653 API specification. Jet OS supports work on different architectures such as
PowerPC, MIPS, x86 and ARM. Debugger for a real-time OS is an important tool in software
development process, but debugger for RTOS is more than typical debugger used by desktop
developers and we must take into account all specific features of such debugger. Moreover,
we must support debugging on many platforms. However, debugger's code has to be
developed for each platform and we faced the problem of porting our debugger to different
architecture without developing it from scratch. In addition, the debugger must support work
within emulators, because it can expand developers’ capabilities and increase their efficiency.
In this paper, we present the architecture of the debugger for JetOS real-time operating
system, which provides capabilities for porting our debugger to a new platform in little to no
time, and discuss the challenges imposed by multiplatform support in the OS.

Keywords: debugger; operating systems; multiplatform
DOI: 10.15514/ISPRAS-2017-29(4)-20

For citation: Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS:
Challenges of Multiplatform Support. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 295-302. DOI: 10.15514/1ISPRAS-2017-29(4)-20

295

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302.

1. Introduction

Application debugger is an indispensable tool in developer’s hands. But debugger in
a real-time operating system is more than just plain debugger. In this paper we
present an on-going project on debugger development for JetOS, a real-time
multiplatform operating system that is being developed in the Institute for System
Programming of the Russian Academy of Sciences.

JetOS is a prototype operating system for civil airborne avionics. It supports
PowerPC, MIPS and x86 platforms. Also, it is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC-653 API
specification, the de-facto architecture for applied (functional) software.

The primary objectives of ARINC 653 are deterministic behavior and reliable
execution of the functional software. To achieve this ARINC-653 imposes strict
requirements on time and space partitioning. For instance, all memory allocations
and execution schedules are pre-defined statically.

The unit of partitioning in ARINC-653 is called partition. Every partition has its
own memory space and is executed in user mode. Partitions consist of one or more
processes, operating concurrently, that share the same address space. Processes have
data and stack areas and they resemble well-known concept of threads.

Embedded applications might be run in two different environments: in an emulator
and on the target hardware. In our project, we use QEMU system emulator.
Although QEMU has its own debugger support, its functionality proved to be
insufficient for debugging embedded applications. Therefore, we implemented a
debugger not only for the target hardware, but for the emulator as well.

2. Specific Features of Debugger for RTOS

Developing a debugger for a real-time OS is not a simple task. During developing,
we faced many features of the debugger for RTOS compared to typical debuggers
used by desktop developers.

Firstly, there are many interacting processes, which need to be debugged
simultaneously. Therefore, our debugger must support capability to switch between
them. Moreover, it needs to support work with overlapping virtual addresses space.
Secondly, it is impossible to run the debugger on the same device, where the system
runs, because of the lack of on-board resources and lack of interactive facilities.
That’s why the debugger must be remote.

Thirdly, we must support debugging not only for application developers but also for
software developers, such as drivers or kernel developers. As a consequence, the
debugger can work with a highly privileged kernel and low-privilege application
code.

In addition, the debugger must support work within emulators, because it can
expand developers’ capabilities and increase their efficiency.

Moreover, JetOS can be run on different processors, because it supports PowerPC,
x86 and MIPS architecture. Consequently, the debugger has to run on these

296

Emenenko A.H., Mannaunes K.A., ITakynua H.B. OTiaaduk Juist oneparioHHON CHCTEMBI PeaibHOIO BPEMEHH :
npobnems! MynsTuIIaTGOopMenHoCTH. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302.

platforms too. Thus, the debugger must consider all features of all platforms and
emulators, and provide full functionality and correct execution of each process.

In order to meet this requirement, we choose GDB (GNU debugger) for the client
part of the debugger, which communicates with the client part of the debugger over
a serial port.

3. Related Works

We are not the first to consider the problem of debugging multiplatform RTOS.
There are many types of debuggers: some of them don’t have code inserted in the
system, such as CodeWarrior, others use remote debugging, for example, the
debugger for Pistachio microkernel; besides, there is RTOS debugger for VxWorks.
Here we briefly consider some debuggers for embedded OSes and their primary
features.

3.1 CodeWarrior

CodeWarrior [3] is an IDE (integrated development environment) published by
Freescale Semiconductor. It is designed to edit, compile and debug software for
several microcontrollers and microprocessors (Freescale ColdFire, ColdFire+,
Kinetis, Qorivva, PX, Freescale RS08, Freescale S08, and S127) and digital signal
controllers (DSC MC56F80X and MC5680XX) used in embedded systems. It uses
JTAG or BDM interface to control the target system.
CodeWarrior enables the user to debug real-time embedded applications, as well as
manipulate the source code to display and change the contents of variables, arrays,
and data structures. The developer can also use the debugger to work at the
hardware level if necessary.
Via CodeWarrior user can:

¢ View and change memory, registers and variables.

e Set watchpoints.

e Set breakpoints and conditional breakpoints.

e Break on exceptions.

e Track variables

3.2 VxWorks

VxWorks [5] is a real-time operating system (RTOS) developed as proprietary
software by Wind River of Alameda, California, US. It supports Intel (x86,
including the new Intel Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures. Also, WxWorks includes Wind River Probe JTAG debugger, which
supports the latest 32-bit and 64-bit processors based on leading architectures, such
as PowerPC, ARM, Intel, and MIPS.

Wind River Probe JTAG debugger is a tool for debug application on bare metall.
Developers use JTAG for target hardware communication and USB to connect to

297

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302.

their laptop. Probe provides capabilities to control hardware and software in a
compact USB JTAG emulator.

Probe debugger implements the following set of features:
e Set hardware and software breakpoints
¢ Run diagnostic scripts
e Single step through code with a correlated source view
e View and modify CPU core and peripheral registers
e View and modify RAM, cache, and non-volatile memory; supports MMU

3.3 L4Ka::Pistachio

L4Ka::Pistachio [4] is the latest L4 microkernel developed by the System
Architecture Group at the University of Karlsruhe. It is the first available kernel
implementation of the L4 Version 4 kernel API, which provides support for both
32-bit and 64-bit architectures, multiprocessoring, and superfast local IPC. The
current release supports x86-x64 (AMD64/ EM64T, K9 / P4 and higher), x86-x32
(1A32, Pentium and higher), PowerPC 32bit (IBM 440, AMCC Ebony / Blue Gene
P).
Pistachio kernel uses kdbg debugger. The debugger directs its 1/0 via the serial line
or the keyboard/screen. It is a local debugger and does not support remote
debugging mode, therefore it has a very limited amount of functions.
Debugger for Pistachio can:

e Set breakpoints

e Single step

e Dump memory

e Read registers
Debugger for L4Ka::Pistachio supports two platforms, x86 and PowerPC. It is
realized by dividing debugger's code into platform specific and independent parts.
Architecture dependent part of the debugger includes:

e Registers printing

e Single step support

e Memory writing

e TLB printing

e Breakpoints setting

4. Debugger’s Challenges for Multiplatform Support

Our debugger consists of two parts — server and client. We use GDB for the client
part of our debugger and it has the biggest part of architecture independent code.

In general, messaging mechanism between client and server doesn't change — user
communicates with the client, the client sends a special-type packet to the server
and waits for the server's answer. The server receives this message, checks control

298

Emenenko A.H., Mannaunes K.A., ITakynua H.B. OTiaaduk Juist oneparioHHON CHCTEMBI PeaibHOIO BPEMEHH :
npobnems! MynsTuIIaTGOopMenHoCTH. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302.

sum, which was sent in this packet, and if it matches the message contents, informs
the client that the message was accepted for processing. Then the server performs
the action described in the packet and sends its own packet to the client.
Understanding of what the client wants from the server is a part of architecture
independent code in OS because almost all client requests are standardized, but their
execution depends on current hardware.

We can divide our server part of the debugger into 2 parts as shown in Fig.1:

SERVER PART

Frontend

ﬁ I Platform specific I

i‘\¢ Architecture Independent part

—1 o > ©
A

\ 4 Backend

= 2 m = r o

\ J

Fig. 1. Debugger s architecture.

4.1 Frontend

This part parses packets, checks control sum, calls the needed function and sends a
reply.

Although almost all client-server packets are architecture independent, such
requests as registers read/write depend on the target hardware. Therefore, our parser
must know not only which architecture is used, but also know the type of packet the
client wants to receive, for example, if the client wants to read all registers, the
server must send 70 registers on PowerPC and 72 on MIPS.

4.2 Backend

This part of the debugger considers all platform capabilities and uses all available
resources.

The largest part of target specific code is responsible for setting breakpoints,
watchpoints, single step and read/write in memory. To implement this opportunity
not only do we need special code in server part, but we must also change exception
handler so that it could distinguish between debugger and regular interrupts.

299

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302.

For example, the single step function is realized in PowerPC architecture via special
debug register, used only in this processor. Moreover, breakpoint function needs to
set trap instruction where the user wants: for x86 architecture, this is ‘int3’
instruction, for MIPS — ‘break’ instruction.

The possibility of debugging applications not only on bare metal but also in
emulators, such as QEMU, is also our primary goal. It adds some changes to our
realization. For example, there are no debug registers in QEMU for PowerPC
architecture, which is used for single step realization on bare metal. Consequently,
we need special server part for each realization — on bare metal and QEMU.

5. Debugger’s Capabilities

As mentioned above, all debugger's capabilities are available for all supported
platforms — x86, PowerPC and MIPS.

5.1 Setting Breakpoints in Partitions and Kernel

Control execution of partitions and kernel is a key feature of debugging. It provides
capabilities to more adapted debugger control mechanisms. Moreover, our system
supports work with overlapping virtual address spaces, which means that debugger
must correctly translate it into physical address.

5.2 Execute the Application Step-by-Step

Run application step by step is a convenient way to control system state and finding
bugs. However, next instruction in code might not be the next executable extraction,
for example, because of interrupt. Therefore, user can choose to stop on next
instruction in code via disabling interrupts or on next executable instruction via
platform capabilities.

5.3 Inspect the Application State

In each moment of time, user might want to inspect system state, i.e. memory,
registers, stack trace, and threads state.

5.4 Setting Watchpoints

Watchpoints provide a great opportunity to control system state. The developer can
use watchpoints to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

6. Debugger’s Portability

As already mentioned, JetOS is being developed now, so we don’t know the final
count of platforms which our system will have to support.

To port our debugger on a new platform, we need only to change the process
specific part of the frontend and create the backend part. All other frontend parts are
the same for all processes and platforms.

It is easy to imagine the amount of work needed to port the debugger to a new
platform with the help of these values:

300

Emenenko A.H., Mannaunes K.A., ITakynua H.B. OTiaaduk Juist oneparioHHON CHCTEMBI PeaibHOIO BPEMEHH :
npobnems! MynsTuIIaTGOopMenHoCTH. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302.

In PowerPC server part consists of over 2000 lines of code:
e Over 1700 — frontend part
o 1600 — architecture independent part
o 100 - platform specific part
e Over 300 — backend part

This separation provides capabilities for porting our debugger to a new platform in
little to no time.

7. Conclusion

In this paper, we presented the architecture of remote debugger for JetOS, which
included architecture independent code (frontend part) and platform specific code
(backend part). This architecture provides capabilities for porting debugger to a new
architecture as soon as possible.

One of the next goals is to port our debugger to ARM platform, which support is
being developed now.

References

[1]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
http://www2.lauterbach.com/doc/rtosvxworks.pdf

[2]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
http://ww2.lauterbach.com/pdf/rtos_vxworks.pdf

[3]. Freescale Semiconductor, Inc. CodeWarrior Debugger, December 2, 2004
http://www.nxp.com/assets/documents/data/en/reference-manuals/Engine_PPCRM.pdf

[4]. System Architecture Group University of Karlsruhe. “The L4Ka::Pistachio
Microkernel”. May 1, 2003 http://www.l4ka.org/l14ka/pistachio-whitepaper.pdf

[5]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
http://www.windriver.com/products/product-overviews/VVxWorks-Product-Overview-
Update.pdf

[6]. Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-Level Debugger”,
The Tenth Edition

Otnaguuk gns onepayMoHHON CUCTEMbI pearibHOro
BpeMeHUN: Npo6nemMbl MynbTUNIaTPoOpPMeHHOCTHU

13 4.H. Emenenxo <emelenko@ispras.ru>
Y2 K A. Mannauues <mallachiev@ispras.ru>
Y23 i B. Haxyun <npak@ispras.ru>
lHHcmumym cucmemnozo npoepammupoeanusi PAH,

109004, Poccus, . Mocksa, ya. A. Conxcenuysvina, 0. 25.
“Mockosckui 2ocyoapcmeennwlll ynugepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocxksa, Jlenunckue 2opul, 0. 1.

SMockosckuti pusuko-mexHuteckuti UHCMumym (20CyOapCmeeHHbltl yHugepcumen),
141701, Mockosckas obaracme, 2. J{oneonpyonulii, Hncmumymckuii nepeyiok, 0.9.

301

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302.

AHHOTamms. B 3Toif cTaThe MBI pacckaxeM O MPOEKTe MO pa3paboTKe OTIAduMKa JUIs
MYJIBTHIUIAT(OPMEHHOH OIIepallnOHHOM CHCTEMBI peatbHoro BpeMenu JetOS, co3maHHOH st
TPaKAAaHCKUX aBHAIMOHHBIX cucteM. OHa TIpefHa3sHaueHa i pabOTBl B paMKax
apxuTekTypbl MHTerpupoBanHoi MoxynsHo# ABuonuku (MMA) u peamusyer ARINC 653
crermbukanmo APL. Dta onepanuoHHas cucTeMa pa3pabaThiBaeTCs B HHCTUTYTE
cuUCTeMHOro mnporpammupoanus PAH, u BaxHBIM IIaroM B €€ CO3JaHMU SBISAETCS
pa3paboTKa MHCTpYMEHTa IUIsI OTJIAAKU IOJb30BATEIbCKUX INPWIOKEHUH. B 3Tol crarhe
OyIyT paccMOTpeHBI IPOOIEeMBI OCOOEHHOCTEH OTJIaguuKa ISl OINEPalMOHHON CHCTEMBI
peanpHOr0 BpEeMEHM W IIOKa3aHbl ~ METONBl, KOTOPHIMH IOCTHTaeTcs ero
MYJIBTHIUIATGOPMEHHOCTD, a TaK)Ke Jerkas IepeHOCHMOCTh Ha HOByI0 miatdopmy. Bonee
TOrO, OBIIM PAacCMOTPEHBI JPYrHe OTIAMYMKU U BCTPAMBACMBIX ONEPALIOHHBIX CHCTEM,
takue kak CodeWarrior, otnamuuku st WxWorks u L4Ka::Pistachio, a takxke Obut usyuen
ux GyHKUMOHAN. B 3akmodeHne Mbl IPEACTaBUM HAIl OTIaJUUK, KOTOPBIH MOXeT paboTaTh
Kak B amyisaTope QEMU, ucnonp3yeMoM AL SMYJSIUMU OKpykeHus g JetOS, tak u Ha
Ie7IeBO MallMHe Ha BCeX MOJJAepKMBaeMbIX IUTardopmax. IIpemcTaBiaeHHBINH OTIAm4IMK
SIBJIICTCSl yOAJICHHBIM U TIOCTPOEH C HCIIONb30BaHUEM CTpYKTypsl GDB, HO comepkuT psix
pacmupenuii, cnenu@uUHBIX U OTJIAAKH BCTPOSHHBIX MNpuilokeHWd. Cama CTpyKTypa
oTIaa4yMKa ObLIa paslielieHa Ha apXUTEKTYpHO 3aBUCHMBIE M HE3aBHCHMBIC YacTH, UYTO
MOMOTaeT OOJErduTh MEepeHoC OTIaquiKa Ha HOBYIO IuiaTrdgopmy. B To ke Bpems Ham
OTNAAYMK YHOBICTBOPSET OONBIIMHCTBY TpeOOBaHWI, HamaraéMpIX K OTIaJUUKY
OTIEpallMOHHON CHUCTEMBI PEaTbHOTO BPEMEHH, a TakXKe YK€ HCIIOIb3YeTcs pa3paboTunKaMu
nputoxxeHnit 1 Jet OS.

KiioueBble ciioBa: OTJIaAYUK; OIICPAITMOHHBIC CUCTEMBI; OIICPAITMOHHAA CUCTEMA PCAIIBHOTO
BPEMECHH; MyJ'II)TI/IHJ'IaT(i)OpMeHHOCTL.

DOI: 10.15514/ISPRAS-2017-29(4)-20

Jns nurupoanusi: Emenenko A.H., MammauneB K.A., [Takymua H.B. Otnamumk mist
OTIePaMOHHON CHCTEMBI PEATFHOTO BPEMEHH: MPOOJIEMBI MYIbTUILIAT)OPMEHHOCTH. Tpyont
HUCIT PAH, tom 29, Bem. 4, 2017 r., crp. 295-302 (ma anrmmiickom si3bike). DOI:
10.15514/ISPRAS-2017-29(4)-20

Cnucok nutepaTtypbl

[1]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
http://www2.lauterbach.com/doc/rtosvxworks.pdf

[2]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
http://www2.lauterbach.com/pdf/rtos_vxworks.pdf

[3]. Freescale Semiconductor, Inc. CodeWarrior Debugger, December 2, 2004
http://www.nxp.com/assets/documents/data/en/reference-manuals/Engine_PPCRM.pdf

[4]. System Architecture Group University of Karlsruhe. “The L4Ka::Pistachio
Microkernel”. May 1, 2003 http://www.l4ka.org/l14ka/pistachio-whitepaper.pdf

[5]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
http://www.windriver.com/products/product-overviews/\VVxWorks-Product-Overview-
Update.pdf

[6]. Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-Level Debugger”,
The Tenth Edition

302

Discovering Near Duplicate Text
in Software Documentation*

L.D. Kanteev <lkolt2@mail.ru>
Yu.O. Kostyukov <taxixx@inbox.ru>
D.V. Luciv <d.lutsiv@spbu.ru>
D.V. Koznov <d.koznov@spbu.ru>
M.N. Smirnov <m.n.smirnov@spbu.ru>
Saint Petersburg State University,
7/9 Universitetskaya emb., St. Petersburg, 199034, Russia

Abstract. Development of software documentation often involves copy-pasting, which
produces a lot of duplicate text. Such duplicates make it difficult and expensive
documentation maintenance, especially in case of long life cycle of software and its
documentation. The situation is further complicated by duplicate information frequently
being near duplicate, i.e., the same information may be presented many times with different
levels of detail, in various contexts, etc. There are a number approaches to deal with
duplicates in software documentation. But most of them use software clone detection
technique, that is make difficult to provide efficient near duplicate detection: source code
algorithms ignore a document structure, and they produce a lot of false positives. In this
paper, we present an algorithm aiming to detect near duplicates in software documentation
using natural language processing technique called as N-gramm model. The algorithm has a
considerable limitation: it only detects single sentences as near duplicates. But it is very
simple and may be easily improved in future. It is implemented with use of Natural Language
Toolkit (NLTK), and. Evaluation results are presented for five real life documents from
various industrial projects. Manual analysis shows 39 % of false positives in automatic
detected duplicates. The algorithm demonstrates reasonable performance: documents of 0,8—
3 Mb are processed 5-22 min.

Keywords: software documentation, near duplicates, natural language processing, N-gram
model.

DOI: 10.15514/ISPRAS-2017-29(4)-21
For citation: Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N.

Discovering Near Duplicate Text in Software Documentation. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 303-314. DOI: 10.15514/ISPRAS-2017-29(4)-21

“ This work is partially supported by RFBR grant No 16-01-00304
303

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

1. Introduction

Software projects produce a lot of textual information, and analysis of this data is a
truly significant task for practice [1]. One particular problem in this context is
software documentation duplicate management. When being developed, a lot of
copy-pasted text fragments appeared in software documentation, which is often not
tracked properly. According classification from [2], there are different kinds of
software documents. For some of them, duplicate text is undesired, while others
should contain duplicate text. But in any case duplicates increase documentation
complexity and maintenance costs. The situation is further complicated by duplicate
information frequently being “near duplicate”, i.e., the same information may be
presented many times with different levels of detail, in various contexts, etc.

Most popular technique to detect duplicates in software documentation is software
clone detection [3]. There are a number of approaches using this technique in
software documentation research [4],[5],[6]. However, these approaches operate
only with exact duplicates. Near duplicate clone detection techniques [7],[8],[9],[10]
are not directly capable of detecting duplicates from text documents as they involve
some degree of parsing of the underlying source code for duplicate detection.

In our previous studies [11],[12],[13] we have presented a near duplicate detection
approach which is based on software clone detection. We adapted clone detection
tool Clone Miner [14] to detect exact duplicates in documents, then near duplicates
were extracted as combinations of exact duplicates. However, this approach
outcomes a lot of false positives because it can not manage exact duplicate detection
and operates with bad-quality “bricks” for combination of near duplicates.
Meanwhile false positives’ problem is one of the big obstacle of duplicate
management in practice [4].

In this paper we suggest an near duplicate detection algorithm based on N-gram
model [1]. The algorithm doesn't use software clone detection, omitting the
intermediate phases of exact duplicate detection. We have implemented the
algorithm using Natural Language Toolkit [15] (NLTK). The algorithm was
evaluated on documentation of five industrial projects.

2. Related Work

The problem of duplicate management in software project documents is being
actively explored at the moment. Juergens et al. [4] analyze redundancy in
requirement specifications. Horie et al. [16] consider the problem of text fragment
duplicates in Java API documentation. Wingkvist et al. [5] detect exact duplicates to
manage documents maintenance. Rago et al. [17] detect duplicate functionality in
textual requirement specifications. However, the problem of near duplicate
detection is still open. It is mentioned in [4], and Nosal and Porubin [18] suggest
only using near duplicates omitting the way to detect them.

For software engineering, the conceptual background of near duplicate analysis is
provided by Bassett [19]. He introduced the terms of archetype (the common part of
various occurrences of variable information) and delta (the variation part). Based on

304

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

this concept, Jarzabek developed an XML-based software reuse method [20].
Koznov and Romanovsky [21],[22] applied the ideas of Bassett and Jarzabek to
software documentation reuse, including automated documentation refactoring.
However, these studies did not resolve the problem of document duplicate detection.
There are various techniques to detect near duplicate clones in source code.
SourcererCC [7] detects near duplicates of code blocks using a static bag-of-tokens
strategy that is resilient to minor differences between code blocks. Deckard [8]
computes certain characteristic vectors of code to approximate the structure of
Abstract Syntax Trees in the Euclidean space. Locality sensitive hashing (LSH) [9]
is used to group similar vectors with the Euclidean distance. NICAD [10] is a text-
based near duplicate detection tool that also uses a tree-based structural analysis.
However, these techniques are not directly capable of detecting duplicates in text
documents as they involve some degree of parsing the underlying source code for
duplicate detection. A suitable customization for this purpose can be explored in the
future.

Finally, there is a need for mature near duplicate detection methods to provide a
proper duplicate analysis in software documentation. New information retrieving
methods should be applied to increase the search quality. Natural language
processing methods appear attractive for that purpose [1].

3. Background

Modern natural language processing and computer linguistics employ numerous
standard approaches to analyze and transform texts. One of them is N-gram
model [23]. Let us consider the text as a set of sentences. For every sentence the N-
gram model includes all sequences (N-grams) consisting of n words, where every
next word directly follow to previous one in the same order as in the sentence.
Therefore every N-gram is a substring of the correspondent sentence. For example,
if we want to detect the fact that two sentence are similar we can to compare their
N-gram sets. N-gram model is used to perform different kinds of text analysis.

One of the most common programming tools for practical use of N-gram model is
Natural Language Toolkit (NLTK) [15]. It provides a number of standard linguistic
operations and is implemented in Python, that makes it easy to integrate NLTK into
our Documentation Refactoring Toolkit [24] environment.

4. The Algorithm

The proposed algorithm requires the raw input document to be preprocessed: it
should be divided into sentences, the sentences should be divided into words
(tokens), and for every sentence an N-gram set is build. The algorithm collects
document sentences into groups, if they are close to each other and were likely
derived from one source by copy and paste.

The algorithm works as follows. First, it extracts sentences and builds 3-gram set for
each of them. After that, for each sentence, the algorithm scans existing groups and
chooses the best one, which already contains the largest number of the sentence’s 3-

305

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

grams. Then, if the best group already contains at least a half of the sentence’s 3-
grams, the sentence is added to this group, and the group's 3-gram set is
complemented with the new sentence's 3-grams. When no such group is found, a
new group is introduced. Finally, the algorithm outputs the groups that contain two
or more sentences. These groups are near duplicate groups.

1. fori=1to size(sent) do

2 curSent « sent][i]

3 bestOverlap < 0

4. bestGroup <« NULL

5: for j = 1 to size(groups) do

6: curGroup < groupslj]

7 curlntersect < intersect(curSent.nGrams, curGroup.nGrams)
8 curOverlap < size(curlntersect) / size(curSent.nGrams)

9: if curOverlap > bestOverlap then

10: bestOverlap < curOverlap

11: bestGroup « curGroup

12: end if

13: end for

14: if bestOverlap < 0.5 then

15: create new group newGroup

16: newGroup.nGrams += curSent.nGrams
17: newGroup.sent += curSent

18: else

19: bestGroup.nGrams += curSent.nGrams
20: bestGroup.sent += curSent

21: end if

22: end for

23: for all G in groups such that size(G) «— 1
24: groups =G
25: end for
26: return groups
27: Algorithm 1. Specification of the algorithm

Let’s describe the algorithm in more detail. The formal specification of the
algorithm is presented on the listing. Below the main functions of the algorithm are
briefly considered.

intersect(A, B) function returns elements, which exist in both A and B sets
size(A) function returns number of elements in the set A
sent is an array of sentences in document text
o sent[i].nGrams is 3-gram set of the i-th sentence
groups is an array of near duplicate groups
o groups[i].nGrams is a 3-gram set of i-th group

306

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

o groups[i].sent is a set of sentences of i-th group
Details of proposed algorithm are described below:
1. Lines 1-22: the main algorithm cycle, which iterates over all sentences of the
document.

2. Lines 5-13: the cycle for the best group selection. For each groups:

2.1. Line 7: intersection of 3-gram set with the 3-gram set of current sentence
is calculated.

2.2. Line 8: we calculate the ratio of this intersection size to total sentence 3-
grams set size.

2.3. Lines 9-12:if the current group is the best of processed ones, we
remember it.

3. Line 14: we check if above ratio is less than 0.5, and:

3.1. Lines 15-17: when it is less than 0.5, we create new group and put
sentence into it.

3.2. Lines 19, 20: otherwise, we put the sentence into the best group found.

4. Lines 23-25: groups with single sentence are not near duplicate groups,
therefore we remove them.

5. Evaluation

We follow to the GQM framework [25] to organize evaluation of our algorithm. We
formulate a set of evaluation questions:

Question 1: How many false positives (incorrect and irrelevant duplicate groups)
and meaningful near duplicates are found?

Question 2: What is the performance of the algorithm?

We use the notion reuse amount [26] that means the relation of the reusable part to
document length. For exact duplicates the reusable part is the total number of
symbols, covered by duplicates, for near duplicates we consider only their
archetypes. In [4] the same metric is named clone coverage.

Following [12], [13] we selected documentation of the four open sources as
evaluation objects, but add one more commercial project documentation:

e Linux Kernel documentation (LKD), 892 KB in total [27];

e Zend Framework documentation (Zend), 2924 KB in total [28];
e DocBook 4 Definitive Guide (DocBook), 686 KB in total [29];
e Version Control with Subversion (SVN), 1810 KB in total [30];
e Commercial project user guide (CProj), 164 KB in total.

To answer question 1, we performed an manual analysis of near duplicate detected.
The results are presented in Table 1.

307

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

The table includes column Document (evaluation documents) and two sections:
Proposed algorithm (data concerning algorithm presented in the paper) and Manual
analysis (results of manual analysis of the algorithm output). The Proposed
algorithm section is organized as follows:

e automatically detected shows numbers of groups, which algorithm found;

e raw reuse amount contains reuse amount values for the evaluated
documents.

The Manual analysis section contains the following columns:

e markup-only contains numbers of groups without human-readable text
(they only contain markup);

e irrelevant presents numbers of false-positive groups, which were detected
by human during manual revision of algorithm output;

e total meaningful shows number of meaningful duplicates, manually
detected analyzing algorithm output;

e meaningful reuse amount presents reuse amount values for meaningful
near duplicates detected.

Table 1. Near-duplicate groups detected

Proposed algorithm xgp;si
s [=2 >
s 2.1 3 s | = Z |2 2|32
= 3 T o | O o | D
8 ge | D& g g £ |g € £|E E
23 X s > = PE [S28|PE|[S2F
LKD 189 | 18.9% | 20.1% | 13.2% | 66.7% 7.7% 15 5.1%
Zend 601 | 14.5% | 10.3% | 26.5% | 63.2% 8.6% 27 2.1%
DocBook 73 | 13.0% | 13.7% | 32.9% | 53.4% 3.2% 12 1.7%
SVN 349 | 10.2% | 27.8% | 21.5% | 50.7% 5.0% 16 2.3%
CProj 72 | 38.3% 0.0% | 29.2% | 70.8% | 29.5% 9| 14.1%
Average 19.0% | 14.4% | 24.6% | 61.0% | 10.8% 5.0%

14.4% of groups contain no human-readable text, but only markup, 24.6% of
groups contain text which is similar, but this is just formal similarity, and duplicates
of those groups are not semantically connected. Remaining 61% of groups are
meaningful duplicate groups. For documents of different sizes their count varies
from few dozens to several hundreds depending on the size and nature of document,
therefore we can say that proposed algorithm detects considerable amount of near
duplicates, and most of them are meaningful. The reuse amount has been decreased
in 2 times after manual processing. These data indicates the false positive problem
need to be resolved for the algorithm.

308

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

Finally, to answer question 2 we estimated the working time of the algorithm with
the evaluation documents. For our experiments we used the usual work station Intel
i5-2400, 3.10GHz, RAM 4 GiB, Windows 10. Our estimation results are presented
in table 2. The first column of the table contains the acronyms of the documents to
be evaluated. The second one contains the size of the documents. The third column
presents the algorithm processing time values. The forth column presents the
processing speed. The processing speed depends on two parameters: the size of the
document and the reuse amount. It decreases when the document size grows and as
the reuse amount increases. The first statement is obvious. The second one follows
from the fact that, roughly speaking, the larger the reuse amount is, the fewer groups
of single sentence exist, and therefore number operations in cycle of the best group
selection (see listing 1, lines 5-13) decreases. However, this is a rough estimation
because the size of the groups also contributes to the processing speed. And we
cannot say for certain whether or not a larger reuse amount might compensate for a
larger document size. Among the five documents presented in table 2, we can see
our assumption confirmed. In the case of these documents, the processing speed
decreases as the document size increases, with one exception. The processing speed
of the algorithm for Zend was higher than that for SVN, although the size of the
Zend document was bigger than that of SVN. At the same time, the reuse amount of
Zend is substantially higher than that of SVN. Also the assumption concerning the
reuse amount works well in our experiments carried out outside of results presented
in this paper. However, further research is needed to verify this assumption. In
addition, implementation factors need to be explored, which can influence the
algorithm performance. Finally, the performance of the algorithm appears sufficient
for practical applications. The algorithm demonstrates an acceptable processing
time for rather large documents, i.e. from 1 to 3 Mb. Larger documents are quite
rare in practice.

Table 2. Performance analysis

oo | s | Flocesg | rocessts
LKD 892 5.30 168.35
Zend 2924 22.14 132.08
DocBook 686 2.02 339.60
SVN 1810 17.14 105.59
CProj 164 0.17 946.15

6. Conclusion

We have presented an algorithm for the detection of near duplicates in software
documentation based on N-gram model. The proposed algorithm is close to the
naive voting clustering algorithm [31], using a similarity measure resembling the
Jaccard index [32]. Compared to [12],[13], the algorithm looks much simpler, while
also making use of the techniques and apparatus conventionally used for text

309

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

analysis. It should be noted, the algorithm has a considerable limitation: it only
detects single sentences as near duplicates. Our primary goal for future research is
to extend the algorithm to make possible processing arbitrary text fragments. Here
are some additional future directions of the research:

1. It is necessary to resolve false positives problem. The algorithm output should
be compared to manual document analysis.

2. Classification of false positives and meaningful near duplicates should be
developed. False positives may include markup, document metadata, etc.
Meaningful near duplicates usually describe entities of the same nature
(function descriptions, command line parameters, data type specifications, etc.).

3. Improvement of experiment model should be performed. For example, Juergens
et al. [4] spend much effort to obtain objective results in analyzing duplicates of
real industry documents.

Research results could be applied in various fields of software engineering, e.g. in
model based testing [33],[34] to provide correctness of initial requirement
specifications, which are used for test generation.

References

[1] WagnerS., Fernandez D.M. Analysing Text in Software Projects. Preprint, 2016.
URL: https://arxiv.org/abs/1612.00164

[2] Parnas D. L. Precise Documentation: The Key To Better Software. Nanz S. (ed.) The
Future of Software Engineering, Springer, 2011. DOI: 10.1007/978-3-642-15187-3_8

[3] Akhin, M., Itsykson, V. Clone Detection: Why, What and How? Proceedings of CEE-
SECR’10, 2010, pp. 36-42. DOI: 10.1109/CEE-SECR.2010.5783148

[4] JuergensE. et al. Can clone detection support quality assessments of requirements
specifications? Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering, 2010, vol. 2, pp. 79-88.

[5] Wingkvist A., Ericsson M., Lincke R., Lowe W. A Metrics-Based Approach to
Technical Documentation Quality. Proceedings of 7th International Conference on the
Quality of Information and Communications Technology, 2010, pp. 476-481.

[6] Nosal M., Porubén J. Preliminary report on empirical study of repeated fragments in
internal documentation. Proceedings of the Federated Conference on Computer Science
and Information Systems, Gdansk, 2016, pp. 1573-1576.

[7]1 Sajnani H., Saini V., Svajlenko J., Roy C.K., Lopes C.V. Sourcerercc: Scaling code
clone detection to big-code. Proceedings of the 38th International Conference on
Software Engineering, ACM, New York, USA, 2016, pp. 1157-1168.
DOI: 10.1145/2884781.2884877

[8] Jiang L., Misherghi G., Su Z., Glondu S. DECKARD: Scalable and accurate tree-based
detection of code clones. Proceedings of 29th International Conference on Software
Engineering. Institute of Electrical and Electronics Engineers, 2007, pp. 96-105. DOI:
10.1109/ICSE.2007.30

[9] Huang T.K., Rahman M.S., Madhyastha H.V., Faloutsos M., Ribeiro B. An analysis of
socware cascades in online social networks. Proceedings of the 22Nd International
Conference on World Wide Web, 2013, pp. 619-630.

310

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

Cordy J.R., Roy C.K.: The NiCad clone detector. Proceedings of the 19th IEEE
International Conference on Program Comprehension. Institute of Electrical and
Electronics Engineers, 2011, pp. 219-220. DOI: 10.1109/ICPC.2011.26

Lutsiv D.V., Koznov D.V., Basit H.A., Lieh O.E., Smirnov M.N., Romanovsky K.Yu.
An approach for clone detection in documentation reuse. Nauchno-tehnicheskij vestnik
informacionnyh tehnologij, mehaniki i optiki [Scientific and Technical Journal of
Information Technologies, Mechanics and Optics] vol. 92, issue 4, 2014, pp. 106-114
(in Russian).

Koznov D. et al. Clone detection in reuse of software technical documentation.
Mazzara M., Voronkov A. (eds.), International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, 2015; Lecture Notes in Computer Science, vol.
9609, 2016, pp. 170-185. DOI: 10.1007/978-3-319-41579-6_14

Luciv D., Koznov D., Basit H.A., Terekhov A.N. On fuzzy repetitions detection in
documentation reuse. Programming and Computer Software, vol. 42, issue 4, 2016, pp.
216-224. DOI: 10.1134/s0361768816040046

Basit H.A., Smyth W.F., Puglisi S.J., Turpin A., Jarzabek S. Efficient Token Based
Clone Detection with Flexible Tokenization. Proceedings of ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, ACM Press,
2007, pp. 513-516. DOI: 10.1145/1295014.1295029

Natural Language Toolkit, URL: http://nltk.org/

Horie M., Chiba S. Tool support for crosscutting concerns of APl documentation.
Proceedings of 9th International Conference on Aspect-Oriented Software
Development, 2010, pp. 97-108. DOI: 10.1145/1739230.1739242

Rago A., Marcos C., Diaz-Pace J.A. ldentifying duplicate functionality in textual use
cases by aligning semantic actions. International Journal on Software and Systems
Modeling, vol. 15, issue 2, 2016, pp. 579-603. DOI: 10.1007/s10270-014-0431-3
Nosal” M., Porubin J. Reusable software documentation with phrase annotations. Open
Computer Science, vol. 4, issue 4, 2014, pp. 242-258. DOI: 10.2478/s13537-014-0208-3
Bassett P. Framing software reuse — lessons from real world. Prentice Hall, 1996.
ISBN: 0-13-327859-X

Jarzabek S., Bassett P., Zhang H., Zhang W. XVVCL: XML-based Variant Configuration
Language. Proceedings of 25th International Conference on Software Engineering,
2003, pp. 810-811. DOI: 10.1109/ICSE.2003.1201298

Koznov D., Romanovsky K.. DocLine: A Method for Software Product Lines
Documentation Development. Programming and Computer Software, vol. 34, issue 4,
2008, pp. 216-224. DOI: 10.1134/S0361768808040051

Romanovsky K., Koznov D., Minchin L. Refactoring the Documentation of Software
Product Lines. Central and East European Conference on Software Engineering
Techniques, Brno (Czech Republic), 2008; Lecture Notes in Computer Science, vol.
4980, Springer, 2011, pp. 158-170. DOI: 10.1007/978-3-642-22386-0_12

Broder A.Z. et al. Syntactic clustering of the web. Computer Networks and ISDN
Systems. vol. 29, issue 8, 1997, pp. 1157-1166. DOI: 10.1016/S0169-7552(97)00031-7
Documentation Refactoring ToolKit,

URL: http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html

Basili V., Caldiera G., Rombach H. The Goal Question Metric Approach. Encyclopedia
of Software Engineering, Wiley, 1994. DOI: 10.1002/0471028959.s0f142

Frakes W., Terry C.. Software reuse: metrics and models. ACM Computing Surveys,
vol. 28, issue 2, 1996, pp. 415-435. DOI: 10.1145/234528.234531

Linux Kernel Documentation, snapshot on Dec 11, 2013.

URL: https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

311

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

[28] Zend PHP Framework documentation, snapshot on Apr 24, 2015.

URL: https://github.com/zendframework/zf1/tree/master/documentation

[29] DocBook Definitive Guide, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

[30] SVN Book, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

[31] Braun R.K., Kaneshiro R. Exploiting topic pragmatics for new event detection.
Technical report. National Institute of Standards and Technology, Topic Detection and
Tracking Workshop, 2004.

[32] Jaccard P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
regions voisines [Distribution of Alpine flora in the Dranses Basin and some neighboring
regions]. Bulletin de la Société Vaudoise des Sciences Naturelles [Bulletin of the VVaudois
Society of Natural Sciences], vol. 140, issue 37, 1901, pp. 241-272 (in French)

[33] Drobintsev P.D., Kotlyarov V. P., Letichevsky A A. A formal approach to test
scenarios generation based on guides. Automatic Control and Computer Sciences,
vol. 48, issue 7, 2014, pp. 415-423. DOI: 10.3103/S0146411614070062

[34] ZelenovS.V., SilakovD.V., Petrenko A.K., Conrad M., Feyl. Automatic test
generation for model-based code generators. Proceedings of 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, pp. 75-81. DOI: 10.1109/ISoLA.2006.70

O6HapyXeHue HeTOYHO NOBTOPAIOLLErocs TeKCTa B
AOKYMeHTaLMmn NporpaMMHOro obecne4vyeHus *

JLJ]. Kanmees <Ikolt2@mail.ru>
10.0. Kocmiokoe <taxixx@inbox.ru>
J.B. Jlyyue <d.lutsiv@spbu.ru>
I.B. Koznos <d.koznov@spbu.ru>
M.H. Cmupros <m.n.smirnov@spbu.ru>
Canxm-Ilemepbypackuii 20cy0apcmeenHblil YHugepcumen,
199034, Poccus, Canxm-Ilemepbype, Ynusepcumemckas nabepesicuas 119

Aunoramusi. Ilpy CO3JaHMM JOKYMEHTAIlMH TPOTPAMMHOIO OOECIEYEHHS! 9acTo
HPUMEHSIETCS. KOMUPOBaHHE W BCTABKa C IMOCICAYIOUIMM PEIaKTHPOBAHHEM, B PE3yJbTaTe
Yero BO3HHKAET MHOTO MOBTOPSIOIIETOCs TeKCcTa. Takue MOBTOPHI YCIOXKHSIOT U YIOPOXKAIOT
HOJICPKKY JOKYMCHTAIIMH, OCOOCHHO B Cilydae JUIMTENIbHBIX JKU3HEHHBIX IHKJIOB
HOPOrpaMMHOTO obecredeHus] U JoKyMeHTauuu. Emg Gomee yCIoKHAET CHTYAIMIO TO, YTO
3a4acTyr0 MH(OpPMAIUs TIOBTOPSETCS MPHOIM3UTENIBHO, T.€. OJHA W Ta ke WH(OopManus
MOKET OBITh MHOTOKPATHO MPEJCTABJIEHA C Pa3HBIMH YPOBHSAMH JETAIM3AINH, B PA3IHYHBIX
KOHTEKCTaX W T.J. B JaHHOW paboTe TNpPEMIONKEH ajirOpHTM, MpPEIHAZHAUECHHBIA JUIs
OOHApy>KeHHs1 HETOYHBIX [OBTOPOB B JIOKyMEHTAMH MPOIPAMMHOTO OOECHEeUEHHS.
Anroputm ocHoBaH Ha Mojienn N-rpamMM U peann3oBaH ¢ ucrosb3oBanuem Natural Language
Toolkit. Anroputm ampoOupOBaH Ha JOKYMEHTAIMH HECKOJBKHX MPOCKTOB C OTKPBITHIM
HUCXOJHBIM KOJIOM.

KiioueBble ci10Ba: JOKYMEHTAIMs MHPOTPAMMHOTO OOEcCIedeHnsi, Heu€TKHEe MOBTOPEI,
00paboTKa TEKCTOB Ha €CTECTBEHHBIX S3bIKaX, MOJeNb N-rpaMm.

“ PaGota wactruHO nmojaepkana rpantoM PO®U Nel6-01-00304
312

Kanrees JI.J1., Koctrokos 0.0., JIynus JI.B., Ko3nos /I.B., Cmupros M.H. O6Hapy»eHHe HETOYHO IOBTOPSIOIETOC
TeKCTa B JOKYMEHTALMU MporpaMMHoro obecniedenusi. Tpyowt UCIT1 PAH, Tom 29, Beim. 4, 2017 r., ctp. 303-314.

DOI: 10.15514/ISPRAS-2017-29(4)-21

Jas uutuposanus: Kanrees JI.J[., Kocriokos 10.0., JIynus /I.B., Kozunos /[.B., CmupHOB
M.H. OGHapykxeHHE HETOYHO MOBTOPSIOLIETOCS TEKCTa B JOKYMEHTALMH HPOTrPaMMHOTO
obecnieuenusi. Tpyovt UCII PAH, tom 29, Bem. 4, 2017 ., ctp. 303-314 (Ha anrnumiickom
spike). DOI: 10.15514/ISPRAS-2017-29(4)-20

Cnucok nutepaTtypbl

[1] WagnerS., Fernandez D.M. Analysing Text in Software Projects. Preprint, 2016.
URL.: https://arxiv.org/abs/1612.00164

[2] Parnas D. L. Precise Documentation: The Key To Better Software. Nanz S. (ed.) The
Future of Software Engineering, Springer, 2011. DOI: 10.1007/978-3-642-15187-3_8

[3] Akhin, M., Itsykson, V. Clone Detection: Why, What and How? Proceedings of CEE-
SECR’10, 2010, pp. 36-42. DOI: 10.1109/CEE-SECR.2010.5783148

[4] JuergensE. et al. Can clone detection support quality assessments of requirements
specifications? Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering, 2010, vol. 2, pp. 79-88.

[5] Wingkvist A., Ericsson M., Lincke R., Lowe W. A Metrics-Based Approach to
Technical Documentation Quality. Proceedings of 7th International Conference on the
Quality of Information and Communications Technology, 2010, pp. 476-481.

[6] Nosal M., Porubdn J. Preliminary report on empirical study of repeated fragments in
internal documentation. Proceedings of the Federated Conference on Computer Science
and Information Systems, Gdansk, 2016, pp. 1573-1576.

[7]1 Sajnani H., Saini V., Svajlenko J., Roy C.K., Lopes C.V. Sourcerercc: Scaling code
clone detection to big-code. Proceedings of the 38th International Conference on
Software Engineering, ACM, New York, USA, 2016, pp. 1157-1168.
DOI: 10.1145/2884781.2884877

[8] Jiang L., Misherghi G., Su Z., Glondu S. DECKARD: Scalable and accurate tree-based
detection of code clones. Proceedings of 29th International Conference on Software
Engineering. Institute of Electrical and Electronics Engineers, 2007, pp. 96-105. DOI:
10.1109/ICSE.2007.30

[9] Huang T.K., Rahman M.S., Madhyastha H.V., Faloutsos M., Ribeiro B. An analysis of
socware cascades in online social networks. Proceedings of the 22Nd International
Conference on World Wide Web, 2013, pp. 619-630.

[10] Cordy J.R., Roy C.K.: The NiCad clone detector. Proceedings of the 19th IEEE
International Conference on Program Comprehension. Institute of Electrical and
Electronics Engineers, 2011, pp. 219-220. DOI: 10.1109/1CPC.2011.26

[11] JIyuume OA.B., Kosuos [.B., Bacut X.A., JIu O.E., CmuproB M.H., Pomanosckwuii K.FO.
Merton noucka NOBTOPSIIOIIUXCS q)parMeHTOB TEKCTa B TEXHUYECKON TOKYMEHTAIUU.
Hay4no-TexHMUYecKknli BECTHUK WH(POPMAIIMOHHBIX TEXHOJIOTHI, MEXaHUKU U OITHKH,
T. 92, Boim. 4, 2014, cTp. 106-114.

[12] Koznov D. et al. Clone detection in reuse of software technical documentation.
Mazzara M., Voronkov A. (eds.), International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, 2015; Lecture Notes in Computer Science, vol.
9609, 2016, pp. 170-185. DOI: 10.1007/978-3-319-41579-6_14

[13] JIyume A.B., Kosuoe I.B., Bacut X.A., TepexoB A.H. 3agaua mnoucka HEYETKUX
IIOBTOPOB npu OopraHusanuun IIOBTOPHOTI'O HCIIOJIb30BaHUA JAOKYMCHTAIlUH.
IIporpammupoBanmue, 1. 42, Ne 4, 2016, ctp. 39-49.

[14] Basit H.A., Smyth W.F., Puglisi S.J., Turpin A., Jarzabek S. Efficient Token Based
Clone Detection with Flexible Tokenization. Proceedings of ACM SIGSOFT

313

Kanteev L.D., Kostyukov Yu.O., Luciv D.V., Koznov D.V., Smirnov M.N. Discovering Near Duplicate Text in
Software Documentation. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 303-314.

[15]
[16]

[17]

(18]
[19]
[20]

[21]
[22]

(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]

[32]

[33]

[34]

314

International Symposium on the Foundations of Software Engineering, ACM Press,
2007, pp. 513-516. DOI: 10.1145/1295014.1295029

Natural Language Toolkit, URL: http://nltk.org/

Horie M., Chiba S. Tool support for crosscutting concerns of APl documentation.
Proceedings of 9th International Conference on Aspect-Oriented Software
Development, 2010, pp. 97-108. DOI: 10.1145/1739230.1739242

Rago A., Marcos C., Diaz-Pace J.A. Identifying duplicate functionality in textual use
cases by aligning semantic actions. International Journal on Software and Systems
Modeling, vol. 15, issue 2, 2016, pp. 579-603. DOI: 10.1007/s10270-014-0431-3
Nosal’ M., Porubidn J. Reusable software documentation with phrase annotations. Open
Computer Science, vol. 4, issue 4, 2014, pp. 242-258. DOI: 10.2478/s13537-014-0208-3
Bassett P. Framing software reuse — lessons from real world. Prentice Hall, 1996.
ISBN: 0-13-327859-X

Jarzabek S., Bassett P., Zhang H., Zhang W. XVVCL: XML-based Variant Configuration
Language. Proceedings of 25th International Conference on Software Engineering,
2003, pp. 810-811. DOI: 10.1109/ICSE.2003.1201298

KozHos /I.B., Pomanosckuii K.FO. Docline: werox pa3paGOTKH — JTOKyMEHTAIUH
ceMeiiCcTBa MPOrpaMMHBIX POAYKTOB. [IporpammupoBsanue, T. 34, Bem. 4, 2008, C. 1-13.
Romanovsky K., Koznov D., Minchin L. Refactoring the Documentation of Software
Product Lines. Central and East European Conference on Software Engineering
Techniques, Brno (Czech Republic), 2008; Lecture Notes in Computer Science, vol.
4980, Springer, 2011, pp. 158-170. DOI: 10.1007/978-3-642-22386-0_12

Broder A.Z. et al. Syntactic clustering of the web. Computer Networks and ISDN
Systems. vol. 29, issue 8, 1997, pp. 1157-1166. DOI: 10.1016/S0169-7552(97)00031-7
Documentation Refactoring Toolkit,

URL: http://www.math.spbu.ru/user/kromanovsky/docline/index.html

Basili V., Caldiera G., Rombach H. The Goal Question Metric Approach. Encyclopedia
of Software Engineering, Wiley, 1994. DOI: 10.1002/0471028959.s0f142

Frakes W., Terry C.. Software reuse: metrics and models. ACM Computing Surveys,
vol. 28, issue 2, 1996, pp. 415-435. DOI: 10.1145/234528.234531

Linux Kernel Documentation, snapshot on Dec 11, 2013.

URL: https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

Zend PHP Framework documentation, snapshot on Apr 24, 2015.

URL: https://github.com/zendframework/zfl/tree/master/documentation

DocBook Definitive Guide, snapshot on Apr 24, 2015.

URL.: http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

SVN Book, snapshot on Apr 24, 2015.

URL: http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

Braun R.K., Kaneshiro R. Exploiting topic pragmatics for new event detection.
Technical report. National Institute of Standards and Technology, Topic Detection and
Tracking Workshop, 2004.

Jaccard P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques
regions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, vol. 140,
issue 37, 1901, pp. 241-272 (¢pparir.)

Drobintsev P.D., Kotlyarov V. P., Letichevsky A.A. A formal approach to test
scenarios generation based on guides. Automatic Control and Computer Sciences,
vol. 48, issue 7, 2014, pp. 415-423. DOI: 10.3103/S0146411614070062

Zelenov S.V., Silakov D.V., Petrenko A.K.,, Conrad M., Feyl. Automatic test
generation for model-based code generators. Proceedings of 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, pp. 75-81. DOI: 10.1109/ISoLA.2006.70

The Program for Public Mood Monitoring
through Twitter Content in Russia

S.I. Smetanin <sismetanin@gmail.com>
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000 Russia

Abstract. With the popularization of social media, a vast amount of textual content with
additional geo-located and time-stamped information is directly generated by human every
day. Both tweet meaning and extended message information can be analyzed in a purpose of
exploration of public mood wvariations within a certain time periods.
This paper aims at describing the development of the program for public mood monitoring
based on sentiment analysis of Twitter content in Russian. Machine learning (naive Bayes
classifier) and natural language processing techniques were used for the program
implementation. As a result, the client-server program was implemented, where the server-
side application collects tweets via Twitter APl and analyses tweets using naive Bayes
classifier, and the client-side web application visualizes the public mood using Google Charts
libraries. The mood visualization consists of the Russian mood geo chart, the mood changes
plot through the day, and the mood changes plot through the week. Cloud computing services
were used in this program in two cases. Firstly, the program was deployed on Google App
Engine, which allows completely abstracts away infrastructure, so the server administration is
not required. Secondly, the data is stored in Google Cloud Datastore, that is, the highly-
scalable NoSQL document database, which is fully integrated with Google App Engine.

Keywords: sentiment analysis; public mood; mood patterns; twitter; social media
DOI: 10.15514/ISPRAS-2017-29(4)-22

For citation: Smetanin S.I. The Program for Public Mood Monitoring through Twitter
Content in Russia. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 315-324. DOI:
10.15514/ISPRAS-2017-29(4)-22

1. Introduction

With the popularization of social media, particularly the micro-blogging website
Twitter, a vast amount of content is directly generated by people every day. In
addition to textual information, which seems to have affective component, Twitter
messages are also time-stamped and geo-located. Consequently, both tweets
meaning and extended information about a message can be analyzed in a purpose of

315

Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 315-324.

scientific studies in general and in the exploration of public mood variations
particularly.

In data mining, the usage of social media to analyze and predict political events is
becoming more popular in recent times. During the Brexit referendum in the United
Kingdom, the researchers consider changes to the public mood within the contents
of Twitter [13]. They measure the appearance of positive and negative affect in
various geographic regions of the United Kingdom, at hourly intervals. According
to the results, there are three key times in the period leading up to and including the
EU referendum, each of which was characterized by an increase in negative affect
with a corresponding loss of positive affect.

The paper [12] describes an empirical study of Relationship between Twitter mood
and stock market from an Indian context. Using Twitter as a source of the news, the
authors have extracted the polarity of messages and have found a significant
correlation with stock market movement measured in the major stock indices of
India. In addition, the correlation of the sentiment with other macroeconomic factors
like Gas and Oil Price was established.

Academics from the University of Bristol have published two papers with analysis of
periodic patterns in daily media content and consumption under the ThinkBIG project
[17]. The first paper [6] was focused on the scrutiny of 87 years of the United States
and United Kingdom newspapers between 1836 and 1922. Studies have found
people’s behavior were strongly correlated with the weather and seasons. In the
second paper [7], presented at 2016 IEEE International Conference on Data Mining,
the authors pay their attention to discovering mental health changes. The team
analyzed Twitter content in the United Kingdom and Wikipedia access over four years
using data mining and sentiment analysis techniques. They found that negative
sentiment tends to be overexpressed in the winter with the peak value in November,
while more aggressive emotions like anxiety and anger seem to be overexpressed
between September and April. To conclude, both papers states that people’s collective
behavior follows strong periodic patterns.

This paper describes the development of the program for monitoring peoples’ mood
through Twitter content in Russian. This paper aims at implementing the software
product for exploring the temporal and geographical mood patterns in Russia using
machine learning techniques. In contrast with issues mentioned above, this program is
designed to process Twitter data in the online mode, i.e. to receive data directly from
Twitter API in real time, rather than analyze the pre-collected messages corpus.

The paper is organized as follows. In section 2 the program implementation,
methodology, and data collection are described. Section 3 is focused on results and
further ways of research. The limitations of this paper are provided in section 4.

2. Implementation, data, and methodology

With the popularization of social media, particularly the micro-blogging website
Twitter, a vast amount of content is directly generated by people every day. In
addition to textual information, which seems to have affective component, Twitter

316

Cwmeranus C.H. TIporpamma Juisi MOHHTOPHHTA OOIIECTBEHHBIX HACTPOCHHUI B POCCHN Ha OCHOBE COOOIICHH U3
Twitter. Tpyowr UCIT PAH, Tom 29, Bein. 4, 2017 1., ctp. 315-324.

messages are also time-stamped and geo-located. Consequently, both tweets
meaning and extended information about a message can be analyzed in a purpose of
scientific studies in general and in the exploration of public mood variations
particularly.

The client-server model was implemented for this project, where the server-side
application collects and analyzes Twitter content, and the client-side web
application visualizes results. Python was selected as a preferred programming
language because of its cross-platform operability, open source code and a vast
number of third-party libraries. The Google App Engine [9] cloud platform was
used to run and host this project on Google’s infrastructure in Python runtime
environment. The applications data is stored in Google App Engine Cloud
Datastore [4], that is, a high-performance database.

Fig. 1 illustrates the process of public mood monitoring; it’s clear that it can be
divided into several parts. Firstly, messages obtained via Twitter APl [19] using
Python-based client library. Secondly, the identification of a federal subject for each
obtained message is performed. Thirdly, sentiment analysis is executed. Fourthly,
the information of emotional polarity of messages is stored in the database. At the
last step, the client-side application visualizes results. Details for these parts are
given in the following sections.

Twitter Messages
Collection

!

Federal subject
identification

|

Text Preprocessing

!

Features Extraction

'z}
w
=
(]
=
<
1 CE
Qo
£
€
Q
)]

Sentiment

Mood Visualization

Classification

......... S E—

Storing Results

Fig. 1. The program architecture

2.1 Twitter messages collection

Twitting with a location is the geotagging feature in the Twitter platform. On the
one hand, this feature helps to provide more meaningful experience for users by
making messages more contextual. On the other hand, it makes possible for

317

Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 315-324.

researchers to analyze Twitter content from the location-based point of view. In
order to use the Tweeting with location feature users must opt-in, i.e. turn location
“on”. The location will be displayed with users Tweets only in case if they give
explicit permission for location extraction. Twitter tracks their location via mobile
geo-services or IP.

It’s common for IT companies to release its API to the public so that other software
developers can design products that are powered by its service. To access Twitter
content programmatically it’s necessary to register the developer application in
Twitter Developers Console. Using credentials from the registered application it’s
possible to interact with Twitter API from the code of the program. The open-
sourced library Tweepy [18] was used in this project to communicate with the
Twitter platform and use its” APIL. The cron job, that is, time-based job scheduler in
Unix-like computer OS, is searching and collecting new tweets in Russian with
geotagging information via Tweepy every minute. In other words, the information
about newly published messages is updated in the program every minute.

2.2 Federal subject identification by message coordinates

For each message collected at the previous step the administrative-territorial entity
should be defined according to I1SO 3166-2:RU standard, that is, part of 1ISO 3166
standard published by the International Organization for Standardization, which
describes the principal subdivisions of all countries coded in 1SO 3166-1.

Due to high implementation complexity, it was decided to use existing geographical
services to identify federal subjects’ codes. The GeoNames [8] worldwide
geographical database was selected for identification of the federal subject code by
message latitude and longitude values. This service provides developers with HTTP
REST API, which includes identification of the country ISO code and the
administrative subdivision of any given point. According to GeoNames terms and
conditions of use, there are 30000 requests daily limit and 2000 hourly limit for the
code identification functional.

2.3 Sentiment Analysis

The sentiment analysis process can be divided into three steps. At the first step, text
preprocessing for collected messages is executed to prepare textual information for
sentiment analysis. At the second step, classification features are extracted from
prepared messages. At the last step, sentiment classification for each message is
performed. The detail description of the steps is as follows.
1) Text preprocessing

Texts generated by humans in social media sites contain lots of noise that can
significantly affect the results of the sentiment classification process. Moreover,
depending on the features generation approach, every new word seems to add at
least one new dimensional, that makes the representation of texts is sparse and high-
dimensional, consequently, the task of the classifier has become more complex.

318

Cwmeranun C.1. Ilporpamma 11t MOHUTOPUHIA OOIECTBEHHBIX HACTPOSHHUH B Poccun Ha ocHOBE cooOLIeHHIT U3
Twitter. Tpyowr UCIT PAH, Tom 29, Bein. 4, 2017 1., ctp. 315-324.

According to [10], text preprocessing has been found crucial on the sentiment
classification performance.
To prepare messages, such text preprocessing techniques as reverting repeated
letters, removing URLs, removing numbers, converting to lowercase, word
normalization and stemming were used in this program. Removing and replacing
tasks was performed using regular expressions. The morphological analyzer
PyMorphy2 [11]was used for words normalization. Stemming of normalized words
was performed using NLTK Python library [16].

2) Features extraction
A basic step for a static natural language processing task tends to be the conversion
of raw text into features, which provides a machine learning model with a simpler,
more comprehensible view of the text. The bag-of-words model was used to
calculate texts embedding using unigrams and bigrams.

3) Sentiment classification
In this project, the multinomial Naive Bayes classification algorithm for binary
sentiment analysis task was used because of its tendency to perform significantly
well in the texts classification task and wide usage [20], [2], [14]. The basic idea of
Naive Bayes technique is to find the probabilities of classes assigned to texts by
using the joint probabilities of words and classes [5]. Consider the given data point x
and class ceC. The starting point is Bayes’ theorem for conditional probability
which estimates as follows:

P
Pl = o
p B count(x, c)
(xle) = count(c)

Where count(x, ¢) is the count of word x in class ¢; count(c) is a count of all words
in class c. For texts with unknown words, the estimation (2) might be problematic
because it would give zero probability. The usage of Laplace smoothing is a
common way to solve this problem (3).

count(x,c) +1
count(c) + |V +1
Where |V| is the length of vocabulary in training set.
From the assumption of word independence, it appears that for data point x = {xy,
X2, ..., Xi} the probability of each of its features to occur in the given class is
independent. Thus, the estimation of this probability can be calculated as follows:

Pelv) = P [Pexle)

In this context, that means the final equation for the class chosen by a naive Bayes
classifier is (5).

P(x|c) =

Cnp = argmax P(c) P(x;|c)
cec

319

Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 315-324.

To avoid underflow and increase speed, the Naive Bayes calculations are performed
in the log space (6).
cnp = argmax (log P(c) +) logP(x;|c))
cec
The Naive Bayes classifier was trained on the corpus of short texts in Russian based
on Twitter messages [3], which consists of 114991 positive and 111923 negative
tweets. The 10-fold cross-validation shows accuracy up to 83%.

2.4 Storing results

Every time the cron job have been executed, the new information about publication
time, the amount of positive and negative messages for each federal subject is stored
in the database.

2.5 Visualization

To explore temporal public mood variations and location based mood values the
website was implemented. Both types of graphics were developed with the
framework Google Charts [1], which provides developers with the tool for
constructing interactive charts for browsers and mobile devices. There are three
graphics displayed at the website. The first one is the Russia mood geo chart, where
the current mood state for each federal subject is visualized. The second one and the
third one are temporal mood changes plots through the day and through the week
respectively.

1) Mood variations
The information about the time of the day and day of the week is extracted from
messages to calculate temporal mood changes. Next, the public mood changes are
calculated using the following equitation:

posg

poSt + neg;
Where, pos; is the number of positive messages in the specific period t; neg; is the
number of negative messages in the specific period t. The temporal mood changes
chart through the day and through the week are plotted in the program. These charts
are constructed over all data that have been processed by the program already, so
the level of its accuracy and reliability increases with the number of analyzed
tweets.

2) Mood geo chart
To plot the mood geo chart, for each federal subject the mood values are calculated
using (7) for the last hour. Next, the federal subjects in the geo chart are marked
with colors from green to red, where green color means the predominance of
positive tweets; yellow color means the balance between the amount of positive and
negative messages; red color means the predominance of negative tweets. Fig. 2
illustrates the example of the public mood geo chart for Russia.

mood,; =

320

Cwmeranus C.H. TIporpamma Juisi MOHHTOPHHTA OOIIECTBEHHBIX HACTPOCHHUI B POCCHN Ha OCHOBE COOOIICHH U3
Twitter. Tpyowr UCIT PAH, Tom 29, Bein. 4, 2017 1., ctp. 315-324.

adi %
. N

Fig. 2. Example of the public mood geo chart for Russia

3. Results

As a result, the program for public mood monitoring through Twitter content in
Russian is implemented as web-service, which can be found by the URL
http://twittermood-ru.appspot.com/. The program collects new messages, which are
published on Twitter, in real time mode, performs sentiment analysis, process the
data obtained at the previous step, and visualizes the results. The mood geo chart
provides with an opportunity for monitoring mood values in different regions of
Russia for the last hour. The other plots offer valuable insights about temporal
public mood changes based on all collected data.

The further research will be focused on extending of analyzed feelings, that means,
monitoring not only positive or negative sentiment expressions, but also the
expression of fear, sadness, joy, and anger. In addition, the multiclass sentiment
classification can be implemented to enhance the quality of public mood
calculations.

4. Limitations

Despite a wide range of Twitter content analysis benefits, it also has some
drawbacks. Technically, Twitter users are not representative of the public,
consequently, tweets are not representative of the public opinion [15]. Findings in
this article apply only to the population of Twitter users geo-located in the Russia.
In this work, it’s possible to make claims only about the population of Russia
Twitter users and not the general population.

References

[1]. “Charts | Google Developers,” Google Developers. [Online]. Available:
https://developers.google.com/chart/. [Accessed: 18-Mar-2017].

[2]. R. Collins, D. May, N. Weinthal, and R. Wicentowski, “SWAT-CMW: Classification of
Twitter Emotional Polarity using a Multiple-Classifier Decision Schema and Enhanced

321

http://twittermood-ru.appspot.com/

Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 315-324.

(3]
[4].

[5].

[6].
[7].

[8l.
(€1

[10].

[11].

[12].

[13].

[14].

[15].
[16].
[17].
[18].
[19].

[20].

322

Emotion Tagging,” Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pp. 669-672, 2015. — 2015.

“Corpus of short texts in Russian,”Julia Rubtsova. [Online]. Available:
http://study.mokoron.com/. [Accessed: 18-Mar-2017].

“Datastore - NoSQL Schemaless Database | Google Cloud Platform,” Google Cloud
Platform. [Online]. Available: https://cloud.google.com/datastore/. [Accessed: 18-Mar-
2017].

L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, “Sentiment Analysis of
Review Datasets Using Naive Bayes‘ and K-NN Classifier,” International Journal of
Information Engineering and Electronic Business, vol. 8, no. 4, pp. 54-62, Aug. 2016.

F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Discovering Periodic Patterns in
Historical News,” Plos One, vol. 11, no. 11, 2016.

F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Seasonal Fluctuations in
Collective Mood Revealed by Wikipedia Searches and Twitter Posts,” 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 2016.

“GeoNames,” GeoNames. [Online]. Available: http://www.geonames.org/. [Accessed:
18-Mar-2017].

“Google App Engine Documentation | App Engine Documentation | Google Cloud
Platform,” Google Cloud Platform. [Online]. Available:
https://cloud.google.com/appengine/docs/. [Accessed: 18-Mar-2017].

E. Haddi, “Sentiment analysis: text, pre-processing, reader views and cross domains,”
dissertation, 2015.

M. Korobov, “Morphological Analyzer and Generator for Russian and Ukrainian
Languages,” Communications in Computer and Information Science Analysis of Images,
Social Networks and Texts, pp. 320-332, 2015.

S. Kumar, S. Maskara, N. Chandak, and S. Goswami, “Empirical Study of Relationship
between Twitter Mood and Stock Market from an Indian Context,” International
Journal of Applied Information Systems, vol. 8, no. 7, pp. 33-37, 2015.

T. Lansdall-Welfare, F. Dzogang, and N. Cristianini, “Change-Point Analysis of the
Public Mood in UK Twitter during the Brexit Referendum,” 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 2016.

B. Le and H. Nguyen, “Twitter Sentiment Analysis Using Machine Learning
Techniques,” Advanced Computational Methods for Knowledge Engineering Advances
in Intelligent Systems and Computing, pp. 279-289, 2015.

A. Mitchell and P. Hitlin, “Twitter reaction to events often at odds with overall public
opinion,” Pew Research Center, vol. 4, 2013.

“Natural Language Toolkit,” Natural Language Toolkit — NLTK 3.0 documentation.
[Online]. Available: http://www.nltk.org/. [Accessed: 18-Mar-2017].

“thinkBIG — Patterns in Big Data: Methods, Applications and Implications,” thinkBIG.
[Online]. Available: http://thinkbig.enm.bris.ac.uk/. [Accessed: 18-Mar-2017].
“Tweepy,” Tweepy. [Online]. Available: http://www.tweepy.org/. [Accessed: 18-Mar-
2017].

“Twitter Developer Documentation — Twitter Developers,” Twitter. [Online].
Available: https://dev.twitter.com/docs. [Accessed: 18-Mar-2017].

Y. Wan and Q. Gao, “An Ensemble Sentiment Classification System of Twitter Data for
Airline Services Analysis,” 2015 IEEE International Conference on Data Mining
Workshop (ICDMW), 2015.

Cwmeranus C.H. TIporpamma Juisi MOHHTOPHHTA OOIIECTBEHHBIX HACTPOCHHUI B POCCHN Ha OCHOBE COOOIICHH U3
Twitter. Tpyowr UCIT PAH, Tom 29, Bein. 4, 2017 1., ctp. 315-324.

MporpamMmma ANA MOHUTOPUHra o6LeCcTBEeHHbIX
HacTpoeHun B Poccum Ha ocHoBe coobweHnn n3 Twitter

C.U. Cmemanun <sismetanin@gmail.com>
Hayuonanvnwiii ucciedosamenvckuii ynusepcumem « Boicuias wikona 9KOHOMUKUY,
101000, Poccus, e. Mockea, yn. Msacnuykas, 0. 20

AHHoTaums. ExxeIHEBHO MOJIb30BATENSAMHU COLMANBHBIX CETEH FeHEPUPYIOTCS 3HAYUTEIIbHBIC
00BEMBI TEKCTOBOTO KOHTEHTA, KOTOPBIA HOMOJHHUTENBHO COACPIKUT HH(OpPMALHIO O
KOOpJIMHATAX M BPEMEHH MyOJHMKAUWud. DTH JaHHBIE MOTYT OBITH MPOAHAIH3HPOBAHBI U
UCIIONB30BAaHbl UL OLEHKH OOIIEro COCTOSHHS OOJBIION MOIYJSIMUH IOJb30BaTelel ¢
LENBI0 PEIICHHUS HAyYHBIX BOIPOCOB W3 INMPOKOrO CIEKTpa JUCLUUILUINH. B IaHHOW cTaThe
OIMCHIBACTCS Pa3pabOTKa MPOrpaMMbl Ui MOHHTOPUHIA OOLIECTBEHHBIX HACTPOCHHIl Ha
OCHOBE aHAJIM3a TOHAJIBHOCTH COOOIICHUH M3 PYCCKOSA3BIYHOTO CETMEHTA COLMAJIbHOH ceTn
Twitter ¢ wuCmoONB30BaHMEM METOJOB MANIMHHOTO oOydeHHs. B pa3zpaboTaHHOM
HPOrPaMMHOM TIPOJYKTe ObUIa MCIIONB30BaHA MHOTOYPOBHEBAs CeTeBas apXHTEKTypa
«KIMeHT-cepBep». HammcanHoe Ha Python cepsepHoe mnpuiioxkeHne coOupaer COOOIICHHS
none3oBateneil depez Twitter API, ocymecTBisier mpeaBapUTeNbHYI0O 00pabOTKY TeKCTa,
aHaNU3UpyeT SMOLUOHATBHYIO OKpacKy COOOIIEeHUH c HCIIONIb30BaHUEM
MYJBTHHOMHQIBHOTO HaWBHOTO baliecoBckoro Kimaccudukaropa W OIpenenseT HX
NPHHAJIC)KHOCTh K aJIMUHHCTPATHBHO-TEPPUTOPHAIIBHBIM CYObeKTaM cTpaHbl. KitneHTcKoe
BEO-IIPHIIOXKEHNE BU3YAIH3UPYET PE3yJbTaThl aHAM3a TOHAJIBHOCTH, KOTOPBIE COCTOST H3
KapTel HacTpoeHud Poccuu, rae Uil KaKIOro aJMHHHCTPATHBHO-TEPPUTOPHAIBHOTO
CyObeKTa yKa3bIBaeTCs TEKYLIMH MMOKa3aTelb HACTPOCHHUS, a TaKXkKe U3 TPaQUKOB M3MEHEHHS
HACTPOCHHUS B TEUCHHE IHSI M B TCUCHHE HeleNH. B mpomecce pa3pabOTKH MPOrpaMMHOTO
cpencTBa ObUTH 3a/ieicTBOBaHBI 0OauHble cepBuchl. CepBepHas 4acTh ObUla pa3BepHyTa Ha
mwiargpopme Google App Engine, xortopas mo3BoJsieT BBIOJHATL BEG-NPUIIOKEHHS Ha
cepBepax Google, To eCTh MOJHOCTHIO A0CTParupoOBaThCsl OT HHPPACTPYKTYPHI, TOITOMY HPH
paboTe cepBep He HYXKIaeTcs B aJAMHHUCTPUPOBAHWH. JlaHHBIE MPOrpaMMbl XpaHITCS B
obmaunoii 6a3ze manHbIX Google Cloud Datastore, koTopasi MOJHOCTBIO HHTErPHpPOBaHA C
Google App Engine.

KuiroueBble c10Ba: aHAIN3 TOHATBHOCTH; OOIIECTBEHHBIE HACTPOCHHUS; COI[HANBHbIE CETH
DOI: 10.15514/ISPRAS-2017-29(4)-22

Jnsi nurupoBanus: CwmerannH C.M. [lporpamma 11 MOHUTOpPHHTA OOILIECTBEHHBIX
HacTpoeHuii B Poccuu Ha ocHoBe coobuienuii u3 Twitter. Tpyowt UCIT PAH, Tom 29, BbIML. 4,
2017 r., ctp. 315-324 (na anramiickom si3bike). DOI: 10.15514/ISPRAS-2017-29(4)-22

Cnucok nutepaTtypbl

[1]. Charts | Google Developers. Google Developers (online). JloctynmHO mo cchuike:
https://developers.google.com/chart/. [[Iata o6pamenus: 18.03.2017]

[2]. R. Collins, D. May, N. Weinthal, and R. Wicentowski, “SWAT-CMW: Classification of
Twitter Emotional Polarity using a Multiple-Classifier Decision Schema and Enhanced
Emotion Tagging,” Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pp. 669-672, 2015. — 2015.

323

Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 4, 2017, pp. 315-324.

[3].
[4].

[5].

[6].
[7].

[8].
[a].

[10].

[11].

[12].

[13].

[14].

[15].
[16].

[17].

[18].
[19].

[20].

324

Corpus of short texts in Russian. Julia Rubtsova. (online). JloctymHo mo cchuike:
http://study.mokoron.com/. [[Tata obpamienus: 18.03.2017]

Datastore - NoSQL Schemaless Database | Google Cloud Platform. Google Cloud
Platform (online). doctymuo mo cceuike: https://cloud.google.com/datastore/. [dara
o6paruenus: 18.03.2017]

L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, “Sentiment Analysis of
Review Datasets Using Naive Bayes‘ and K-NN Classifier,” International Journal of
Information Engineering and Electronic Business, vol. 8, no. 4, pp. 54-62, Aug. 2016.
F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Discovering Periodic Patterns in
Historical News,” Plos One, vol. 11, no. 11, 2016.

F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Seasonal Fluctuations in
Collective Mood Revealed by Wikipedia Searches and Twitter Posts,” 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 2016.

GeoNames. GeoNames (online). JloctymnHo mo cesuike: http://mwww.geonames.org/.
Google App Engine Documentation | App Engine Documentation | Google Cloud
Platform. Google ~ Cloud Platform (online). JoctymHo mo cchUke:
https://cloud.google.com/appengine/docs/. [[Iata o6pamenus: 18.03.2017]

E. Haddi, “Sentiment analysis: text, pre-processing, reader views and cross domains,”
dissertation, 2015.

M. Korobov, “Morphological Analyzer and Generator for Russian and Ukrainian
Languages,” Communications in Computer and Information Science Analysis of Images,
Social Networks and Texts, pp. 320-332, 2015.

S. Kumar, S. Maskara, N. Chandak, and S. Goswami, “Empirical Study of Relationship
between Twitter Mood and Stock Market from an Indian Context,” International
Journal of Applied Information Systems, vol. 8, no. 7, pp. 33-37, 2015.

T. Lansdall-Welfare, F. Dzogang, and N. Cristianini, “Change-Point Analysis of the
Public Mood in UK Twitter during the Brexit Referendum,” 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 2016.

B. Le and H. Nguyen, “Twitter Sentiment Analysis Using Machine Learning
Techniques,” Advanced Computational Methods for Knowledge Engineering Advances
in Intelligent Systems and Computing, pp. 279-289, 2015.

A. Mitchell and P. Hitlin, “Twitter reaction to events often at odds with overall public
opinion,” Pew Research Center, vol. 4, 2013.

Natural Language Toolkit. Natural Language Toolkit — NLTK 3.0 documentation
(online). DocrymnHo no cewuike: http://www.nltk.org/. [[dara o6pamenus: 18.03.2017]
thinkBIG — Patterns in Big Data: Methods, Applications and Implications. thinkBIG.
(online). Hoctymao mo cceuike: http://thinkbig.enm.bris.ac.uk/. [[dara obpamenws:
18.03.2017]

Tweepy. Tweepy (online). Hocrymuo mo cceuike: http://www.tweepy.org/. [[ara
o6paruenus: 18.03.2017]

Twitter Developer Documentation — Twitter Developers. Twitter. (online). JoctymHo
o cceuike: https://dev.twitter.com/docs. [[lata o6pamenus: 18.03.2017]

Y. Wan and Q. Gao, “An Ensemble Sentiment Classification System of Twitter Data for
Airline Services Analysis,” 2015 IEEE International Conference on Data Mining
Workshop (ICDMW), 2015.

Narrabat — a Prototype Service for Stylish
News Retelling

LI Dolgaleva <iidolgaleva@edu.hse.ru>
LA. Gorshkov <iagorshkov@edu.hse.ru>
R.E. Yavorskiy <ryavorsky@hse.ru>
Faculty of Computer Science, Higher School of Economics,
20 Myasnitskaya, Moscow, 101000, Russia

Abstract. Nowadays, news portals are forced to seek new methods of engaging the audience
due to the increasing competition in today’s mass media. The growth in the loyalty of news
service consumers may further a rise of popularity and, as a result, additional advertising
revenue. Therefore, we propose the tool that is intended for stylish presenting of facts from a
news feed. Its outputs are little poems that contain key facts from different news sources,
based on the texts of Russian classics. The main idea of our algorithm is to use a collection of
classical literature or poetry as a dictionary of style. The facts are extracted from news texts
through Tomita Parser and then presented in the form similar to a sample from the collection.
During our work, we tested several approaches for text generating, such as machine learning
(including neural networks) and template-base method. The last method gave us the best
performance, while the texts generated by the neural network are still needed to be improved.
In this article, we present the current state of Narrabat, a prototype system rephrasing news
we are currently working on, give examples of generated poems, and discuss some ideas for
future performance improvement.

Keywords: natural language processing; information extraction; natural language generation;
tomita parser; neural networks

DOI: 10.15514/ISPRAS-2017-29(4)-23

For citation: Dolgaleva L.I., Gorshkov L.A., Yavorsky R.E. Narrabat — a Prototype Service
for Stylish News Retelling. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-
336. DOI: 10.15514/ISPRAS-2017-29(4)-23

1. Introduction

1.1 The main idea

In the era of information explosion demand for news aggregation services is always
high. Classical news services like Yandex News or Google News are on the market

325

mailto:iidolgaleva@edu.hse.ru
mailto:iagorshkov@edu.hse.ru

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

for a long time, but their format is too restricted to satisfy all potential audiences.
The motivation for Narrabat, a new news service, is to retell news in a stylish way
similar to the writings of great writers and poets so as to promote consumers loyalty
and to increase the revenue of news portals, for instance, from contextual
advertising.

The goal of the study is to develop a methodology of rewriting news texts in a
specified style and to implement it as a service. To provide a new insight into
retelling news, we build an architecture of Narrabat that is rather straightforward:
retrieve news from the providers, extract facts, reproduce the facts in a new form.
The realization of the proposed architecture might require handling two important
issues. Firstly, it is necessary to process the news and extract the main information
from it. At this point, it is essential to realize what kind of unstructured data will be
marked as key information. Secondly, we need to generate text in a predefined style
considering extracted key words.

To make precise the scope of the study, we explore the methods of retelling the
news texts in more capturing manner and build a system that today has no parallel in
the integrated marketing communications in news sphere.

The paper presents the current state of the retelling service implementation we are
still working on. A well-established result is that we have constructed a prototype
system that is capable of producing the poem from the news text. It is to be hoped
that in the not too distant future, the findings of the current research will be applied
to real regularly updated news feed as a service, possibly, as a chat-bot.

The plan of the paper is the following: in section 2 we present an algorithm for
producing poems from the news. In section 3 the current results are presented.
Finally, section IV describes the work still to be done.

1.2 Related work

Recent years have seen the rapid growth in the number of studies devoted to the
extraction of information and natural language generation. Insofar as retelling news
is concerned to these two subject areas, it would be wise to cover both of them in
the paper.

Nowadays, state-of-the-art approaches of fact extraction go far beyond the earliest
systems, where the patterns are found referring to rules of grammar [1], [2].
However, an involvement of highly qualified experts in the field or linguists is
believed to be a significant drawback of these approaches. Some of them are briefly
recalled in the next few paragraphs.

The next coherent idea about highlighting the facts from the text was to propose an
algorithm that was able to be trained independently or “almost independently”,
namely, using active learning techniques [3], [4].

As the task of the researches became more complicated, and the need to distinguish
an implicitly expressed meaning occurred, the aforementioned approaches lose its

326

Honranesa N.1., TopkoB W.A., SIBopckuii P.O. Narrabat — npoToTHt cepsrca uisi epeckasa HoBocTell B gopmare
ctuxotBoperuit. Tpyosr UCIT PAH, Tom 29, Boim. 4, 2017 ., ctp. 325-336.

efficiency. And the researches shifted their attention to generative models [5] and
conditional models [6].

Shedding light on the text generation approaches, the first things that arises is that
text in natural language may be generated via predetermined rules [7], [8], when a
set of templates is composed to map semantics to utterance. This approach is
supposed to be conventional one. These systems are believed to be simple and easy
to control, however, at the same time, no scalable due to limited number of rules,
and, consequently, output texts.

Furthermore, utilization of statistical approaches in sentence planning are still based
on hand-written text generators, whether choosing the most frequent derivation in
context-free grammar [9] or maximizing the reward in reinforcement learning [10].
By the way, further researches are aimed at minimizing human participation and
rely on learning sentence planning rules from labelled corpus of utterances [11],
which also require a huge markup by linguists.

The next set of approaches in natural language generation is based on corpus-driven
dependencies. The systems in this direction imply the construction of class-based n-
gram language model [12] or phrase-based language model [13]. Moreover, a
significant number of researchers utilize active learning in order to generate texts
[14],[15].

The use of neural network-based approaches in natural language generation is still
relatively unexplored. Although, there are studies that present the high-quality
recurrent neural network-based language models [16], [17] that are able to model
arbitrarily long dependencies. In addition, it is worth emphasizing that the usage of
Long Short-term Memory (LSTM) network may try to solve the vanishing gradient
problem [18] such as in [10].

2. Data and Method

2.1 The news sources

In this framework, we utilize short news texts that were extracted from Russian-
language informational portal ”Yandex.News”. The collection of news consists of
330 texts on different topics, for instance, society, economy, policy, to name but a
few (ultimately, 22 topics). This collection of news texts was composed of texts on
diverse topics wilfully so as to consider all lexical, syntactic and morphological
particularities of each of the themes in order to create universal system of text
processing and generation.

Every text in the collection comprises no more than three sentences except a title. It
is worth emphasizing that the format of short texts leads itself well with highlighting
the main information from the text. It follows from the fact that every sentence is
quite informative to extract key knowledge by means of rule-based approach.

327

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

2.2 Fact extraction

To provide basic information from the news, we propose to extract a kind of
extended grammatical basis of the sentences. To that end, we use Tomita-parser [19]
that allows to extract structured data (facts) from text in natural language. The tool
is much more flexible and effective in key information detection and extraction
than, for example, metric tf-idf since it allows to retrieve finite chains of words from
all the positions in the sentence, not only successive words.

Open-source Tomita-parser, in contrast to similar non-commercial fact extraction
software, accounts for specificity of work with the Russian language and has more
or less detailed documentation. The tool was implemented by developers of Yandex
on the basis of GLP-parser [20], which utilizes context-free grammars, dictionaries
of keywords and interpreter.

To get a new insight into extracting the meaning of the texts, a dictionary (gazetteer)
and grammar was compiled. As mentioned before, we suggest that the main idea of
the sentence is fixed in common basis of the sentence, a kind of analogue of the
grammatical basis. Given the opportunity to construct Russian-language sentences
with the inversion, the grammar consists of the two main rules:

S — Subject Predicate| Predicate Subject

Every non-terminal derives a string of words dependent on the root words, namely,
for Subject it may be adjective and for Predicate it may be addition or adverb.

After the required string of words is found, Tomita-Parser transforms it into fact and
represents it in the result collection of labelled texts, which, in turn, is prepared for
text retelling.

2.3 Poems collection

To teach our system the poetry style we have used writings of Alexander Blok [21]
and Nikolay Nekrasov [22] retrieved from Maksim Moshkov on-line library Lib.Ru
[23]. We have chosen to utilize particularly these poets as their poems possess
artistic and rhythmic harmony, and clearly traceable metrical feet. In further work,
we plan to expand the collection of poetry by Agniya Barto, Athanasius Fet and
Fedor Tyutchev.

2.4 Learn and produce methods

Besides the method that is described above, we tested another ways of generating
word sequences, such as neural networks. For example, we trained a network with
LSTM-layer which was expected to generate poems, using a huge dataset of
Pushkin’s poems from [24]. (LSTM for generating poems was successfully applied
in [25], [26], [27]). The result we got was a bit insufficient due to low computational
power of our computer and small network size. Further implementations with
additional layers increased the quality of generated poems, but it is still being
trained, so we are not ready yet to present its results.

328

Honranesa N.1., TopkoB W.A., SIBopckuii P.O. Narrabat — npoToTHt cepsrca uisi epeckasa HoBocTell B gopmare
ctuxotBoperuit. Tpyosr UCIT PAH, Tom 29, Boim. 4, 2017 ., ctp. 325-336.

Table | presents the example of quatrain generated by the first version of our neural
networks:

Table 1. The poem produced by neural networks

Narrabat | Ko B »xame cTpbKk HpelaHbe,
output | U cramumu nopenanse
v.00 1 no novans B copeHHEM
Ilo ceanno nepenanuil.

On the Table I it could be seen that although the poem consists of non-existent
Russian-language words, the strings of characters in words virtually resemble real
words in their structure. The second thing to sharpen the issue addressing the table
is that three out of four strings in the quatrain have the same number of syllables
(while the fourth line has only one syllable less). The makings of the rhythms, as
well, are evident. Given all the above, we treat the neural networks as a paramount
direction for our further research.

2.5 Current version of the algorithm

Apart from training neural networks to generate poems, we are so far to seek the
most conspicuously well-turned poem generator. To that end, we use template-base
method described below.
First, in order to break words into syllables, we utilize an improved version of an
algorithm of P. Hristov in the modification of Dymchenko and Varsanofiev [28] that
comprises a set of syllabication rules that are applied sequentially. Then syllables of
potentially matching subjects and predicates are compared using the following
heuristic:

e The number of syllables must coincide.

e Vowels inside syllables have priority over consonants.

e The last syllable has priority over the other.
Search for the similar sentences returns pieces of classical writings, which are used
then as templates for the resulting text gener-ation. The output poems ought to be
sought in the Section 3.

3. Results

Below is an example produced by current release (v.01) of our Narrabat system. We
start from a news description and extract subject and predicate, see Table 2.

329

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

Table 2. Original news

Source Obmieropoackoit cyOOOTHHK TPOHAET B CIELYIOUIYIO
cy00oTy, 15 anpens.

Extracted | Subject = oOrmieropoackoi cy0OOTHHK
basis Predicate = mpoiiger

The same is done for all sentences in the collection, see example in Table 3.

Table 3. Original piece from the collections

A BHHOTpAJHbIE TYCTHIHH,
Source Joma u monu — Bcé rpoda.
JIvures Menb TOpKECTBEHHOM JTaTBIHY

[Moer Ha mMTax, Kak TpyoOa.

Extracted | Subject = Meap TOpKECTBEHHOM JIaTHIHU
basis Predicate = moet

The implemented similarity measure allows us to figure out that the subjects and the
predicates are quite similar, see Table 4. Notice the same number of syllables and
almost identical endings.

Table 4. Example of a similar pairs match

Subjects Predicates
Me/[b TOP-)KECT-BEH-HOM JIa-ThI-HH o-eT
00-111e-T0-pOoJI-CKOM Cy0-00T-HUK por-/IeT

Now we can replace the matching pairs, see Table 5 for an example of the resulting
poem.

Table 5. The final result of the algorithm

Narrabat | A BUHOTpaJHBIC IIYCTHIHH,
output |Jloma u iroaum — Bc€ rpoda.
v.00 Jlnms o6mieropoackoi cyo00THUK
[poiineT Ha TIUTAX, KaK TpyoOa.

One can see that the resulting text keeps subject and predicate from the original fact
and at the same time the inserted fragment smoothly fits the style of the poem and
do not destroy its structure.

330

Honranesa N.1., TopkoB W.A., SIBopckuii P.O. Narrabat — npoToTHt cepsrca uisi epeckasa HoBocTell B gopmare
ctuxotBoperuit. Tpyosr UCIT PAH, Tom 29, Boim. 4, 2017 ., ctp. 325-336.

All readers are able to have a closer look at the details of implementation of our
Narrabat system and access the source code that is open and available on GitHub
[29].

4. Conclusion and future research directions

In the paper we have proposed a prototype of system that is capable of retelling the
news as poems that resembles style of great writers.

In the course of the work we discovered that the collection of poems have to be
drastically enlarged in order to generate high-quality poems. Given the exploration,
Nikolay Nekrasov has demonstrated more mapping potential in our tasks as he
wrote more common sentences than Alexander Blok.

Moreover, the aforementioned metrics of mapping the subjects and predicates from
news and poems does not cover all cases to be universal, for instance, in further
releases it may take into account rhyme explicitly. Although the first results
presented above are somehow promising, still a lot is on the to do list:

e Improve the quality fact extraction by extending the parsing rules.

e Use available dictionaries of accentuation to take into account the rhythmic
structure of a sentence.

e Apply machine learning techniques to better grasp the style of a sample

writing.
e Extend the algorithm to cover other parts of sentences, namely, objects and
complements.
References

[1]. Douglas E Appelt, Jerry R Hobbs, John Bear, David Israel, and Mabry Tyson. Fastus: A
finite-state processor for information extraction from real-world text. In IJCAI, volume
93, pages 1172-1178, 1993.

[2]. R Mooney. Relational learning of pattern-match rules for information extraction. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence, volume 328,
page 334, 1999.

[3]. Frangois Mairesse, Milica Gasi¢, Filip Juréicek, Simon Keizer, Blaise Thomson, Kai Yu,
and Steve Young. Phrase-based statistical language generation using graphical models
and active learning. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1552—-1561. Association for Computational
Linguistics, 2010.

[4]. Aidan Finn and Nicolas Kushmerick. Active learning selection strategies for information
extraction. In Proceedings of the International Workshop on Adaptive Text Extraction
and Mining (ATEM-03), pages 18-25, 2003.

[5]. Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning hidden markov
model structure for information extrac-tion. In AAAI-99 workshop on machine learning
for information extraction, pages 37-42, 1999.

[6]. Adwait Ratnaparkhi. Learning to parse natural language with maximum entropy models.
Machine learning, 34(1-3):151- 175, 1999.

331

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

[7].
[8].

[9].

[10].

[11].

[12].
[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

332

Adam Cheyer and Didier Guzzoni. Method and apparatus for building an intelligent
automated assistant, March 18 2014. US Patent 8,677,377.

Hugo Gongalo Oliveira and Amilcar Cardoso. Poetry generation with poetryme. In
Computational Creativity Research: Towards Creative Machines, pages 243-266.
Springer, 2015.

Anja Belz. Automatic generation of weather forecast texts using comprehensive
probabilistic generation-space models. Natural Language Engineering, 14(04):431-455,
2008.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. Semantically conditioned Istm-based natural language generation for spoken
dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

Amanda Stent and Martin Molina. Evaluating automatic extraction of rules for sentence
plan construction. In Proceedings of the SIGDIAL 2009 Conference: The 10th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 290-297.
Association for Computational Linguistics, 2009.

Adwait Ratnaparkhi. Trainable approaches to surface natural language generation and
their application to conversational dialog systems. Computer Speech & Language,
16(3):435-455, 2002.

Frangois Mairesse and Steve Young. Stochastic language generation in dialogue using
factored language models. Compu-tational Linguistics, 2014.

Gabor Angeli, Percy Liang, and Dan Klein. A simple domain-independent probabilistic
approach to generation. In Pro-ceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 502-512. Association for Computational
Linguistics, 2010.

Ravi Kondadadi, Blake Howald, and Frank Schilder. A statistical nlg framework for
aggregated planning and realization. In ACL (1), pages 1406—1415, 2013.

Toma$ Mikolov, Stefan Kombrink, Luka§ Burget, Jan Cernocky, and Sanjeev
Khudanpur. Extensions of recurrent neural network language model. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages
5528-5531. IEEE, 2011.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, page 3,
2010.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157-166,
1994.

Yandex LLC. Tomita-parser tool to extract structured data from texts.
https://tech.yandex.ru/tomita/. Accessed: 2017-04-10.

Masaru Tomita. Lr parsers for natural languages. In Proceedings of the 10th
International Conference on Computational Linguistics and 22nd annual meeting on
Association for Computational Linguistics, pages 354-357. Association for Com-
putational Linguistics, 1984.

Alexander Blok. Sobranie sochinenij v 8 tomah [Collected Works in 8 volumes].
Gosudarstvennoe izdatel’stvo hudozhestvennoj literatury [State Publishing House of
Fiction], Moscow, 1960-1963 (in Russian).

Nikolaj Nekrasov. Polnoe sobranie stihotvorenij N. A. Nekrasova v 2 tomah [Complete
collection of poems by N.A. Nekrasov in 2 volumes]. Tipografija A. S. Suvorina
[Printing house of AS Suvorin], Sankt-Peterburg, 1899 (in Russian).

Honranesa N.1., TopkoB W.A., SIBopckuii P.O. Narrabat — npoToTHt cepsrca uisi epeckasa HoBocTell B gopmare
ctuxotBoperuit. Tpyosr UCIT PAH, Tom 29, Boim. 4, 2017 ., ctp. 325-336.

[23]. Lib.ru: Library of Maksim Moshkov. http://lib.ru/. Accessed: 2017-04-10.

[24]. Alexander Pushkin. Sobranie sochinenij v desyati tomah. Tom vtoroj. Stihotvoreniya
1823-1836 [Collected works in ten volumes. Volume 2. Poems of 1823-1836]. [State
Publishing House of Fiction], Moscow, 1959—1962 (in Russian).

[25]. Anna Rumshisky Peter Potash, Alexey Romanov. Ghostwriter: Using an Istm for
automatic rap lyric generation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1919-1924, 2015.

[26]. Rui Yan. i, poet: Automatic poetry composition through recurrent neural networks with
iterative polishing schema. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IICAI-16), pages 2238-2244, 2016.

[27]. Yejin Choi Marjan Ghazvininejad, Xing Shi and Kevin Knight. Generating topical
poetry. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1183—-1191, 2016.

[28]. Yura Batora. Algorithm for splitting words into syllables.
https://sites.google.com/site/foliantapp/project-updates/hyphenation. Accessed: 2017-04-
10.

[29]. Rostislav Yavorskiy Irina Dolgaleva, Ilya Gorshkov. Narrabat.
https://github.com/onobot/allbots/tree. Accessed: 2017-04-10.

Narrabat — npoTtoTun cepBuca ansa nepeckasa HOBOCTEN B
c¢hopmaTe CTUXOTBOPEHUMN

UU. Jloneanesa <iidolgaleva@edu.hse.ru>
U A. Topwrkos <iagorshkov@edu.hse.ru>
P.D. Asopckuii <ryavorsky@hse.ru>
Dakynvmem Komnviomeprvix HayK, Boicwas [lkona xonomuxu,
101000, Poccus, Mockea, yn. Macuuykas, 20

AnHoTamms. B wuHTepHeTe Bce OonplIylo TOMYISpHOCTE mpuobperator CMU,
OTKa3bIBAIOIIUECS OT OOMIETIPHHATOTO (OPMANBHOTO crocoba H3JIOKEHHS HOBOCTEH H
JieNarole akIeHT Ha KPEeaTMBHOCTU IPEJOCTaBIsEMOT0 KOHTEHTAa. SIpKUMHU NpUMepaMu
MOTYT MOCTYXUTh mabnuk "Jlentaua" u3 corpanpHoii cetu "BKoHTakTe", COMPOBOXIAFONIHIA
KaKIyr0 HOBOCTh Memamu, H pecypc "KAKTAM?", oGopayuBaroiiuii 3aroioBKH B
HaMEPEeHHO CBEPX3MOIMOHAIBHYIO (opMy. MBI pelmim peanu3oBaTh HHCTpyMeHT Narrabat,
MepECKa3bIBAIOIINA HOBOCTH B €Ol OJHOM HeoObdHOM crmie. Ero 3amaga -
mpeoOpa3oBhIBATS HOBOCTHBIE JICHTBI, B3fATHIE M3 CTOPOHHHX HCTOYHHKOB, B HEOOJBIINE
CTHXOTBOPEHHUS, OTpaKAIOIIUe KIIOYEBbIE COOBITHS HOBOCTHBIX CIOKETOB. B KadecTBe
OCHOBBI JUI TEHEpalld CTHUXOB HCIONB3YyeTCs OOJbIIas KOJUIEKIUS PYCCKOM KITaCCHKH
(cocTosimiast u3, K npumepy, mnpousseneHuil bmoxa m Hexpacosa). OgHuM U3 INIaBHBIX
JIOCTOMHCTB BBIOpaHHOW HaMH (OpMBI Mepeckasa W CO3JaHHOTO WHCTPYMEHTa B YaCTHOCTH
ABJIAETCS TO, YTO, IIPU BCEH OPUTMHAIBHOCTH BBIBOZA, IPOLIECC €r0 TCHEPALUH MOJHOCTHIO
ABTOMAaTU3UPOBAH, B OTJIMYHE OT CEPBHUCOB, OMMCAHHBIX BbIE. VIHCTpyMEHT paboTaeT B
HECKOJIbKO 3TAIOB: CHaJyajla MPOUCXOIUT BBIICICHUE (PAaKTOB M3 3ar0JIOBKOB BEITPYKECHHBIX
HOBOCTeH mpu momomu Tomita Parser, mocme dero QakTel mepenarTcs B MOIYIb,
OTBEUAIOIIHUI 32 TEeHEpAIHIO CTUXOTBOpeHUs. [1o X0ay paGoThl MBI HCIIOIBE30BAN HECKOIBKO
MOAXONOB JUISi TEHEpallul CTHUXOTBOPEHHH, TaKWe, KaK AJTOPUTMEI, MOCTPOCHHBIE Ha
npaBWiax, M MallMHHOEe o0y4eHHWe, BKIIOYas HEWpOHHble ceTH. Ha naHHOM orame

333

https://github.com/onobot/allbots/tree
mailto:iidolgaleva@edu.hse.ru
mailto:iagorshkov@edu.hse.ru

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

HAaWTy4IIUH pe3yibTaT Jail MEepBBIH METoH, OJHAaKo paboTa 1o oOydeHHI0 HEHPOHHOH CeTH
BEJIETCsI IO CHX T0p. B maHHOM cTaThe MBI ONHUIIEM TEKyIIHUe pe3yIbTaTsl paboThl, IPUBEIEM
NpUMEpBl CTeHEPUPOBAHHBIX CTHUXOTBOPEHMH, a TaKKe IEPeYucIUM HalpaBlIeHHus Uit
JTAJIbHEHIIIEro yIy4lIeHUs] HHCTPYMEHTA.

KuiroueBble ciioBa: 06paboTKa €CTECTBEHHOTO sI3bIKA; U3BJICUCHHE HH(POPMALINK; TCHEpaLHs
TEKCTa; TOMHTA Hapcep; HEHPOHHBIE CETH

DOI: 10.15514/ISPRAS-2017-29(4)-23

Jost murupoBanus: [lonranesa V.1, lopmkos U.A., fIBopckuit P.O. Narrabat — nporotun
cepBHca A Iepecka3a HOBOCTeH B ¢opmare ctuxoTBopeHuil. Tpyoet UCII PAH, tom 29,
BoI. 4, 2017 ., cTp. 325-336 (Ha anmmmiickoM si3bike). DOI: 10.15514/ISPRAS-2017-29(4)-
23

Cnucok nutepaTtypbl

[1]. Douglas E Appelt, Jerry R Hobbs, John Bear, David Israel, and Mabry Tyson. Fastus: A
finite-state processor for information extraction from real-world text. In IJCAI, volume
93, pages 1172-1178, 1993.

[2]. R Mooney. Relational learning of pattern-match rules for information extraction. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence, volume 328,
page 334, 1999.

[3]. Frangois Mairesse, Milica Gasi¢, Filip Jur¢icek, Simon Keizer, Blaise Thomson, Kai Yu,
and Steve Young. Phrase-based statistical language generation using graphical models
and active learning. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1552—-1561. Association for Computational
Linguistics, 2010.

[4]. Aidan Finn and Nicolas Kushmerick. Active learning selection strategies for information
extraction. In Proceedings of the International Workshop on Adaptive Text Extraction
and Mining (ATEM-03), pages 18-25, 2003.

[5]. Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning hidden markov
model structure for information extrac-tion. In AAAI-99 workshop on machine learning
for information extraction, pages 37—42, 1999.

[6]. Adwait Ratnaparkhi. Learning to parse natural language with maximum entropy models.
Machine learning, 34(1-3):151- 175, 1999.

[7]. Adam Cheyer and Didier Guzzoni. Method and apparatus for building an intelligent
automated assistant, March 18 2014. US Patent 8,677,377.

[8]. Hugo Gongalo Oliveira and Amilcar Cardoso. Poetry generation with poetryme. In
Computational Creativity Research: Towards Creative Machines, pages 243-266.
Springer, 2015.

[9]. Anja Belz. Automatic generation of weather forecast texts using comprehensive
probabilistic generation-space models. Natural Language Engineering, 14(04):431-455,
2008.

[10]. Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. Semantically conditioned lstm-based natural language generation for spoken
dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

334

Honranesa N.1., TopkoB W.A., SIBopckuii P.O. Narrabat — npoToTHt cepsrca uisi epeckasa HoBocTell B gopmare
ctuxotBoperuit. Tpyosr UCIT PAH, Tom 29, Boim. 4, 2017 ., ctp. 325-336.

[11].

[12].
[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].
[22].
[23].
[24].
[25].

[26].

[27].

Amanda Stent and Martin Molina. Evaluating automatic extraction of rules for sentence
plan construction. In Proceedings of the SIGDIAL 2009 Conference: The 10th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 290-297.
Association for Computational Linguistics, 2009.

Adwait Ratnaparkhi. Trainable approaches to surface natural language generation and
their application to conversational dialog systems. Computer Speech & Language,
16(3):435-455, 2002.

Frangois Mairesse and Steve Young. Stochastic language generation in dialogue using
factored language models. Compu-tational Linguistics, 2014.

Gabor Angeli, Percy Liang, and Dan Klein. A simple domain-independent probabilistic
approach to generation. In Pro-ceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 502-512. Association for Computational
Linguistics, 2010.

Ravi Kondadadi, Blake Howald, and Frank Schilder. A statistical nlg framework for
aggregated planning and realization. In ACL (1), pages 1406—1415, 2013.

Toma$ Mikolov, Stefan Kombrink, Luka3 Burget, Jan Cernocky, and Sanjeev
Khudanpur. Extensions of recurrent neural network language model. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages
5528-5531. IEEE, 2011.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, page 3,
2010.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157-166,
1994.

Yandex LLC. Tomura-mapcep. https:/tech.yandex.ru/tomita/. J[lara oOGparmieHus
10.04.2017.

Masaru Tomita. Lr parsers for natural languages. In Proceedings of the 10th
International Conference on Computational Linguistics and 22nd annual meeting on
Association for Computational Linguistics, pages 354-357. Association for Com-
putational Linguistics, 1984.

Anexcannp brnok. Cobpanue counHenuii B 8 Tomax. ['ocynapcTBeHHOE HM3IaTENbCTBO
XY[IO’)KECTBEHHOM JuTeparypsl, Mocksa, 1960-1963.

Huxonait Hexpacos. IlonHoe co6panme cruxorBopenuii H.A. HekpacoBa B 2 Tomax.
Tunorpagus A. C. CyBopuna, Cankr-ITerepOypr, 1899.

Lib.ru: bubnmoreka Makcuma Momkosa. http://lib.ru/. Jlara o6pamenus 10.04.2017. .
Anekcannp IlymkuH. CoOpaHue COYMHEHMH B JECITH TOMaX. TOM BTOPOM.
CruxotBopenus 1823-1836. 1823-1836.

Anna Rumshisky, Peter Potash, Alexey Romanov. Ghostwriter: Using an Istm for
automatic rap lyric generation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1919-1924, 2015.

Rui Yan. i, poet: Automatic poetry composition through recurrent neural networks with
iterative polishing schema. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IICAI-16), pages 2238-2244, 2016.

Yejin Choi, Marjan Ghazvininejad, Xing Shi and Kevin Knight. Generating topical
poetry. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1183—-1191, 2016.

335

Dolgaleva LI, Gorshkov I.A., Yavorsky R.E. Narrabat — a Prototype Service for Stylish News Retelling. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 325-336.

[28]. Yura Batora. Algorithm for splitting words into syllables.
https://sites.google.com/site/foliantapp/project-updates/hyphenation. Jlara oOparieHust
10.04.2017.

[29]. Rostislav Yavorskiy, Irina Dolgaleva, Ilya Gorshkov. Narrabat.
https://github.com/onobot/allbots/tree. Iata obpamienus 10.04.2017.

336

https://github.com/onobot/allbots/tree

