Collecting Influencers: a Comparative Study of Online Network Crawlers
Authors
Abstract
Online network crawling tasks require a lot of efforts for the researchers to collect the data. One of them is identification of important nodes, which has many applications starting from viral marketing to the prevention of disease spread. Various crawling algorithms has been suggested but their efficiency is not studied well. In this paper we compared six known crawlers on the task of collecting the fraction of the most influential nodes of graph.
We analyzed crawlers behavior for four measures of node influence: node degree, k-coreness, betweenness centrality, and eccentricity. The experiments confirmed that greedy methods perform the best in many settings, but the cases exist when they are very inefficient.
Edition
Ivannikov Ispras Open Conference (ISPRAS)
DOI: 10.1109/ISPRAS47671.2019.00012
978-1-7281-6056-6